Articles | Volume 25, issue 20
https://doi.org/10.5194/acp-25-13863-2025
https://doi.org/10.5194/acp-25-13863-2025
Research article
 | 
27 Oct 2025
Research article |  | 27 Oct 2025

Meteorological influence on surface ozone trends in China: assessing uncertainties caused by multi-dataset and multi-method

Xueqing Wang, Jia Zhu, Guanjie Jiao, Xi Chen, Zhenjiang Yang, Lei Chen, Xipeng Jin, and Hong Liao

Related authors

The radiative forcing of PM2.5 heavy pollution, its influencing factors and importance to precipitation during 2014–2023 in the Bohai Rim, China
Jun Zhu, Yingying Wang, Xu Yue, Huizheng Che, Xiangao Xia, Xiaofei Lu, Chenguang Tian, and Hong Liao
EGUsphere, https://doi.org/10.5194/egusphere-2025-4464,https://doi.org/10.5194/egusphere-2025-4464, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Surface and tropospheric ozone over East Asia and Southeast Asia from observations: distributions, trends, and variability
Ke Li, Rong Tan, Wenhao Qiao, Taegyung Lee, Yufen Wang, Danyuting Zhang, Minglong Tang, Wenqing Zhao, Yixuan Gu, Shaojia Fan, Jinqiang Zhang, Xiaopu Lyu, Likun Xue, Jianming Xu, Zhiqiang Ma, Mohd Talib Latif, Teerachai Amnuaylojaroen, Junsu Gil, Mee-Hye Lee, Juseon Bak, Joowan Kim, Hong Liao, Yugo Kanaya, Xiao Lu, Tatsuya Nagashima, and Ja-Ho Koo
Atmos. Chem. Phys., 25, 11575–11596, https://doi.org/10.5194/acp-25-11575-2025,https://doi.org/10.5194/acp-25-11575-2025, 2025
Short summary
Dry and warm conditions in Australia exacerbated by aerosol reduction in China
Jiyuan Gao, Yang Yang, Hailong Wang, Pinya Wang, and Hong Liao
Atmos. Chem. Phys., 25, 10949–10964, https://doi.org/10.5194/acp-25-10949-2025,https://doi.org/10.5194/acp-25-10949-2025, 2025
Short summary
Simulated photochemical response to observational constraints on aerosol vertical distribution over North China
Xi Chen, Ke Li, Ting Yang, Xipeng Jin, Lei Chen, Yang Yang, Shuman Zhao, Bo Hu, Bin Zhu, Zifa Wang, and Hong Liao
Atmos. Chem. Phys., 25, 9151–9168, https://doi.org/10.5194/acp-25-9151-2025,https://doi.org/10.5194/acp-25-9151-2025, 2025
Short summary
Measurement Report: Collocated speciation and potential mechanisms of gaseous adsorption for integrated filter-based sampling and analysis of water-soluble organic molecular markers in the atmosphere
Wei Feng, Xiangyu Zhang, Zhijuan Shao, Guofeng Shen, Hong Liao, Yuhang Wang, and Mingjie Xie
EGUsphere, https://doi.org/10.5194/egusphere-2025-2106,https://doi.org/10.5194/egusphere-2025-2106, 2025
Short summary

Cited articles

Bedeian, A. G. and Mossholder, K. W.: On the use of the coefficient of variation as a measure of diversity, Organ. Res. Methods, 3, 285–297, https://doi.org/10.1177/109442810033005, 2000. 
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Cao, T., Wang, H., Li, L., Lu, X., Liu, Y., and Fan, S.: Fast spreading of surface ozone in both temporal and spatial scale in Pearl River Delta, J. Environ. Sci., 137, 540–552, https://doi.org/10.1016/j.jes.2023.02.025, 2024a. 
Cao, T., Wang, H., Chen, X., Li, L., Lu, X., Lu, K., and Fan, S.: Rapid increase in spring ozone in the Pearl River Delta, China during 2013–2022, npj Clim. Atmos. Sci., 7, 309, https://doi.org/10.1038/s41612-024-00847-3, 2024b. 
Chattamvelli, R. and Shanmugam, R.: Measures of Spread, in: Descriptive Statistics for Scientists and Engineers. Synthesis Lectures on Mathematics & Statistics, Springer, Cham. https://doi.org/10.1007/978-3-031-32330-0_3, 2023. 
Download
Short summary
Impacts of meteorology on ozone vary with diverse meteorological datasets and analytical methods. Uncertainties of meteorology-driven ozone trends in China were examined. Multi-dataset analysis shows the largest meteorology-driven ozone trend with the best consistency occurs in spring. Multi-method analysis shows the best (worst) consistency occurs in winter (summer). Overall, meteorology boosts ozone growth in all seasons, with uncertainty from multi-method larger than that from multi-dataset.
Share
Altmetrics
Final-revised paper
Preprint