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Abstract. China has witnessed notable increases in surface ozone (O3) concentrations since 2013, with mete-
orology identified as a critical driver. However, meteorological contributions vary with different meteorological
datasets and analytical methods, and their uncertainties remain unassessed. This study leveraged decadal obser-
vational maximum daily 8-hour average O3 records (2013-2022) across China, revealing intensified nationwide
03 pollution with increasing Oj trends of 0.79-1.31 ppb yr~! during four seasons. We gave special focus on un-
certainties of meteorology-driven O3 trends by using diverse meteorological datasets (ERAS, MERRA2, FNL)
and diverse analytical methods (Multiple Linear Regression, Random Forest, GEOS-Chem model). A useful
statistic (coefficient of variation, CV) was adopted as an uncertainty quantification metric. For multi-dataset
analysis, models driven by different meteorological datasets exhibited the maximum meteorology-driven O3
trend (+0.55 ppb yr~!, multi-dataset mean) with the highest consistency (CV = 0.25) in spring. The FNL-driven
model always obtained larger trends compared to ERAS and MERRAZ2, which could be attributed to inability to
accurately evaluate planetary boundary layer height in FNL dataset. For multi-method analysis, three methods
demonstrated optimal consistency in winter (CV = 0.40) and the worst consistency in summer (CV = 2.00). The
meteorology-driven O3 trends obtained from GEOS-Chem model were almost smaller than those obtained by
other two methods, partly resulting from higher simulated O3 values before 2018. Overall, all analyses driven by
diverse meteorological datasets and analytical methods drew a robust conclusion that meteorological conditions
almost boosted O3 increases during all seasons; the uncertainties caused by different analytical methods were
larger than those caused by diverse meteorological datasets.
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1 Introduction

Since 2013, the Chinese government has implemented a se-
ries of policies to mitigate air pollution resulting from the
rapid industrial and urban expansion, such as the “Air Pol-
lution Prevention and Control Action Plan” (Wang, 2021).
Several criteria air pollutants exhibited decreases due to
the emission control efforts, but not ozone (03) (Qi et al.,
2023; Shen et al., 2020). In China, O3 concentrations were
increased by 50-124ugm™> from 2015-2022 (Yao et al.,
2024). The formation of surface O3 depends nonlinearly on
its precursors and is strongly influenced by meteorological
conditions and anthropogenic emissions (Wang et al., 2017).
The impact of emission-related factors on O3 increases in
China over the past decade has been extensively debated, in-
cluding the ineffective control of volatile organic compounds
(VOCs) emissions, the heightened O3 photochemical pro-
duction due to the rapid decrease in PM> s, and the reduced
nitric oxide (NO) titration effect (Li et al., 2019, 2022; Lin et
al., 2021a; Liu and Wang, 2020b; Ren et al., 2022).

Meteorological conditions also play a crucial role in shap-
ing surface O3 trends (Liu et al., 2023; Lu et al., 2019b),
resulting in increased O3 concentrations during warm sea-
sons over most of the United States, the European Union, and
China from 2014-2019 (Lyu et al., 2023). In China, the me-
teorological impacts on O3 levels may be comparable to the
anthropogenic contributions (Li et al., 2020; Liu and Wang,
2020a). From 2013 to 2018, meteorology could account for
43 % of the daily variability in summer surface O3 concen-
trations in eastern China (Han et al., 2020). Adverse meteo-
rological conditions were identified as the cause of the wors-
ening O3 trends during 2015-2020 in Beijing-Tianjin-Hebei
(BTH), Yangtze River Delta (YRD), and Pearl River Delta
(PRD) regions (Hu et al., 2024b). In YRD, .Dang et al. (2021)
found that meteorological factors contributed 84 % of the O3
increase during the summers of 2012-2017. In PRD, mete-
orological conditions contributed 83 % of the increasing O3
trends during the summers of 2015-2019 (Mousavinezhad
et al., 2021). After 2019, meteorological conditions tended
to improve Oj3 air quality (Liu et al., 2023; Wang et al.,
2023). Compared to 2019, the wetter and cooler meteorolog-
ical conditions in 2020 reduced O3 concentrations by 2.9 ppb
in eastern China (Yin et al., 2021). However, during 2022’s
summer, a notable rebound in O3 levels occurred with O3
concentrations rising by 12—15ppb in China compared to
2021, which was attributable to the extreme heatwave events
(Qiao et al., 2024). With climate change, the frequency of
extreme O3 pollution events is expected to increase (Gao et
al., 2023; Ji et al., 2024). Given the shifted meteorological
effects on O3 and climate change, it is imperative to conduct
03-Meteorology research focusing on longer time frames to
gain deeper insights into the long-term changes in O3 con-
centrations (Wang et al., 2024a).

Studies conducted over the past six years to determine
the meteorological influence on the surface O3 trend have
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been systematically reviewed, as documented in Table S1.
The meteorological influence on surface O3 concentrations
is commonly assessed by using the traditional statistical
model (TSM), machine learning model (MLM), and chem-
ical transport model (CTM), driven by reanalysis meteoro-
logical products such as the fifth-generation European Cen-
tre for Medium-Range Weather Forecasts atmospheric re-
analysis of the global climate (ERAS), the Modern-Era Ret-
rospective Analysis for Research and Applications, version
2 (MERRA2), and the National Centres for Environmen-
tal Prediction (NCEP) Final Operational Global Analysis
data (FNL). Although several studies have demonstrated that
meteorological impacts derived from CTM results can cor-
roborate the results of TSM (Liu et al., 2023; Yan et al.,
2024) or MLM (Ni et al., 2024; Yin et al., 2021), uncertain-
ties in the determination of meteorological effects on sur-
face O3 concentrations cannot be neglected. For example,
Pan et al. (2023) reported that the meteorological impact on
03 trends in Beijing during 2013-2020 was 4+0.52 ppbyr—!,
which is only half of the value estimated by Gong et
al. (2022).

Uncertainties in quantifying the drivers of O3 trends can
be ascribed to the discrepancies between different meteoro-
logical datasets and between different methods (Guo et al.,
2021; Weng et al., 2022; Yao et al., 2024). Regarding the un-
certainty caused by different meteorological datasets, the me-
teorologically driven annual variations of O3 concentrations
from 2017-2019 identified by the MERRA2-driven TSM are
not consistent with the ERAS5-driven TSM during the sum-
mer of YRD (Hu et al., 2024a; Qian et al., 2022). During the
summers of 2013-2019 in YRD, Li et al. (2019) reported a
trend of +0.7 ppb yr~! in meteorology-driven O3 concentra-
tions using the MERRA2-driven TSM, while the trend of Yan
et al. (2024) was —0.3 ugm~> yr~! using the ERA5-driven
TSM. Regarding the uncertainty caused by different meth-
ods, the meteorology-driven O3 trend identified by MLM for
2019-2021 was 2.4 times larger than that identified by CTM
based on the same meteorological dataset input (MERRAZ2)
in the North China Plain (NCP) during summer (Wang et al.,
2024a). In BTH, from 2021 to 2022, Luo et al. (2024) iden-
tified a negative meteorological contribution based on the
ERAS5-driven MLM, while Yan et al. (2024) suggested a pos-
itive contribution (+4.3 ugm~3) based on the ERA5-driven
TSM during summer.

On the basis of the above-mentioned, large uncertain-
ties caused by multi-dataset or multi-method exist in O3-
Meteorology analyses. However, available intercomparisons
of O3 analyses mainly focused on predicting the O3 con-
centrations. For example, Wang et al. (2024b) and Weng et
al. (2023) compared the differences in O3 concentration pre-
diction caused by different datasets and models, respectively.
The uncertainties in quantifying the meteorological contribu-
tions to O3 trends caused by multi-dataset and multi-method
remain unassessed. In addition, previous studies have pre-
dominantly focused on summer O3 pollution, although re-
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ports indicate an extension of the O3 pollution season to
winter and spring across major clusters in China (Cao et al.,
2024a; Li et al., 2021) and an unfavourable meteorological
impact on O3 air quality in spring and winter in BTH (Luo
et al., 2024). It is essential to conduct an intercomparison
of meteorology-driven O3 quantification using multi-dataset
and multi-method across all seasons.

This study utilised 10-year (2013-2022) surface O3 ob-
servations in China to investigate long-term O3 trends and
quantify the meteorological influence on O3 trends using di-
verse meteorological datasets and analytical methods. Fig-
ure 1 shows the framework, and the main objectives were:
(1) to assess uncertainties in identifying the meteorological
influences caused by multi-dataset. This was achieved by
employing the TSM (i.e. multiple linear regression, MLR)
driven by different reanalysis meteorological products (i.e.
ERAS, MERRA2, and FNL); (2) to assess uncertainties in
identifying meteorological effects caused by multi-method.
This was achieved by establishing three models correspond-
ing to TSM (i.e. MLR), MLM (i.e. random forest, RF), and
CTM (i.e. GEOS-Chem, GC), each driven by the MERRA2
product; (3) to calculate the mean of meteorology-driven O3
trends driven by three datasets (multi-dataset mean) and three
methods (multi-method mean), so as to to derive relatively
robust results.

Our paper is structured as follows: Sect. 2 briefly intro-
duces the details of surface O3 observations and different
meteorological datasets, as well as the framework of three
methods, namely MLR, RF, and GC. The quantification of
the uncertainties in meteorology-driven O3 trends caused by
multi-dataset and multi-method is presented in Sec. 3. Sec-
tion 4 concludes the paper. The findings of this study provide
a scientific foundation for developing regional and seasonal
strategies to mitigate and manage O3 pollution in China.

2 Data and Methods

2.1 Surface Oz and meteorological data sources

Hourly surface O3 observations from over 1000 state-
controlled stations operated by the China National En-
vironmental Monitoring Centre from 2013-2022 were
used to analyse the long-term O3 trends across all sea-
sons: spring (March—April-May), summer (June—July—
August), autumn (September—October—November), and win-
ter (December—January—February). The maximum daily 8 h
average (MDAS) O3 was calculated as an air quality indicator
after filtering out abnormal data using the z-scores method.
For detailed information on data quality control, refer to He
et al. (2017).

In this study, we selected three widely used reanaly-
sis products to assess the uncertainties caused by different
meteorological datasets. Variables during 2013-2022 from
ERAS, MERRAZ2, and FNL, as detailed in Table S2, were
selected as meteorological inputs for building MLR models.
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These reanalyses have spatial resolutions of 0.25° x 0.25°,
0.625° x 0.5°, and 1°x 1° on a global latitude-longitude
grid, respectively. In Sect. 3.2, we also incorporate the
NCEP FNL reanalysis product with a spatial resolution of
0.25° x 0.25° (FNLO025) for the period 2016-2022 to explore
the effect of spatial resolution on the analysis of uncertainties
caused by multi-dataset.

2.2 Methods for obtaining long-term series and
meteorological influence

2.2.1 Kolmogorov—Zurbenko (KZ) filter

The KZ filter, known for its ability to extract low frequency
signals from time series data and handle missing values, has
been extensively applied to analysing air quality variations
(Eskridge et al., 1997; Rao and Zurbenko, 1994; Wise and
Comrie, 2005). This filter is particularly useful in studying
variations in air quality over time. The original time series
of air pollutants or meteorological variables (X(¢)) can be
decomposed by the KZ filter into the following form:

X ()= Xst(t) + Xsn(?) + Xrr(?) (1
Xor() = KZ365,3) X (1) 2
XBL(1) = KZ(15,5 X (1) 3
Xst(t) = X (t) — XpL() 4)

In the decomposition process, X (¢) represents the original
daily time series, while Xg1(?), Xsn (¢), and X171 (¢) denote
the short-term, seasonal, and long-term components, respec-
tively. The baseline component, Xpy (), is defined as the sum
of Xsn(#) and Xyt (7). The KZ(, o) filter executes g itera-
tions with p as the moving average window length of X ()
series. Specially, Xy(f) is derived using the KZ¢5 3 fil-
ter, capturing long-term changes with periods exceeding 1.7
years. XpL(¢) is obtained through the KZ;5 5) filter, encom-
passing both seasonal and long-term components. Xgt(#)
represents short-term fluctuations with period less than 33
days in the original time series. Xgn (7) is derived as the dif-
ference between Xpp(¢) and Xyr(¢), corresponding to sea-
sonal variation on a timescale of months. The KZ filter can
fill in missing values by using iterated moving average tech-
nique. Although not all of the ozone measurement sites were
active over the entire period 2013-2022, missing value prob-
lems can be handled for most stations after we conduct three
iterations wit.

In this study, all statistical analyses were performed at the
seasonal scale (spring: March—April-May; summer: June—
July—August; autumn: September—October—November; win-
ter: December—January—February). For each season, the
KZ 65,3 filter was applied to extract the long-term trends in
observed, meteorology-driven, and emission-driven MDAS
O3 concentrations (see details in Fig. S1) during 2013-2022,
as detailed in Sect. 2.2.2, 2.2.3, and 2.2.4.
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Figure 1. The framework of the uncertainty assessment in this study.

2.2.2 Stepwise MLR for separating meteorological
influence

As vividly illustrated in Fig. S1, a data-based TSM (i.e.,
MLR integrating the KZ filter) was employed to separate
the observed MDAS8 O3 concentrations into meteorology-
driven and emission-driven concentrations (Sadeghi et al.,
2022; Shang et al., 2023; Zhang et al., 2022a). We initially
applied the KZ filter to disassemble the MDAS8 O3 time se-
ries and all meteorological variables listed in Table S2 into
short-term, baseline, and long-term components at individ-
ual state-controlled stations for each season. Subsequently, a
series of screening processes aligned with our previous re-
search (Wang et al., 2024c) were executed to perform step-
wise MLR on the short-term/baseline MDAS8 O3 concentra-
tions and a group of meteorological variables series, respec-
tively. The established MLR model is presented herein:

Csr (1) =bos.r + S5 bi s x Met; (1) + ¢ Q)

Here, C , (t) represents the MDAS8 O3 concentration for
season s and monitoring station r, while Met; (¢) signifies the
ith meteorological variable out of a total of k, and b; s , is the
corresponding regression coefficient. by s denotes the inter-
cept term, and ¢ is the residual term. After establishing MLR
models for the short-term and baseline components in each
season, we obtain their respective residual terms. The total
residuals, which represent the sum of residuals from baseline
variables and short-term variables, primarily reflect anthro-
pogenic influences. We then applied a KZ 365, 3) filter to these
aggregated residuals to derive long-term emission-driven and
meteorology-driven O3 variations. Finally, the meteorology-
driven O3 trends and emission-driven O3 trends were ob-
tained through Least Square Method.

The constructed MLR models driven by meteorological
variables from ERAS, MERRAZ2, or FNL in each season will
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allow a comprehensive analysis of multi-dataset uncertain-
ties. The meteorological impact on O3 trends derived from
the MERRA2-driven MLR model will also be integrated into
the analysis of multi-method uncertainties to improve the
comparability of results.

2.2.3 Random forest (RF) for deriving meteorological
influence

The application of MLM in Os3 air quality research is be-
coming increasingly prevalent due to its superior accuracy,
user-friendly nature, and capability to capture nonlinear re-
lationships (Ni et al., 2024; Yao et al., 2024; Zhang et al.,
2022b). Considering the limited influence of discrepancy in
03-Meteorology analyses stemming from different machine
learning algorithms (Wang et al., 2024a), we opted to build
a representative MLM known as the meteorological normal-
isation model based on the RF algorithm (Ding et al., 2023;
Jiet al., 2024; Zhang et al., 2023), to delineate meteorology-
and emission-driven O3 concentrations.

RF stands out as a tree-based ensemble learning algo-
rithm adept at handling nonlinear issues and reducing over-
fitting (Breiman, 2001). An RF model was developed for
each state-controlled station in each season to predict the
MDAS8 O3 concentration using the Python package “Sklearn-
RandomForestRegressor”. The predictors included six tem-
poral variables (year, month of a year, day of a week, day
of a month, day of a year, Unix time), serving as proxies
for anthropogenic emission intensity (Grange et al., 2018),
alongside six MERRA?2 meteorological variables as listed
in Table S2 (i.e. SLP, T2max, U10, V10, RH2, PBLHday).
The training dataset comprised 70 % of the data, while the
remaining 30 % was reserved for model evaluation. A statis-
tical cross-validation technique was employed to determine
optimal hyperparameters for enhancing RF prediction per-
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formance (Weng et al., 2022). Coefficient of determination
(R?) values were utilised to assess model performance for
each station. Over 70 % of state-controlled stations showed
R? > 0.5 in all seasons (Fig. S2b), which is consistent with
the 0.4-0.6 range reported in comparable studies (Weng et
al., 2022; Lu et al., 2024). Stations with R2<0.5 were ex-
cluded to avoid significant attribution uncertainty that could
be introduced by the RF performance. To evaluate the ro-
bustness of the R% > 0.5 criterion, we performed sensitivity
analyses using thresholds of R? > 0.6 and R? > 0.4, to en-
sure that our conclusions are not an artifact of an arbitrary
cutoff (Table S3).

After establishing the RF model, both the original time
variables and resampled meteorological variables were
utilised as input data. For meteorological normalisation, we
implemented the protocol of Vu et al. (2019). Meteorolog-
ical variables were resampled by randomly selecting data
from the two weeks before and after the specified date, while
temporal proxies remained fixed. To derive the de-weathered
MDAS O3 concentration for a given day (e.g. 1 March 2013),
the random resampling process was iterated 1000 times.
The mean predicted O3 under average meteorological con-
ditions, which refers to de-weathered O3, corresponds to the
emission-driven O3 concentration. The meteorology-driven
MDAS O3 concentrations for each season were computed
as the difference between observed concentrations and de-
weathered concentrations. Detailed processes are shown in
Fig. S2a. The KZ 3653, filter was then applied to obtain long-
term components, and meteorology-driven O3 trends were
derived using Least Square Method.

2.2.4 GEOS-Chem (GC) simulation for quantifying
meteorological influence

The numerical analysis of surface Oz in China was per-
formed with the GC classic version 13.3.3 (https://github.
com/geoschem/GCClassic/releases/tag/13.3.3, last access:
22 October 2025). Developed as a global 3-D model, GC in-
corporates a fully coupled O3—NO,—VOCs—aerosol-halogen
chemical mechanism, driven by the MERRA2 meteorolog-
ical input. Numerous studies have leveraged GC to simu-
late O3 air quality in China, demonstrating alignment be-
tween observational data and model outcomes (Dai et al.,
2024; Dang et al., 2021; Li et al., 2019; Lu et al., 2019a).
We employed the nested-grid GC to simulate the long-term
surface O3 concentrations and to quantify the meteorology-
driven MDAS8 O3 trends over China. The nested-grid do-
main was set over China’s mainland (15-55°N, 70-140° E)
with a horizontal resolution of 0.5° latitude by 0.625° lon-
gitude and 47 vertical layers extending up to an altitude of
0.01 hPa. A global simulation with a horizontal resolution
of 2° x 2.5° provided the chemical boundary conditions for
the nested-grid simulation every 3 h. To ensure model sta-
bility and accuracy, a 6-month spin-up simulation was con-
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ducted before the commencement of the targeted 10-year pe-
riod from March 2013 to February 2023.

Emissions management within GC is facilitated by the
Harmonized Emissions Component, a system introduced by
Lin et al. (2021b). Anthropogenic emissions are sourced
from the Community Emissions Data System (CEDS) in-
ventory globally, with specific overwriting by the Multi-
resolution Emission Inventory for China (MEIC) within the
Chinese region. The simulations for 2021-2022 adopt a sim-
ilar approach to Zhai et al. (2021), using 2019 MEIC emis-
sions with NOx emissions reduced by 8 %—13 % and 2017
MEIC with VOCs emissions reduced by 10 %—14 %, based
on the policy released by Ministry of Ecology and Environ-
ment of the People’s Republic of China. For natural emis-
sions, biogenic VOCs, soil, and lightning NOx were calcu-
lated online in the model. Emissions from biomass burning,
ships, and aircraft are sourced from the Global Fire Emis-
sions Database, the CEDS inventory, and the 2019 Aircraft
Emissions Inventory Code, respectively.

In order to assess the model’s performance and to get a
quantification of meteorology-driven O3 trends during the
period of 2013-2022, two sets of simulations were con-
ducted: (1) BASE: the standard simulation of O3 concen-
trations from 2013 to 2022, where both meteorological
fields and emissions (including anthropogenic, natural, and
biomass emissions) vary year by year from 2013 to 2022; (2)
FixE2013: a “fixed-emission simulation” where meteorolog-
ical conditions vary from 2013 to 2022 while anthropogenic
emissions remain constant at 2013 levels. The FixE2013 sim-
ulation is designed to quantify the meteorological influence
on O3 variations. The FixE2013 simulation is designed to
obtain the MDAS8 O3 concentrations driven solely by meteo-
rological changes and further quantify the meteorological in-
fluence on O3 variations in four seasons. After applying the
KZ365,3) filter to derive the long-term meteorology-driven
series, trends were calculated through Least Square Method.
Figure S3 evaluates the performance of the GC simulation for
2013-2022. The GC model generally captures the monthly
variability in MDAS O3 over China and three megacity clus-
ters, with the correlation coefficients greater than 0.80, al-
though it always shows a high bias of surface O3 in warm
seasons (Dai et al., 2024), which can be attributed to its in-
ability to capture the complex terrain, local pollution sources
and meteorological conditions, or overestimates of the cor-
relations between the surface O3 concentration and tempera-
ture (Shen et al., 2022; Sun et al., 2021).

2.3 Assessment of uncertainties caused by
multi-dataset and multi-method

In this study, the coefficient of variation (CV) is applied to as-
sess the uncertainties in O3-Meteorology analyses caused by
different meteorological datasets or methods. The CV, cal-
culated as the ratio of the standard deviation (SD) to the
mean, serves as a statistical metric commonly utilised to
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measure the diversity within datasets or models (Bedeian and
Mossholder, 2000; Chen et al., 2019). Compared to other
comparators (e.g. range, inter-quartile range, and SD), the
CV is a unit-free measure that quantifies percentage varia-
tion relative to the mean and is less sensitive to outliers and
heavy-tailed distributions (Hogel et al., 1994; Chattamvelli
and Shanmugam, 2023). In this study, higher CVs indicate
lower consistency of meteorologically driven O3 trends de-
rived from different datasets or methods. To give a more
quantitative assessment, consistency levels were classified
as strong and weak with CV <0.5 and CV > 1.0, respec-
tively (Wang et al., 2022a). Given the possibility of disparate
meteorology-driven O3 trends detected by different datasets
or methods, we consider the absolute value of the CV as
a quantitative indicator of the uncertainties. For each sea-
son, when examining the uncertainties arising from different
datasets, the CV represents the SD of trends derived from the
ERAS5, MERRAZ2, and FNL-driven MLR models divided by
the mean. Similarly, in the context of multi-method uncer-
tainties, the CV is the SD of trends identified by the MLR,
RF, and GC models divided by the mean.

3 Results

3.1 Observed trends in surface Oz concentration

Figure 2 shows the trends in observed MDAS8 O3 concen-
trations over a 10-year period during four seasons. Notewor-
thy increases in O3 concentrations were observed at 78 %—
93 % of state-controlled stations over the years, with the na-
tional trend being +1.31, +0.93, 4+-0.79, and +0.80 ppb yr~!
in spring, summer, autumn, and winter, respectively.

The major eastern megacity clusters in China also dis-
played their highest MDAS O3 increase trends in spring, with
trends of +1.16 ppbyr~—! in BTH, +1.61 ppbyr~! in YRD,
and +1.48 ppbyr~! in PRD, which has been reported in pre-
vious studies (Cao et al., 2024b; Chen et al., 2020; Wang et
al., 2022b). During summer, BTH and YRD faced more se-
vere challenges in O3 prevention and control compared to
PRD, with rising MDAS O3 trends in the former two regions
being about three times higher than that in PRD (Fig. 2b).

In terms of O3 growth rates, Shanxi province and An-
hui province ranked the top two provinces in China over
the past decade in all seasons except for winter, consistent
with Zhao et al. (2020). In spring and winter, O3 concen-
trations increased in all provinces, with trends of +0.39 to
+2.75ppbyr~! and 4+0.42 to +1.30 ppbyr~!, respectively.
Notably, Jilin province experienced an obvious improvement
in O3 air quality during summer and autumn, with decreas-
ing trends of —0.74 and —0.38 ppb yr~!, respectively, which
was also confirmed by Gong et al. (2022). As mentioned
in Section 1, variations in O3 concentrations are fundamen-
tally modulated by emissions and meteorology. This section
mainly documents observed O3 trends, and the quantitative
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contributions of emissions and meteorology to MDAS8 O3
variations will be discussed in Sect. 3.2.

The annual and seasonal mean MDAS8 O3 concentrations
across China are detailed in Figs. S4 and S5, providing a
holistic depiction of the persisting spread of O3z pollution
since 2013. On a national average, the O3 air quality was
worst in summer, with the average O3 levels exceeding the
air quality standard Grade I limit of S0ppb almost every
year. Notably, the summer of 2019 marked a peak period
for O3 pollution, with an average concentration of 59.7 ppb
(Fig. S5b).

3.2 Uncertainty in meteorology-driven Oz trends caused
by multi-dataset

The traditional statistical method (the MLR model), which
has a relatively low computational cost but can provide valu-
able insights into the quantification of meteorological con-
tributions to O3 trends, was used to investigate the uncer-
tainties in O3-Meteorology analyses caused by different me-
teorological datasets. As shown in Fig. 3a, meteorological
conditions contribute to an increase in MDAS8 O3 concen-
trations across all seasons in China, with the multi-dataset
mean trends ranging from 4+0.19 (& 0.47) ppb yr—! to 40.55
(£0.45) ppbyr~!. All three dataset-driven MLR models in-
dicate that meteorology leads to the most rapid increase
in MDAS8 O3 concentrations in spring, with trends ranging
from +0.47 (£0.47)ppbyr~! to +0.71 (£0.59)ppbyr~!,
and a low CV of 0.25. This suggests a high consistency
among the three datasets in assessing the meteorological in-
fluence on surface O3 concentrations. During summer and
autumn, meteorological influences on O3 show greater spa-
tial heterogeneity (with higher SD) and larger variability
among multi-datasets (with higher CV). Specifically in au-
tumn, the meteorology-driven O3 trend derived from the
FNL-driven MLR model is 4.1 times larger than that derived
from the ERAS-driven MLR model. Lu et al. (2024) com-
pared meteorology-driven O3 trends derived from ERAS-
and MERRA2-driven MLR models during the summers
of 2013-2019. Their findings revealed that ERAS-derived
trends were lower than those from MERRA2 in YRD and
PRD, whereas trends derived from ERAS were comparable
to those from MERRA?2 in BTH. This inter-study consensus
further validates the robustness of our methodological frame-
work.

Figure 3b—d depicts the meteorological impact on the
MDAS O3 trends in the three megacity clusters (BTH, YRD,
and PRD). Meteorology caused the MDAS8 O3 increase in
most of the megacity clusters and seasons, except for BTH
during autumn. In seasons where the meteorological effects
derived from the three MLR models are all positive, the
multi-dataset mean trends ranged from +0.09 (%=0.38) to
+0.33 (£0.13) ppbyr~! in BTH, +0.18 (£0.20) to +0.68
(£0.56)ppbyr~! in YRD, and +0.73 (+0.36) to +1.13
(£0.45)ppbyr~! in PRD. Consistent with Fig. 3a, meteo-
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Figure 2. Trends in observed MDAS8 O3 concentrations in China from 2013-2022 during (a) spring, (b) summer, (¢) autumn, and (d) winter.
Values in black, purple, blue, and green represent the mean trends for the whole China, BTH, YRD, and PRD, respectively.

rology triggered the most rapid increase in MDAS8 O3 con-
centrations in spring across the three megacity clusters. The
largest meteorological impact in BTH during spring was also
revealed by Luo et al. (2024). Large CVs (> 1.0) were ob-
served in BTH during summer and autumn. Notably, the me-
teorological influence calculated by the three dataset-driven
MLR models even showed opposite trends in BTH during
autumn, indicating challenges in assessing the meteorolog-
ical impacts on surface O3 concentrations. In contrast, in
YRD and PRD, the three MLR models demonstrated high
consistency across almost all seasons. Although the largest
CV reached 4.40 in PRD during summer, it was considered
acceptable because the three MLR models indicated that me-
teorology had a minor influence (less than +0.1 ppbyr~—!) on
O3 trends.

From a provincial perspective in Fig. S6, we can also see
that the meteorological contributions to O3 trends are pos-
itive during spring and winter. Large uncertainties in O3-
Meteorology analyses were identified during summer and
autumn. There were 7 and 12 provinces with controversial
meteorological contributions identified by the three dataset-
driven MLR models in summer and autumn, respectively.
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Figure 4 displays the spatial distribution of the CV val-
ues from the perspective of state-controlled stations in four
seasons. Consistent with the national and provincial per-
spectives, the least uncertainties in O3-Meteorology analy-
ses were observed in spring, with CVs less than 0.5 at 45 %
of stations. Obvious discrepancies in meteorology-driven O3
trends are found in summer and autumn, particularly in the
NCP and northwestern China, with CVs greater than 1.0 at
33 %—-40 % of the stations. In autumn, it is noteworthy that
the uncertainties caused by multi-dataset are lower in the
south than in the north. Previous studies that employed MLR
models to predict O3 concentration also revealed that the
MLR had better performance in the south than in the north
(Han et al., 2020; Lu et al., 2024).

Based on the three dataset-driven MLR models, the mete-
orological and anthropogenic contributions to the MDAS O3
trends in China during 2013-2022 were further examined.
As presented in Fig. 5, both meteorological conditions and
anthropogenic emissions lead to O3 increases. According to
the ERAS- and MERRA2-driven MLR models, variations in
anthropogenic emissions were identified as the dominant fac-
tor driving the increase in MDAS8 O3 concentrations across
all seasons, with anthropogenic contributions ranging from
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Figure 3. Meteorology-driven MDAS8 O3 trends in (a) the whole China, (b) BTH, (¢) YRD, and (d) PRD during four seasons. Values in red,
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shown.

63.2% to 90.4 %. The results suggest that more stringent
emission control policies should be implemented to coun-
teract the adverse effects of meteorological influences on O3
concentrations.

It is interesting to note that the FNL-driven model al-
most always gave relatively larger predictions of meteoro-
logically driven O3 trends compared to the models driven by
ERAS and MERRA2. To investigate whether this discrep-
ancy was due to the coarser spatial resolution of the FNL
dataset, a comparison was made between the FNL025-driven
MLR model (0.25° x 0.25°) and the FNL-driven MLR model
(1.0° x 1.0°). As depicted in Fig. S7, the deviation of the
meteorology-driven trends calculated by the two MLR mod-
els was less than 0.1 in China and three megacity clusters
across four seasons, indicating that different spatial resolu-
tions have little effect on O3-Meteorology analyses. Further
examination was conducted to assess the influence of mete-
orological variables on O3-Meteorology analyses. Table S4

Atmos. Chem. Phys., 25, 13863-13878, 2025

lists the 10-year trends in each meteorological factor and
shows a great discrepancy in the variable “PBLHday”. Zuo
et al. (2023) also reported that FNL exhibited the highest un-
certainty for the evaluation of PBLH compared to ERAS and
MERRAZ2, and that its performance may be constrained by
complex underlying terrain and static instability (Guo et al.,
2021). As Fig. S8 shows, constructing the FNL-driven MLR
models using six meteorological variables without “PBLH-
day” can reduce the estimated meteorological impact by 0.08
to 0.20 ppbyr~!. To obtain a more reliable estimate, it is
recommended to use MERRA?2 reanalysis dataset due to its
eclectic result (Fig. 3) and avoid using FNL because of the
uncertainty brought by PBLH when separating meteorolog-
ical and anthropogenic influences on O3 concentrations in
China.
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Figure 4. The absolute value of the coefficient of variation (CV) for each state-controlled monitoring station in China during (a) spring, (b)
summer, (¢) autumn, and (d) winter. The CV is calculated by the standard deviation (SD) of the trends derived from ERA5-, MERRA2-, and
FNL-driven MLR models divided by the mean. The darker colour means the larger uncertainty in quantifying the meteorological impact on
observed O3 trends. The proportion of state-control stations with CV less than 0.5 and greater than 1.0 is also shown. The outline marked in
purple, blue, and green represents the region of BTH, YRD, and PRD, respectively.

3.3 Uncertainty in meteorology-driven O3 trends caused
by multi-method

This section discusses the uncertainties caused by multi-
method (i.e. MLR, RF, GC), all of which are driven by
the MERRA2 dataset. Figure 6 illustrates the meteorology-
driven MDAS8 O3 trends calculated by the MLR, RF, and
GC models. For the whole of China, the large uncertain-
ties are evident during summer, when the meteorology-
driven O3 trends derived from the MLR model are notably
larger than those from the RF and GC models, with a CV
of 2.00 (Fig. 6a). In the other three seasons, the multi-
method mean trends, ranging from +0.17 (£ 0.37) to +0.26
(£0.27)ppbyr~!, are 1.1 to 2.1 times lower than those com-
puted by the three dataset-driven MLR models (Fig. 3a),
all models converge on the conclusion that meteorological
conditions contribute to the deterioration of O3 air quality.
Meteorology-driven MDAS O3 trends exhibited minor vari-
ations across different R? thresholds (Table S3), indicating
that the trends are not an artifact of an arbitrary cutoff.
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In YRD and PRD, the three models exhibit strong agree-
ment across all seasons, with a maximum CV of 0.61. The
low uncertainties are further corroborated by consistent CV
estimates derived under different RF’s R? thresholds (Ta-
ble S3). Across these regions, where meteorology leads to
an increase in O3 concentrations with multi-method mean
trends of +0.17 (£ 0.08) to +0.47 (£ 0.22) ppbyr~! in YRD
and 4+0.10 (£ 0.12) to 4+-0.83 (& 0.19) ppb yr—! in PRD. No-
tably, the most rapid meteorology-driven O3 increase is also
observed in spring (Fig. 6¢ and d), which is consistent with
Fig. 3c and d. Lu et al. (2024) also demonstrated a high
degree of consistency among the MLR, ML, and GC mod-
els in PRD during summer. Specifically, all three models
indicated that meteorology contributed approximately 25 %
of Oz variability over the period 2013-2019. In BTH, the
three models perform consistently well only in winter, with
meteorology-driven O3 trends ranging from 40.09 (£ 0.07)
to 40.26 (0.15) ppbyr~! and a CV of 0.55. It is also ob-
served that in summer and autumn, meteorology plays a rel-
atively small role in influencing O3 air quality despite the
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unit: ppb yr!

controversial results obtained by the three models (Fig. 6b).
This finding aligns with a study focusing on the O3 air qual-
ity in BTH from 2015 to 2022 (Luo et al., 2024), which sug-
gested that meteorological conditions tend to increase MDA
03 concentration by only 0.01 ugm=3 in summer and de-
crease MDAS8 O3 concentration by 0.3ugm™> in autumn
from 2015-2022.

In addition, Fig. 6 illustrates that the meteorology-driven
O3 trends obtained from GC are relatively smaller. As shown
in Fig. S3 and Table S5, this difference could partly be at-
tributed to the higher O3 levels and lower O3 increases sim-
ulated by the GC model before 2018. The GC’s systematic
overestimation of O3 concentrations, as well as underestima-
tion of O3 increases, was also reported by Lu et al. (2024), in
which the GC captured 13.6 %—81.1 % of the observed O3 in-
creases in China during the summer of 2000-2019. It is cru-
cial to take into account the overestimation of low-level O3
observations, as noted in previous studies (Hu et al., 2024c;
Mao et al., 2024). To validate this hypothesis, we compared
the meteorology-driven O3 trends calculated by MLR with
those calculated by GC from 2018-2022, and a higher agree-
ment was found over 2018-2022 compared to the 2013-2022
period in Fig. S9. The trends driven by RF model are eclectic
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in more cases (Fig. 6) and recommended to isolate meteoro-
logical and anthropogenic drivers.

From a provincial perspective, as depicted in Fig. S10, the
three models together indicate that meteorology causes an
O3 increase in winter across almost all provinces except for
Guizhou and Sichuan. In summer and autumn, meteorology
leads to a decrease in 5 provinces, mainly in northeastern
China, with trends ranging from —0.42 to —0.11 ppbyr—!.
Interestingly, across all seasons, the three models intro-
duce less uncertainty in the developed east coast regions
such as Jiangsu, Fujian, and Guangdong compared to other
provinces. This suggests that quantifying meteorological im-
pact on O3 levels in these developed regions along the east
coast of China is relatively reliable.

From the perspective of state-controlled stations, Fig. 7
shows the spatial distribution of the CV during four seasons.
The lowest disparities in the meteorology-driven MDAS O3
trends persist in winter, with CVs of less than 0.5 recorded at
29 % of the stations. In the other three seasons, however, sig-
nificant discrepancies in meteorology-driven O3 trends are
prominent, with CVs greater than 1.0 at least 48 % of the sta-
tions. Similar to Fig. 4, it is noteworthy that in autumn, the
uncertainties caused by multi-method are more pronounced
in the northern regions compared to the southern regions.

4 Limitations

While this study advances understanding of meteorological
contributions to O3 trends, several limitations warrant at-
tention in future work. Though the reanalysis meteorologi-
cal dataset is generated observationally, inherent constraints
exist, including parameterization uncertainties affecting Oz-
relevant physical processes (Janji¢ et al., 2018; Davidson and
Millstein, 2022) and resolution constraints.

Regarding analytical approaches, machine learning ef-
ficiently captures nonlinear Osz-meteorology relationships
without requiring explicit physicochemical parameteriza-
tions, enabling scalable multi-site analysis. However, its
inability to resolve chemical mechanisms and sensitivity
to predictor selection remain key constraints. Conversely,
while GC mechanistically resolves chemistry-transport inter-
actions and enables source attribution, it propagates uncer-
tainties from emission inventories and chemical mechanisms
into trend estimates.

Future studies could be improved in the following ways:
First, more meteorological datasets and methods should
be used to provide more robust uncertainty quantification
in Oz-meteorology analyses. Second, implementing clus-
tering techniques (e.g. K-means algorithm) could identify
sub-regional drivers at ecotones, enhancing spatial resolu-
tion beyond our regional framework. Finally, the Lindeman-
Merenda-Gold indices can be employed to quantitatively re-
solve the contributions of specific meteorological variables.
The mechanistic understanding of O3 drivers would be im-
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Figure 6. Meteorology-driven MDA O3 trends in (a) the whole China, (b) BTH, (¢) YRD, and (d) PRD during four seasons. Values in
red, blue, and purple represent trends calculated by multiple linear regression (MLR), random forest (RF), and GEOS-Chem (GC) models,
respectively. The fourth black bar represents the multi-method mean trend. Error bars indicate =+ 1 standard deviation (SD) of site-level trends
calculated from all available monitoring stations within each region. The absolute value of the coefficient of variation (CV) for each season

is also shown.

proved by integrating additional variables, such as solar ra-
diation, soil moisture, and climate indices (e.g. El Nifio-
Southern Oscillation). Clustering techniques would be valu-
able to augment the region-based approach and would pro-
vide better understanding of the similarity between stations.

5 Conclusions and discussions

This study used the 10-year (2013-2022) surface O3 ob-
servations to clarify O3 variations during four seasons in
China, and quantify the meteorological impacts on O3 trends,
with a special focus on the uncertainties of meteorology-
driven O3 trends. Diverse meteorological datasets (ERAS,
MERRAZ2, FNL) and analytical methods (MLR, RF, GEOS-
Chem) were employed to systematically analyse the uncer-
tainties in meteorology-driven O3 trends caused by multi-
dataset and multi-method which have not been assessed be-
fore. The coefficient of variation (CV) was adopted as a met-
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ric to assess the uncertainty. The main conclusions are as fol-
lows:

Over the past decade, increasing trends in MDAS O3 were
observed at over 78 % of state-controlled stations across all
seasons, with the national trend of +1.31, +0.93, 4+0.79, and
+0.80 ppbyr~! in spring, summer, autumn, and winter, re-
spectively.

We first applied the MLR model (driven by ERAS,
MERRAZ2, and FNL, respectively), which has proven its use-
fulness and reliability in O3-Meteorology analyses, to assess
uncertainties caused by multi-dataset. For the whole China,
all three dataset-driven MLR models indicate that meteoro-
logical conditions have led to an increase in MDAS O3 con-
centrations in four seasons, with multi-dataset mean trends
ranging from +0.19 to 4+0.55 ppbyr—!. The models driven
by different meteorological datasets showed a maximum
meteorology-driven O3 trend of +0.55ppbyr~! with the
highest consistency (CV =0.25) in spring. The FNL-driven
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Figure 7. The absolute value of the coefficient of variation (CV) for each state-controlled monitoring station in China during (a) spring,
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than 1.0 is also presented. The outline marked in purple, blue, and green represents the region of BTH, YRD, and PRD, respectively.

model always obtained larger meteorology-driven O3 trends
compared to the models driven by ERA5 and MERRA2,
which could be attributed to the inability to accurately eval-
uate PBLH in the FNL dataset. The dominant influence of
anthropogenic emissions on O3 increase was also identi-
fied, highlighting the need for more stringent emission con-
trol policies to mitigate the adverse effects of meteorological
conditions.

We further applied the MLR, RF, and GEOS-Chem mod-
els to obtain the meteorological influence on O3 trends to
explore the uncertainties caused by multi-method. In China
and three megacity clusters, the three methods consistently
indicated positive meteorological contributions to O3 in-
creases during spring and winter, with multi-method mean
trends ranging from 40.12 to +0.83ppbyr~! and +0.17
to 4+0.70 ppb yr~!, respectively. In summer and autumn, es-
pecially in BTH, where the meteorological influence was
relatively lower, three methods gave conflicting predictions
of meteorological influence on O3 with CVs greater than
1.08. For the whole China, three different methods demon-

Atmos. Chem. Phys., 25, 13863-13878, 2025

strated optimal consistency in winter with a CV of 0.40 and
the worst consistency in summer with a CV of 2.00. The
meteorology-driven O3 trends obtained from GEOS-Chem
model were almost relatively smaller than those obtained by
other two methods, which could partly be attributed to the
higher O3 values simulated by the GEOS-Chem model be-
fore 2018.

All analyses driven by diverse meteorological datasets and
analytical methods drew a consistent finding: meteorolog-
ical conditions almost contribute to O3 increase across all
seasons. The uncertainties of meteorology-driven O3 trends
caused by different analytical methods were larger than those
caused by diverse meteorological datasets. Considering that
the favourable effects of meteorology on O3 pollution tend to
be weaker after 2019 and the effects of COVID-19, it is nec-
essary to conduct research over different periods and longer
periods. In addition, further research is needed to focus on the
meteorological contributions to O3 trends in northern China
due to larger uncertainties.
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