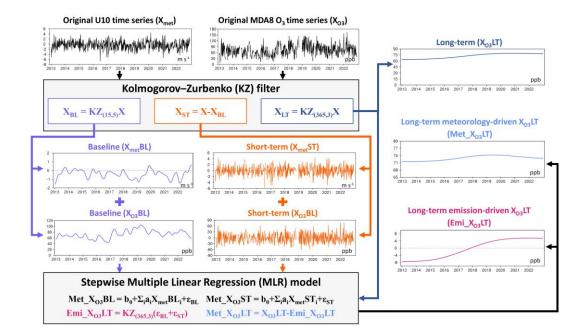
Supplement of Atmos. Chem. Phys., 25, 13863–13878, 2025 https://doi.org/10.5194/acp-25-13863-2025-supplement © Author(s) 2025. CC BY 4.0 License.


Supplement of

Meteorological influence on surface ozone trends in China: assessing uncertainties caused by multi-dataset and multi-method

Xueqing Wang et al.

Correspondence to: Jia Zhu (jiazhu@nuist.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

- Figure S1. Flowchart of Kolmogorov-Zurbenko Multiple linear regression (KZ-MLR) model, which
- 3 decomposes the observed MDA8 O₃ time series into meteorology-driven and emission-driven long-term
- 4 components. Shown on the figure is an example: MDA8 O₃ data from Station 1015A and U10 data from
- 5 ERA5 during the summer.

Abbreviations:

CMA: China Meteorological Administration

ECMWF: European Centre for Medium-Range Weather Forecasts

ERA5: The fifth generation ECMWF atmospheric reanalysis of the global climate

ERA-Interim: ECMWF Reanalysis - Interim

FNL: National Centers for Environmental Prediction Final Operational Global Analysis data (1.0°×1.0°)

FNL025: National Centers for Environmental Prediction Final Operational Global Analysis data (0.25°×0.25°)

MERRA2: Modern-Era Retrospective analysis for Research and Applications Version 2

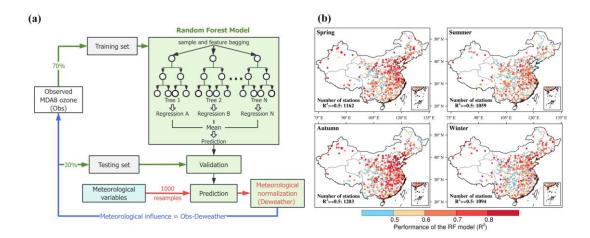
KZ: Kolmogorov–Zurbenko filter

MLR: Multiple Linear Regression

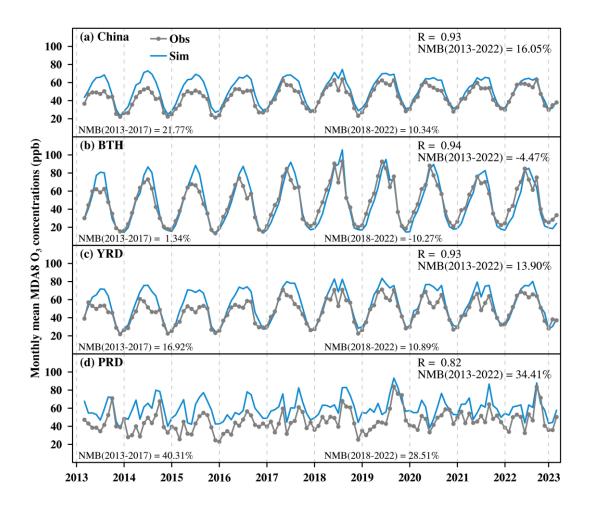
RF: Random Forest

XGBoost: eXtreme Gradient Boosting

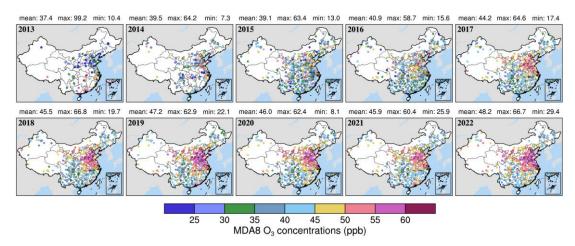
LightGBM: Light Gradient Boosting Machine Lowess: Locally Weighted Linear Regression GEOS: Goddard Earth Observing System WRF: Weather Research and Forecast

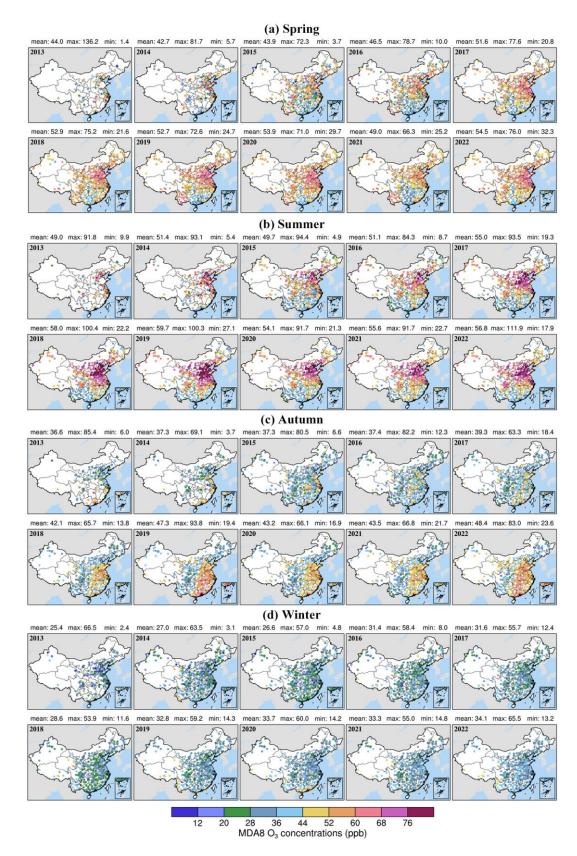

CMAQ: Community Multiscale Air Quality WRF-Chem: WRF model coupled with Chemistry

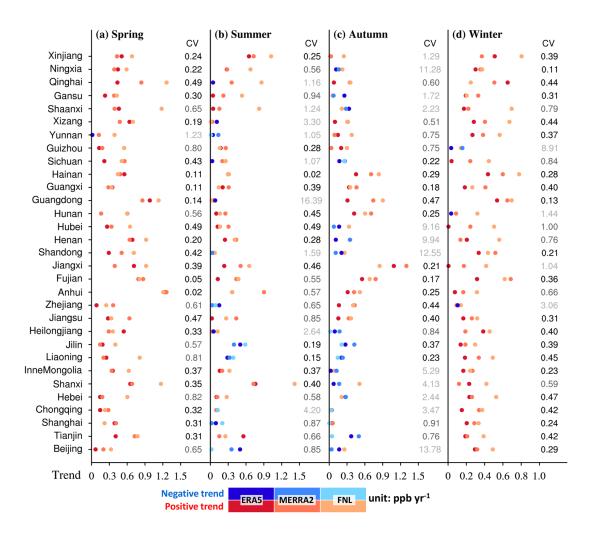
RegCM-Chem-YIBs: Regional Climate-Chemistry-Ecology Coupling Model

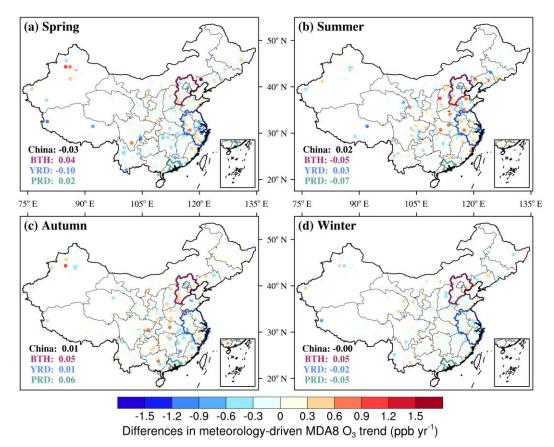

NCP: North China Plain

BTH: Beijing-Tianjin-Hebei Region YRD: Yangtze River Delta Region


PRD: Pearl River Delta SCB: Sichuan Basin FWP: Fenwei Plain THB: Twain-Hu Basin


Figure S2. (a) Conceptual diagram of obtaining the meteorological influence based on the Random Forest (RF) algorithm, and (b) the performance of the RF model for the testing dataset at each state-controlled station during four seasons. The number of state-controlled monitoring stations with the coefficient of determination (R²) greater than or equal to 0.5 is also presented.


Figure S3. Comparison of simulated (blue) and observed (grey) monthly mean MDA8 O₃ concentrations averaged over (a) China, (b) BTH, (c) YRD, and (d) PRD from 2013 to 2022. The correlation coefficient (R) and normalized mean bias (NMB) values are shown. The NMB for 2013–2017 and 2018–2022 are also calculated and shown in order to test the performance of GEOS-Chem at different time periods.


Figure S4. Annual mean MDA8 O₃ concentrations in China from 2013 to 2022. The mean, maximum, and minimum MDA8 O₃ concentrations for the whole China are shown.

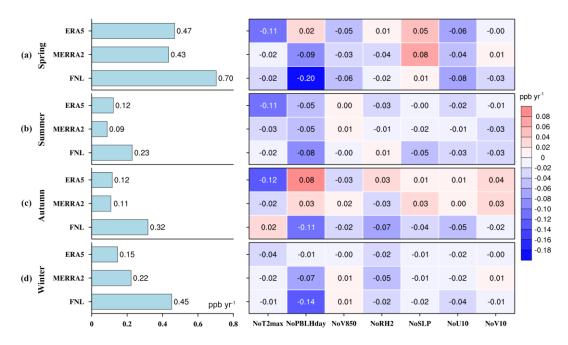

Figure S5. Seasonal mean MDA8 O₃ concentrations in China during (a) spring, (b) summer, (c) autumn, and (d) winter. The mean, maximum, and minimum MDA8 O₃ concentrations for the whole China are shown.

Figure S6. Trends in meteorology-driven MDA8 O₃ concentrations calculated by ERA5-, MERRA2-, and FNL-driven MLR models in China's 31 mainland provinces during (a) spring, (b) summer, (c) autumn, and (d) winter. Markers in red and blue represent the positive and negative trends, respectively. The absolute value of the coefficient of variation (CV) is shown. The CV is calculated by the standard deviation of trends derived from ERA5-, MERRA2-, and FNL-driven MLR models divided by the mean. The darker colour means the lower uncertainty in quantifying the meteorological impact on observed O₃ trends.

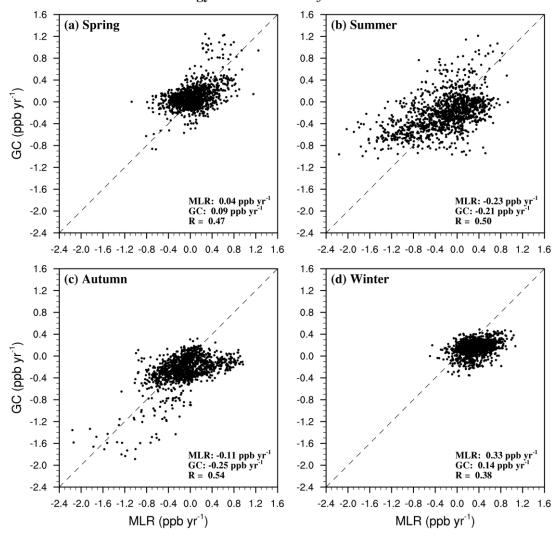


Figure S7. Differences between meteorology-driven MDA8 O₃ trends calculated by FNL- and FNL025-driven MLR models in China during (a) spring, (b) summer, (c) autumn, and (d) winter. Values in black, purple, blue, and green represent the average difference for the whole China, BTH, YRD, and PRD, respectively.

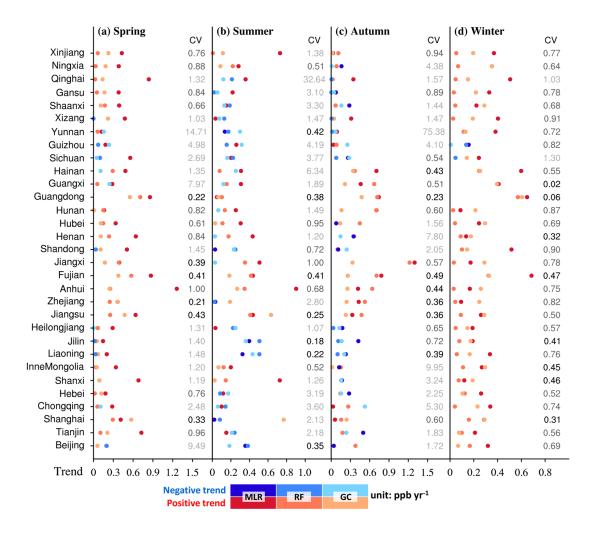


Figure S8. Construction of a multiple linear regression (MLR) model using seven common meteorological variables (i.e. T2max, PBLHday, V850, RH2, SLP, U10, V10) from ERA5, MERRA2, and FNL to quantify the meteorological influence on the MDA8 O₃ trends during (a) spring, (b) summer, (c) autumn, and (d) winter. Bars on the left represent the meteorology-driven O₃ trends derived from the three data-driven MLR models. The heatmap on the right represents the difference between the results obtained by constructing an MLR model after removing a certain meteorological variable in sequence.

Meteorology-driven MDA8 O_3 trend from MLR and GC

Figure S9. The comparison of meteorology-driven O₃ trends from the MERRA2-driven multiple linear regression (MLR) vs. GEOS-Chem (GC) models averaged over China for 2018–2022 during (a) spring, (b) summer, (c) autumn, and (d) winter. The dashed line is a 1:1 line. The coefficient of correlation (R) is also shown.

Figure S10. Trends in meteorology-driven MDA8 O₃ concentrations calculated by multiple linear regression (MLR), random forest (RF), and GEOS-Chem (GC) models in China's 31 mainland provinces during (a) spring, (b) summer, (c) autumn, and (d) winter. Markers in red and blue represent the positive and negative trends, respectively. The absolute value of the coefficient of variation (CV) is shown. The CV is calculated by the standard deviation of the trends derived from MLR, RF, and GC models divided by the mean. The darker colour means the lower uncertainty in quantifying the meteorological impact on observed O₃ trends.

Table S1. Reported studies using traditional statistical, machine learning, and chemical transport models to obtain the meteorological impact on surface O₃ in the past six years.

Region/City	Study period ^a	Model	Meteorological data	Meteorological impact ^b	Reference
Shanghai	2013–2017	KZ	N/A	+0.75 μg m ⁻³ yr ⁻¹	Yu et al., 2019
	Spring, 2009–2015			−1.11 ppb yr ^{−1}	
	Summer, 2009–2015		G'r 1	+0.12 ppb yr ⁻¹	V 1 2010
Tianjin	Autumn, 2009–2015	Generalized additive model	Site observation	$-0.99 \; \mathrm{ppb} \; \mathrm{yr}^{-1}$	Yang et al., 2019a
	Winter, 2009-2015			$\pm 0.06~\mathrm{ppb~yr^{-1}}$	
PRD	2007–2017	KZ-MLR	ECMWF reanalysis	–0.8 μg m ^{–3} yr ^{–1}	Yang et al., 2019b
North China				+0.2±1.1 ppb	
Northeast China	A G 2012/2017	WDE CMAO	NT/A	+0.3±0.8 ppb	D' 1 2010
East China	Apr to Sept, 2013/2017	WRF-CMAQ	N/A	+2.0±1.7 ppb	Ding et al., 2019
South China				+0.5±1.5 ppb	
China				-3.2 ppb	
North China				−8.7 ppb	
Northeast China				-4.5 ppb	
East China	Summer, 2013/2014			−1.1 ppb	
South central China				−1.5 ppb	
Southwest China				−3.7 ppb	
Northwest China		WDF CMAO	ENH	−1.6 ppb	W . 1 2010
China		- WRF-CMAQ	FNL	−1.8 ppb	— Wang et al., 2019
North China				−2.4 ppb	
Northeast China				−0.5 ppb	
East China	Summer, 2013/2015			−2.1 ppb	
South central China				-4.2 ppb	
Southwest China				+0.2 ppb	
Northwest China				-0.9 ppb	

Region/City	Study period	Model	Meteorological data	Meteorological impact	Reference	
Central eastern China	2003/2015	GEOS-Chem	MERRA2	+3.2 ppb	Sun et al., 2019	
Eastern China				+0.5 μg m ⁻³ yr ⁻¹		
BTH	G 2012 2010	MD		$\pm 0.7~\mu g~m^{-3}~yr^{-1}$	11 . 1 2020	
YRD	Summer, 2013–2018	MLR	FNL	$+0.9~\mu g~m^{-3}~yr^{-1}$	Han et al., 2020	
PRD				$+0.7~\mu g~m^{-3}~yr^{-1}$		
Eastern China				+0.7 ppb yr ⁻¹		
NCP				+1.4 ppb yr ⁻¹		
YRD	Summer, 2013–2019	MLR	MERRA2	+0.7 ppb yr ⁻¹	Li et al., 2020	
PRD				+0.8 ppb yr ⁻¹		
SCB				$-0.2~\mathrm{ppb}~\mathrm{yr}^{-1}$		
Cl.	G 2012 2017	MDE CMAO ENI		Meteorological changes dominated	1. 1. 1. 2004	
China	Summer, 2013–2017	WRF-CMAQ	FNL	the changing rates of O ₃ .	Liu and Wang, 2020	
NCP				$+0.7~\mu g~m^{-3}~yr^{-1}$		
YRD	2014–2018			$+0.7~\mu g~m^{-3}~yr^{-1}$		
FWP				$+0.8~\mu g~m^{-3}~yr^{-1}$		
NCP			_	+0.5 μg m ⁻³ yr ⁻¹	_	
YRD	Spring, 2014–2018			$+1.3~\mu g~m^{-3}~yr^{-1}$		
FWP		MD	EDA L	$+1.1~\mu g~m^{-3}~yr^{-1}$	Cl 1 2020	
NCP		MLR	ERA-Interim —	+0.8 μg m ⁻³ yr ⁻¹	— Chen et al., 2020	
YRD	Summer, 2014–2018			$+1.1~\mu g~m^{-3}~yr^{-1}$		
FWP				$\pm 0.8~\mu g~m^{-3}~yr^{-1}$		
NCP			_	+1.0 μg m ⁻³ yr ⁻¹	_	
YRD	Autumn, 2014–2018			$+0.8~\mu g~m^{-3}~yr^{-1}$		
FWP				$+1.1 \ \mu g \ m^{-3} \ yr^{-1}$		

Region/City	Study period	Model	Meteorological data	Meteorological impact	Reference
NCP				$+0.7~\mu g~m^{-3}~yr^{-1}$	
YRD	Winter, 2014–2018	MLR	ERA-Interim	$-0.5~\mu g~m^{-3}~yr^{-1}$	Chen et al., 2020
FWP				$+0.1~\mu g~m^{-3}~yr^{-1}$	
NCP	G 2012 2017	CEOG CI	MEDDAG	+0.28 ppb yr ⁻¹	D 4 1 2021
YRD	Summer, 2012–2017	GEOS-Chem	MERRA2	+1.47 ppb yr ⁻¹	Dang et al., 2021
ВТН				$+1.07~\mu g~m^{-3}~yr^{-1}$	
YRD	2015 2010	V7 MI D	EDAS ENI	$+0.99~\mu g~m^{-3}~yr^{-1}$	Mi
PRD	2015–2019	KZ-MLR	ERA5, FNL	$+2.52~\mu g~m^{-3}~yr^{-1}$	Mousavinezhad et al., 2021
SCB				$-1.35~\mu g~m^{-3}~yr^{-1}$	
	Spring, 2013/2015			+8.6%	
	Spring, 2013/2017			+14.5%	
	Spring, 2013/2019			+14.0%	
	Summer, 2013/2015			-7.4%	
	Summer, 2013/2017			-6.5%	
C1 1	Summer, 2013/2019	WRF-Chem		-6.2%	71 4 1 2021
Shandong	Autumn, 2013/2015	WRF-Cnem	FNL	+6.9%	Zhao et al., 2021
	Autumn, 2013/2017			+11.6%	
	Autumn, 2013/2019			+9.6%	
	Winter, 2013/2015			-1.2%	
	Winter, 2013/2017			-0.2%	
	Winter, 2013/2019			-0.5%	
SCB	May to Jun, 2019/2020	GEOS-Chem	GEOS-FP	11.57 ppb	Sun et al., 2021
Handan	Jun, 2013–2018	GEOS-Chem-XGBoost WRF-CMAQ	FNL	11.15 ppb +2.00 µg m ⁻³ yr ⁻¹	Yao et al., 2021
Handan	Juli, 2013 2016	WIGI -CIVII 1Q	TINE	12.00 μg 111 - γ1	140 Ct al., 2021

Region/City	Study period	Model	Meteorological data	Meteorological impact	Reference	
Eastern China				–2.9 ppb		
BTH		GEOG GI		−1.4 ppb		
FWP		GEOS-Chem		−3.2 ppb		
YRD	M		CEOC ED	−3.2 ppb		
Eastern China	- May to Aug, 2019/2020		GEOS-FP -	-2.3 ppb	Yin et al., 2021	
BTH		GEOG GL. WGD.		−2.2 ppb		
FWP		GEOS-Chem-XGBoost		−2.2 ppb		
YRD				−2.7 ppb		
Eastern and central China	Summer, 2013/2020	4-D meteorology-pollution decomposition model	World Meteorological Organization	Meteorology reduced the O ₃ concentrations.	Lin et al., 2021	
YRD Apr to Sept, 2014–2018		KZ-MLR	СМА	Meteorology decreased (increased) O ₃ from 2014 to the middle of 2016 (from the middle of 2016 to 2018)	Gao et al., 2021a	
Eastern China	May, Jul, Sept, Dec, 2013/2017	WRF-Chem	FNL	-8.1 ~ +21.3 μg m ⁻³	Li et al., 2021	
	May 1 st to Jun 10 th , 2014–2019			+1.8 ppb yr ⁻¹		
NCP	Jun 11th to Jul 15th, 2014–2019	MLR	FNL	+2.4 ppb yr ⁻¹	Gao et al., 2021b	
	Jul 16th to Aug 31st, 2014–2019	•	-	−0.4 ppb yr ^{−1}		
PRD (urban site) PRD (regional site)	2006–2019	MLR	R ERA5 $-0.04 \text{ ppb yr}^{-1}$ $-0.11 \text{ ppb yr}^{-1}$		Li et al., 2022	
Beijing	2013–2020	MLR	CMA, ERA5	+2.15 μg m ⁻³ yr ⁻¹	Gong et al., 2022	

Region/City	Study period	Model	Meteorological data	Meteorological impact	Reference			
Beijing				+45%				
Shenzhen	2015–2020	KZ-MLR	National Climatic	+20%	Zhang et al., 2022			
Wuhan	2013–2020	KZ-WLK	Data Center	+60%	Zhang et al., 2022			
Nanjing				+75%				
YRD				$+5.0~\mu g~m^{-3}~yr^{-1}$				
Shanghai				$+1.0~\mu g~m^{-3}~yr^{-1}$				
Nanjing	Summer, 2015–2019	MLR	MERRA2	$+11.3~\mu g~m^{-3}~yr^{-1}$	Qian et al., 2022			
Hangzhou				$+1.9~\mu g~m^{-3}~yr^{-1}$				
Heifei				$+6.0~\mu g~m^{-3}~yr^{-1}$				
BTH				+0.74 ppb yr ^{-1}				
YRD		RF		+1.35 ppb yr ⁻¹				
PRD		KF		$-0.75~\mathrm{ppb~yr^{-1}}$				
Sichuan				$-0.91~\mathrm{ppb~yr^{-1}}$				
ВТН				+0.54 ppb yr ⁻¹	<u> </u>			
YRD	2 2017 2010			+1.38 ppb yr ⁻¹				
PRD	Summer, 2015–2019	Ridge regression	ERA5	$-1.13 \; \mathrm{ppb} \; \mathrm{yr}^{-1}$	Weng et al., 2022			
Sichuan				$-0.84~\mathrm{ppb~yr^{-1}}$				
ВТН			<u> </u>	+0.55 ppb yr ⁻¹				
YRD				+1.42 ppb yr ⁻¹				
PRD		MLR		$-1.1~ m ppb~yr^{-1}$				
Sichuan				-0.86 ppb yr ⁻¹				
9.95	Apr to Aug, 2016/2019	WDD 614.6	77.77	$+6.4~\mu g~m^{-3}$	***			
SCB	Jun to Aug, 2019/2020	WRF-CMAQ	FNL	–12.6 μg m ^{–3}	Wu et al., 2022			
Tianjin	2015–2021	Lowess and RF	CMA	+2.1 μg m ⁻³ yr ⁻¹	Ding et al., 2023			

Region/City	Study period	Model	Meteorological data	Meteorological impact	Reference
ВТН				$-0.02 \pm 2.9 \; \mu g \; m^{-3}$	
FWP				$+7.23 \pm 5.97 \ \mu g \ m^{-3}$	
THB	Summer,	D.F.	ED A 5	$+3.63 \pm 4.51 \ \mu g \ m^{-3}$	71 4 1 2022
PRD	2014-2021/2022	RF	ERA5	$-1.81 \pm 2.14 \; \mu g \; m^{-3}$	Zheng et al., 2023
SCB				$+12.24 \pm 4.07~\mu g~m^{-3}$	
YRD				$+10.92 \pm 3.24 \ \mu g \ m^{-3}$	
Xiamen				+2.71 μg m ⁻³ yr ⁻¹	
Fuzhou	2015 2020	WZ MI D	ED A C	$+2.17~\mu g~m^{-3}~yr^{-1}$	T . 1 2022
Longyan	2015–2020	KZ-MLR	ERA5	$+0.76~\mu g~m^{-3}~yr^{-1}$	Ji et al., 2023
Nanping				$+1.78~\mu g~m^{-3}~yr^{-1}$	
Northeast China				+0.1688 μg m ⁻³ yr ⁻¹	
Liaoning	2012 2021	KZ-MLR	ERA5	$-0.0864~\mu g~m^{-3}~yr^{-1}$	GI 1 2022
Jilin	2013–2021			$+0.093~\mu g~m^{-3}~yr^{-1}$	Shang et al., 2023
Heilongjiang				$+0.5562~\mu g~m^{-3}~yr^{-1}$	
Eastern China				+3.60 μg m ⁻³	
BTH	4	WIRE CIALO	TD II	$+3.95~\mu g~m^{-3}$	1 1. 2022
YRD	Apr to Sept, 2013/2020	WRF-CMAQ	FNL	$+3.91~\mu g~m^{-3}$	Liu et al., 2023
FWP				$+7.75~\mu g~m^{-3}$	
Beijing				+0.52 ppb yr ⁻¹	
Chengdu	2012 2020		C2. 6.	+0.57 ppb yr ⁻¹	5
Guangzhou	2013–2020	Observation-based model	CMA	$+0.59 \text{ ppb yr}^{-1}$	Pan et al., 2023
Shanghai				+0.62 ppb yr ⁻¹	
NCP				−0.88 ppb	
FWP	May to Aug,	RegCM-Chem-YIBs	N/A	−1.41 ppb	Ma et al., 2023
YRD	2008/2009–2013			-1.03 ppb	

Region/City	Study period	Model	Meteorological data	Meteorological impact	Reference	
PRD	May to Aug,			−0.23 ppb		
SCB	2008/2009–2013			−0.41 ppb		
NCP				−0.04 ppb		
FWP	N	RegCM-Chem-YIBs	N/A	–0.09 ppb	Ma et al., 2023	
YRD	May to Aug,			–0.96 ppb		
PRD	2008/2014–2018			−1.08 ppb		
SCB				+0.71 ppb		
		GEOS-Chem		+0.26 ppb yr ⁻¹		
	Summer, 2015–2019	XGBoost		$+0.19~\mathrm{ppb~yr^{-1}}$		
NCP		Deep learning model	– MERRA2	$+0.14~\mathrm{ppb~yr^{-1}}$	W	
NCP		GEOS-Chem	- MERRAZ	−0.74 ppb yr ^{−1}	Wang et al., 2024	
	Summer, 2019–2021	XGBoost		$-1.55~\mathrm{ppb~yr^{-1}}$		
		Deep learning model		$-1.74~\mathrm{ppb~yr^{-1}}$		
China	2015–2022	KZ-XGBoost	ERA5	Meteorology increased O ₃ .	Yao et al., 2024	
E (Cl.	2010/2021	GEOS-Chem	MEDDAG	–7.3 μg m ⁻³	N 1 2024	
Eastern China	2019/2021	LightGBM	MERRA2	$-6.8~\mu \mathrm{g}~\mathrm{m}^{-3}$	Ni et al., 2024	
	2015–2022			Meteorology led to a slight O ₃ increase.		
	Spring, 2015–2022			101.02		
BTH	Summer, 2015–2022	XGBoost	ERA5	Meteorology increased O ₃ by 8.2 μg m ⁻³ /0.01	Luo et al., 2024	
	Autumn, 2015–2022			μg m ⁻³ /2.7 μg m ⁻³ in spring/summer/winter,		
	Winter, 2015–2022			and decreased O ₃ by $-0.3~\mu g~m^{-3}$ in autumn.		
China	Summer, 2013–2022			+0.2 μg m ⁻³ yr ⁻¹		
ВТН	0.010.0010	MLR	ERA5	+0.9 μg m ⁻³ yr ⁻¹	Yan et al., 2024	
YRD	Summer, 2013–2019			$-0.3~\mu { m g}~{ m m}^{-3}~{ m yr}^{-1}$		

Region/City	Study period	Model	Meteorological data	Meteorological impact	Reference		
ВТН	G 2010 2021			$-3.9~\mu g~m^{-3}~yr^{-1}$			
YRD	Summer, 2019–2021	MLR	ERA5	$-4.1~\mu g~m^{-3}~yr^{-1}$	V 1 2024		
ВТН	S 2021 2022	MLK	EKAS	+4.3 μg m ⁻³ yr ⁻¹	Yan et al., 2024		
YRD	Summer, 2021–2022			$+10.4~\mu g~m^{-3}~yr^{-1}$			
	2016–2023			Meteorology decreased (increased) O ₃ in			
	2010 2023			2016, 2020, 2021, 2023 (2017–2019, 2022).			
	Spring, 2016–2023			Meteorology decreased (increased) O ₃ in 2016,			
				2018, 2021, 2023 (2017, 2019, 2020, 2022).			
YRD	Summer, 2016–2023	KZ-MLR	ERA5	Meteorology decreased (increased) O ₃ in	Hu et al., 2024		
TRD		KZ-WILK	Livity	2020, 2021, 2023 (2016–2019, 2022).	11d et al., 2024		
	Autumn, 2016–2023			Meteorology decreased (increased) O ₃ in			
	Autumii, 2010–2023			2016–2017 (2018–2023).			
	Winter, 2016–2023			Meteorology decreased (increased)O ₃ in			
	winter, 2010–2023			2018–2020, 2022 (2016, 2017, 2021, 2023).			
	Spring, 2014/2020			-0.89 ppb			
YRD	Summer, 2014/2020	WRF-Chem	FNL	+0.23 ppb	Li et al., 2024		
TKD	Autumn, 2014/2020	wkr-chem	FNL	−2.74 ppb	Li et al., 2024		
	Winter, 2014/2020			−3.86 ppb			
PRD	Spring, 2013–2022	MLR	ERA5	+0.88 ppb yr ⁻¹	Cao et al., 2024		
YRD	2015 2022		2015–2022 KZ-MLR		ERA5	The meteorological impacts account for an	Wu and An, 2025
IKD	2013–2022	KZ-WLK	EKAJ	average of 71.8% of O ₃	wu ana An, 2023		

⁶⁴ Symbol "—" means the continuous study period from the start year to the end year (left of —) to the end year (right of —); Symbol "/" means the discrete study period.

^b The meteorological impact expressed by ppb yr^{-1} or $μg m^{-3} yr^{-1}$ means the trend from the start to the end year of the study period. Meteorological impact expressed by ppb, $μg m^{-3}$, or % means the difference between the end year and start year (end year – start year).

Table S2. Summary of the meteorological variables from the ERA5, MERRA2, FNL, and FNL025 reanalysis datasets used to establish MLR models.

Abbreviations	Description	Meteorological Dataset
SLP	Daily mean sea level pressure (hPa)	ERA5, MERRA2, FNL, FNL025
TCCday	Total cloud area fraction (%) averaged over 08:00 to 17:00 LT	ERA5, MERRA2
PBLHday	Planetary boundary layer height (m) averaged over 08:00 to 17:00 LT	ERA5, MERRA2, FNL, FNL025
U10	Daily mean 10-meter eastward wind (m s ⁻¹)	ERA5, MERRA2, FNL, FNL025
V10	Daily mean 10-meter northward wind (m s ⁻¹)	ERA5, MERRA2, FNL, FNL025
T2max	Daily maximum 2-meter air temperature (°C)	ERA5, MERRA2, FNL, FNL025
SSRDday	Surface incoming shortwave flux (W m ⁻²) averaged over 08:00 to 17:00 LT	ERA5, MERRA2
TP	Total precipitation (mm day ⁻¹)	ERA5, MERRA2
PWAT	Daily mean precipitable water considered as a single layer (mm)	FNL, FNL025
RH2	Daily mean 2-meter relative humidity (%)	ERA5, MERRA2, FNL, FNL025
V850	Daily mean northward wind at 850 hPa (m s ⁻¹)	ERA5, MERRA2, FNL, FNL025

Table S3. Comparison of meteorology-driven MDA8 O₃ trends (ppb yr⁻¹) derived from multiple linear regression (MLR), random forest (RF), and GEOS-Chem (GC) models
 using different model performance criteria (the R² of the RF model ≥ 0.5, 0.6, and 0.4) across seasons and regions.

Season	D 2	Available R ²	China				ВТН	BTH YR			YRD	YRD			PRD	PRD		
Season	K	stations ^a	MLR	RF	GC	CV b	MLR	RF	GC	CV	MLR	RF	GC	CV	MLR	RF	GC	CV
	$R^2 \ge 0.5$	1162	+0.48	+0.15	+0.14	0.75	+0.26	-0.01	+0.12	1.06	+0.80	+0.25	+0.37	0.61	+0.94	+0.78	+0.77	0.11
Spring	$R^2\!\ge\!0.6$	882	+0.50	+0.14	+0.14	0.81	+0.26	-0.00	+0.12	1.07	+0.86	+0.25	+0.37	0.66	+0.89	+0.75	+0.77	0.10
	$R^2\!\ge\!0.4$	1250	+0.47	+0.16	+0.14	0.73	+0.26	-0.01	+0.12	1.06	+0.77	+0.25	+0.36	0.60	+0.89	+0.75	+0.77	0.09
	$R^2 \ge 0.5$	1059	+0.23	+0.01	-0.03	2.00	+0.03	-0.16	-0.18	1.08	+0.45	+0.25	+0.40	0.29	+0.07	+0.13	+0.10	0.32
Summer	$R^2 \ge 0.6$	642	+0.31	+0.02	-0.01	1.69	+0.06	-0.20	-0.17	1.40	+0.51	+0.21	+0.34	0.42	+0.08	+0.13	+0.10	0.25
	$R^2\!\ge\!0.4$	1223	+0.20	+0.00	-0.04	2.39	+0.04	-0.15	-0.19	1.24	+0.43	+0.25	+0.39	0.27	+0.06	+0.13	+0.09	0.34
	$R^2 \ge 0.5$	1203	+0.15	+0.34	+0.03	0.88	-0.27	+0.19	-0.13	3.38	+0.37	+0.53	+0.24	0.38	+0.83	+0.81	+0.53	0.23
Autumn	$R^2 \ge 0.6$	1041	+0.18	+0.36	+0.04	0.85	-0.27	+0.19	-0.14	3.40	+0.40	+0.55	+0.24	0.39	+0.85	+0.83	+0.54	0.23
	$R^2 \ge 0.4$	1252	+0.15	+0.33	+0.03	0.90	-0.27	+0.19	-0.13	3.38	+0.36	+0.52	+0.24	0.38	+0.83	+0.81	+0.53	0.23
	$R^2 \ge 0.5$	1094	+0.30	+0.12	+0.25	0.40	+0.26	+0.13	+0.09	0.55	+0.19	+0.06	+0.27	0.59	+0.72	+0.64	+0.72	0.07
Winter	$R^2 \ge 0.6$	738	+0.33	+0.13	+0.24	0.41	+0.26	+0.13	+0.10	0.53	+0.20	+0.06	+0.27	0.59	+0.70	+0.66	+0.73	0.05
	$R^2 \ge 0.4$	1217	+0.28	+0.12	+0.25	0.40	+0.26	+0.13	+0.10	0.55	+0.17	+0.06	+0.27	0.62	+0.70	+0.63	+0.72	0.07

^a "Available stations" denotes the number of state-controlled monitoring stations with the R^2 of the Random Forest model of ≥ 0.5 , 0.6, and 0.4.

^b The absolute value of the coefficient of variation (CV) is calculated by the standard deviation of the trends derived from MLR, RF, and GC models divided by the mean.

Table S4. The 10-year trend in each meteorological factor used to establish MLR models from the ERA5, MERRA2, and FNL during four seasons.

Season	Dataset	RH2 (% yr ⁻¹)	U10 (m s ⁻¹ yr ⁻¹)	V10 (m s ⁻¹ yr ⁻¹)	SSRDday (W m ⁻² yr ⁻¹)	PBLHday (m yr ⁻¹)	TCCday (% yr ⁻¹)	$TP (mm day^{-1} yr^{-1})$ or $PWAT (mm yr^{-1})$	SLP (hPa yr ⁻¹)	T2max (°C yr ⁻¹)	V850 (m s ⁻¹ yr ⁻¹)
	ERA5	+0.08	+0.01	-0.00	+0.68	+3.89	+0.00	-0.02	-0.02	+0.18	-0.01
Spring	MERRA2	+0.33	+0.01	-0.00	+1.59	+5.54	+0.24	+0.02	-0.08	+0.16	+0.00
	FNL	+0.12	+0.01	-0.01	/	+14.44	/	+0.20	-0.09	+0.12	-0.01
	ERA5	+0.18	-0.00	+0.01	-0.72	-2.10	+0.18	+0.03	+0.02	+0.08	+0.03
Summer	MERRA2	+0.35	+0.00	+0.03	+1.11	-6.95	+0.29	-0.03	-0.04	+0.04	+0.05
	FNL	+0.29	-0.00	+0.01	/	+4.96	/	+0.23	-0.08	-0.01	+0.05
	ERA5	-0.17	+0.01	-0.02	-1.62	+0.04	-0.21	-0.04	+0.21	-0.10	-0.05
Autumn	MERRA2	+0.11	+0.00	-0.03	-0.99	-2.52	-0.17	-0.06	+0.17	-0.12	-0.04
	FNL	-0.29	+0.00	-0.03	/	+6.66	/	-0.15	+0.13	-0.16	-0.05
	ERA5	+0.07	+0.00	-0.00	-0.03	+2.71	+0.41	+0.00	+0.04	+0.02	+0.03
Winter	MERRA2	+0.36	-0.01	-0.01	+0.68	+5.29	+0.31	+0.01	+0.00	+0.04	+0.04
	FNL	+0.15	-0.01	-0.01	/	+8.68	/	+0.12	-0.03	+0.01	+0.03

Table S5. Trends in simulated (Sim) and observed (Obs) monthly mean MDA8 O₃ concentrations (ppb yr⁻¹) during 2013–2022, 2013–2017, and 2018–2022.

	Region	China		ВТН		YRD		PRD	
Time period		Sim	Obs	Sim	Obs	Sim	Obs	Sim	Obs
2013–2022		-0.05	+0.84	-0.11	+0.89	+0.40	+0.97	+0.39	+1.07
2013–2017		-0.84	+0.27	-0.82	+0.22	-0.40	+0.29	+0.22	+0.31
2018–2022		-1.78	-0.86	-2.86	-2.49	-2.00	-0.96	-1.38	+0.17

- 78 Reference
- 79 Cao, T., Wang, H., Chen, X., Li, L., Lu, X., Lu, K., and Fan, S.: Rapid increase in spring ozone in
- the Pearl River Delta, China during 2013-2022, npj Clim. Atmos. Sci., 7, 309,
- 81 https://doi.org/10.1038/s41612-024-00847-3, 2024.
- 82 Chen, L., Zhu, J., Liao, H., Yang, Y., and Yue, X.: Meteorological influences on PM_{2.5} and O₃ trends
- and associated health burden since China's clean air actions, Sci. Total Environ., 744, 140837,
- 84 https://doi.org/10.1016/j.scitotenv.2020.140837, 2020.
- Dang, R., Liao, H., and Fu, Y.: Quantifying the anthropogenic and meteorological influences on
- summertime surface ozone in China over 2012–2017, Sci. Total Environ., 754, 142394,
- 87 https://doi.org/10.1016/j.scitotenv.2020.142394, 2021.
- 88 Ding, D., Xing, J., Wang, S., Chang, X., and Hao, J.: Impacts of emissions and meteorological
- changes on China's ozone pollution in the warm seasons of 2013 and 2017, Front. Environ.
- 90 Sci. Eng., 13, https://doi.org/10.1007/s11783-019-1160-1, 2019.
- Ding, J., Dai, Q., Fan, W., Lu, M., Zhang, Y., Han, S., and Feng, Y.: Impacts of meteorology and
- 92 precursor emission change on O₃ variation in Tianjin, China from 2015 to 2021, J. Environ.
- 93 Sci., 126, 506–516, https://doi.org/10.1016/j.jes.2022.03.010, 2023.
- 94 Gao, D., Xie, M., Liu, J., Wang, T., Ma, C., Bai, H., Chen, X., Li, M., Zhuang, B., and Li, S.: Ozone
- variability induced by synoptic weather patterns in warm seasons of 2014–2018 over the
- 96 Yangtze River Delta region, China, Atmos. Chem. Phys., 21, 5847–5864,
- 97 https://doi.org/10.5194/acp-21-5847-2021, 2021a.
- 98 Gao, L., Wang, T., Ren, X., Ma, D., Zhuang, B., Li, S., Xie, M., Li, M., and Yang, X.-Q.:
- 99 Subseasonal characteristics and meteorological causes of surface O₃ in different East Asian
- summer monsoon periods over the North China Plain during 2014–2019, Atmos. Environ., 264,
- 101 118704, https://doi.org/10.1016/j.atmosenv.2021.118704, 2021b.
- 102 Gong, S., Zhang, L., Liu, C., Lu, S., Pan, W., and Zhang, Y.: Multi-scale analysis of the impacts of
- meteorology and emissions on PM_{2.5} and O₃ trends at various regions in China from 2013 to
- 104 2020 2. Key weather elements and emissions, Sci. Total Environ., 824, 153847,
- https://doi.org/10.1016/j.scitotenv.2022.153847, 2022.
- Han, H., Liu, J., Shu, L., Wang, T., and Yuan, H.: Local and synoptic meteorological influences on
- daily variability in summertime surface ozone in eastern China, Atmos. Chem. Phys., 20, 203–

- 108 222, https://doi.org/10.5194/acp-20-203-2020, 2020.
- Hu, F., Xie, P., Xu, J., Lv, Y., Zhang, Z., Zheng, J., and Tian, X.: Long-term trends of ozone in the
- Yangtze River Delta, China: spatiotemporal impacts of meteorological factors, local, and non-
- 111 local emissions, J. Environ. Sci., S1001074224003826,
- https://doi.org/10.1016/j.jes.2024.07.017, 2024.
- 113 Ji, X., Hong, Y., Lin, Y., Xu, K., Chen, G., Liu, T., Xu, L., Li, M., Fan, X., Wang, H., Zhang, H.,
- 114 Chen, Y., Yang, C., Lin, Z., and Chen, J.: Impacts of Synoptic Patterns and Meteorological
- Factors on Distribution Trends of Ozone in Southeast China During 2015–2020, J. Geophys.
- 116 Res.: Atmos., 128, e2022JD037961, https://doi.org/10.1029/2022JD037961, 2023.
- Li, K., Jacob, D. J., Shen, L., Lu, X., De Smedt, I., and Liao, H.: Increases in surface ozone pollution
- in China from 2013 to 2019: anthropogenic and meteorological influences, Atmos. Chem.
- Phys., 20, 11423–11433, https://doi.org/10.5194/acp-20-11423-2020, 2020.
- Li, M., Wang, T., Shu, L., Qu, Y., Xie, M., Liu, J., Wu, H., and Kalsoom, U.: Rising surface ozone
- in China from 2013 to 2017: a response to the recent atmospheric warming or pollutant
- 122 controls?, Atmos. Environ., 246, 118130, https://doi.org/10.1016/j.atmosenv.2020.118130,
- 123 2021.
- Li, X., Yuan, B., Parrish, D. D., Chen, D., Song, Y., Yang, S., Liu, Z., and Shao, M.: Long-term trend
- of ozone in southern China reveals future mitigation strategy for air pollution, Atmos. Environ.,
- 269, 118869, https://doi.org/10.1016/j.atmosenv.2021.118869, 2022.
- 127 Li, Y., Wang, T., Wang, Q., Li, M., Qu, Y., Wu, H., and Xie, M.: Exploring the role of aerosol-ozone
- interactions on O₃ surge and PM_{2.5} decline during the clean air action period in Eastern China
- 2014–2020, Atmos. Res., 302, 107294, https://doi.org/10.1016/j.atmosres.2024.107294, 2024.
- 130 Lin, C., Lau, A. K. H., Fung, J. C. H., Song, Y., Li, Y., Tao, M., Lu, X., Ma, J., and Lao, X. Q.:
- Removing the effects of meteorological factors on changes in nitrogen dioxide and ozone
- concentrations in China from 2013 to 2020, Sci. Total Environ., 793, 148575,
- https://doi.org/10.1016/j.scitotenv.2021.148575, 2021.
- Liu, Y. and Wang, T.: Worsening urban ozone pollution in China from 2013 to 2017 part 1: the
- complex and varying roles of meteorology, Atmos. Chem. Phys., 20, 6305-6321,
- https://doi.org/10.5194/acp-20-6305-2020, 2020.
- 137 Liu, Y., Geng, G., Cheng, J., Liu, Y., Xiao, Q., Liu, L., Shi, Q., Tong, D., He, K., and Zhang, Q.:

- Drivers of Increasing Ozone during the Two Phases of Clean Air Actions in China 2013–2020,
- Environ. Sci. Technol., 57, 8954–8964, https://doi.org/10.1021/acs.est.3c00054, 2023.
- Luo, Z., Lu, P., Chen, Z., and Liu, R.: Ozone Concentration Estimation and Meteorological Impact
- 141 Quantification in the Beijing-Tianjin-Hebei Region Based on Machine Learning Models, Earth
- 142 Space Sci., 11, e2023EA003346, https://doi.org/10.1029/2023EA003346, 2024.
- 143 Ma, D., Wang, T., Wu, H., Qu, Y., Liu, J., Liu, J., Li, S., Zhuang, B., Li, M., and Xie, M.: The effect
- of anthropogenic emission, meteorological factors, and carbon dioxide on the surface ozone
- increase in China from 2008 to 2018 during the East Asia summer monsoon season, Atmos.
- 146 Chem. Phys., 23, 6525–6544, https://doi.org/10.5194/acp-23-6525-2023, 2023.
- 147 Mousavinezhad, S., Choi, Y., Pouyaei, A., Ghahremanloo, M., and Nelson, D. L.: A comprehensive
- investigation of surface ozone pollution in China, 2015–2019: separating the contributions
- from meteorology and precursor emissions, Atmos. Res., 257, 105599,
- https://doi.org/10.1016/j.atmosres.2021.105599, 2021.
- Ni, Y., Yang, Y., Wang, H., Li, H., Li, M., Wang, P., Li, K., and Liao, H.: Contrasting changes in
- ozone during 2019-2021 between eastern and the other regions of China attributed to
- anthropogenic emissions and meteorological conditions, Sci. Total Environ., 908, 168272,
- https://doi.org/10.1016/j.scitotenv.2023.168272, 2024.
- Pan, W., Gong, S., Lu, K., Zhang, L., Xie, S., Liu, Y., Ke, H., Zhang, X., and Zhang, Y.: Multi-scale
- analysis of the impacts of meteorology and emissions on PM_{2.5} and O₃ trends at various regions
- in China from 2013 to 2020 3. Mechanism assessment of O₃ trends by a model, Sci. Total
- Environ., 857, 159592, https://doi.org/10.1016/j.scitotenv.2022.159592, 2023.
- 159 Qian, J., Liao, H., Yang, Y., Li, K., Chen, L., and Zhu, J.: Meteorological influences on daily
- variation and trend of summertime surface ozone over years of 2015–2020: Quantification for
- 161 cities in the Yangtze River Delta, Sci. Total Environ., 834, 155107,
- https://doi.org/10.1016/j.scitotenv.2022.155107, 2022.
- Shang, N., Gui, K., Zhao, H., Yao, W., Zhao, H., Zhang, X., Zhang, X., Li, L., Zheng, Y., Wang, Z.,
- Wang, Y., Che, H., and Zhang, X.: Decomposition of meteorological and anthropogenic
- 165 contributions to near-surface ozone trends in Northeast China (2013–2021), Atmos. Pollut.
- Res., 14, 101841, https://doi.org/10.1016/j.apr.2023.101841, 2023.
- 167 Sun, L., Xue, L., Wang, Y., Li, L., Lin, J., Ni, R., Yan, Y., Chen, L., Li, J., Zhang, Q., and Wang, W.:

- Impacts of meteorology and emissions on summertime surface ozone increases over central
- 169 eastern China between 2003 and 2015, Atmos. Chem. Phys., 19, 1455–1469,
- 170 https://doi.org/10.5194/acp-19-1455-2019, 2019.
- 171 Sun, Y., Yin, H., Lu, X., Notholt, J., Palm, M., Liu, C., Tian, Y., and Zheng, B.: The drivers and
- health risks of unexpected surface ozone enhancements over the Sichuan Basin, China, in 2020,
- 173 Atmos. Chem. Phys., 21, 18589–18608, https://doi.org/10.5194/acp-21-18589-2021, 2021.
- Wang, M., Chen, X., Jiang, Z., He, T.-L., Jones, D., Liu, J., and Shen, Y.: Meteorological and
- anthropogenic drivers of surface ozone change in the North China Plain in 2015–2021, Sci.
- Total Environ., 906, 167763, https://doi.org/10.1016/j.scitotenv.2023.167763, 2024.
- Wang, P., Guo, H., Hu, J., Kota, S. H., Ying, Q., and Zhang, H.: Responses of PM_{2.5} and O₃
- 178 concentrations to changes of meteorology and emissions in China, Sci. Total Environ., 662,
- 297–306, https://doi.org/10.1016/j.scitotenv.2019.01.227, 2019.
- Weng, X., Forster, G. L., and Nowack, P.: A machine learning approach to quantify meteorological
- drivers of ozone pollution in China from 2015 to 2019, Atmos. Chem. Phys., 22, 8385–8402,
- https://doi.org/10.5194/acp-22-8385-2022, 2022.
- 183 Wu, K., Wang, Y., Qiao, Y., Liu, Y., Wang, S., Yang, X., Wang, H., Lu, Y., Zhang, X., and Lei, Y.:
- Drivers of 2013–2020 ozone trends in the Sichuan Basin, China: impacts of meteorology and
- precursor emission changes, Environ. Pollut., 300, 118914,
- https://doi.org/10.1016/j.envpol.2022.118914, 2022.
- 187 Wu, L. and An, J.: Quantitative impacts of meteorology and emissions on the long-term trend of O₃
- 188 in the YRD, China from 2015 to 2022, J. Environ. Sci., 149, 314–329,
- https://doi.org/10.1016/j.jes.2024.01.038, 2025.
- 190 Yan, D., Jin, Z., Zhou, Y., Li, M., Zhang, Z., Wang, T., Zhuang, B., Li, S., and Xie, M.:
- Anthropogenically and meteorologically modulated summertime ozone trends and their health
- implications since China's clean air actions, Environ. Pollut., 343, 123234,
- 193 https://doi.org/10.1016/j.envpol.2023.123234, 2024.
- 194 Yang, J., Liu, J., Han, S., Yao, Q., and Cai, Z.: Study of the meteorological influence on ozone in
- urban areas and their use in assessing ozone trends in all seasons from 2009 to 2015 in Tianjin,
- 196 China, Meteorol. Atmos. Phys., 131, 1661–1675, https://doi.org/10.1007/s00703-019-00664-
- 197 x, 2019a.

- 198 Yang, L., Luo, H., Yuan, Z., Zheng, J., Huang, Z., Li, C., Lin, X., Louie, P. K. K., Chen, D., and
- Bian, Y.: Quantitative impacts of meteorology and precursor emission changes on the long-
- term trend of ambient ozone over the Pearl River Delta, China, and implications for ozone
- 201 control strategy, Atmos. Chem. Phys., 19, 12901–12916, https://doi.org/10.5194/acp-19-
- 202 12901-2019, 2019b.
- Yao, S., Wei, W., Cheng, S., Niu, Y., and Guan, P.: Impacts of meteorology and emissions on O₃
- 204 pollution during 2013–2018 and corresponding control strategy for a typical industrial city of
- 205 China, Atmosphere, 12, 619, https://doi.org/10.3390/atmos12050619, 2021.
- Yao, T., Ye, H., Wang, Y., Zhang, J., Guo, J., and Li, J.: Kolmogorov-Zurbenko filter coupled with
- 207 machine learning to reveal multiple drivers of surface ozone pollution in China from 2015 to
- 208 2022, Sci. Total Environ., 949, 175093, https://doi.org/10.1016/j.scitotenv.2024.175093, 2024.
- 209 Yin, H., Lu, X., Sun, Y., Li, K., Gao, M., Zheng, B., and Liu, C.: Unprecedented decline in
- summertime surface ozone over eastern China in 2020 comparably attributable to
- anthropogenic emission reductions and meteorology, Environ. Res. Lett., 16, 124069,
- 212 https://doi.org/10.1088/1748-9326/ac3e22, 2021.
- Yu, Y., Wang, Z., He, T., Meng, X., Xie, S., and Yu, H.: Driving factors of the significant increase
- in surface ozone in the Yangtze River Delta, China, during 2013–2017, Atmos. Pollut. Res., 10,
- 215 1357–1364, https://doi.org/10.1016/j.apr.2019.03.010, 2019.
- 216 Zhang, Y., Lei, R., Cui, S., Wang, H., Chen, M., and Ge, X.: Spatiotemporal trends and impact
- factors of PM_{2.5} and O₃ pollution in major cities in China during 2015–2020, Chin. Sci. Bull.,
- 218 67, 2029–2042, https://doi.org/10.1360/TB-2021-0767, 2022.
- 219 Zhao, N., Wang, G., Li, G., and Lang, J.: Trends in Air Pollutant Concentrations and the Impact of
- Meteorology in Shandong Province, Coastal China, during 2013-2019, Aerosol Air Qual. Res.,
- 221 21, 200545, https://doi.org/10.4209/aaqr.200545, 2021.

- Zheng, H., Kong, S., He, Y., Song, C., Cheng, Y., Yao, L., Chen, N., and Zhu, B.: Enhanced ozone
- pollution in the summer of 2022 in China: the roles of meteorology and emission variations,

27

224 Atmos. Environ., 301, 119701, https://doi.org/10.1016/j.atmosenv.2023.119701, 2023.