Articles | Volume 24, issue 5
https://doi.org/10.5194/acp-24-3163-2024
https://doi.org/10.5194/acp-24-3163-2024
Research article
 | 
13 Mar 2024
Research article |  | 13 Mar 2024

A machine learning approach to downscale EMEP4UK: analysis of UK ozone variability and trends

Lily Gouldsbrough, Ryan Hossaini, Emma Eastoe, Paul J. Young, and Massimo Vieno

Related authors

Evaluating tropospheric nitrogen dioxide in UKCA using OMI satellite retrievals over South and East Asia
Alok K. Pandey, David S. Stevenson, Alcide Zhao, Richard J. Pope, Ryan Hossaini, Krishan Kumar, and Marytn P. Chipperfield
EGUsphere, https://doi.org/10.5194/egusphere-2024-2686,https://doi.org/10.5194/egusphere-2024-2686, 2024
Short summary
Opinion: The Impact of AerChemMIP on Climate and Air Quality Research
Paul T. Griffiths, Laura J. Wilcox, Robert J. Allen, Vaishali Naik, Fiona M. O'Connor, Michael J. Prather, Alexander T. Archibald, Florence Brown, Makoto Deushi, William Collins, Stephanie Fiedler, Naga Oshima, Lee T. Murray, Christopher J. Smith, Steven T. Turnock, Duncan Watson-Parris, and Paul J. Young
EGUsphere, https://doi.org/10.5194/egusphere-2024-2528,https://doi.org/10.5194/egusphere-2024-2528, 2024
Short summary
On the atmospheric budget of ethylene dichloride and its impact on stratospheric chlorine and ozone (2002–2020)
Ryan Hossaini, David Sherry, Zihao Wang, Martyn Chipperfield, Wuhu Feng, David Oram, Karina Adcock, Stephen Montzka, Isobel Simpson, Andrea Mazzeo, Amber Leeson, Elliot Atlas, and Charles C.-K. Chou
EGUsphere, https://doi.org/10.5194/egusphere-2024-560,https://doi.org/10.5194/egusphere-2024-560, 2024
Short summary
Implementation and evaluation of updated photolysis rates in the EMEP MSC-W chemistry-transport model using Cloud-J v7.3e
Willem E. van Caspel, David Simpson, Jan Eiof Jonson, Anna M. K. Benedictow, Yao Ge, Alcide di Sarra, Giandomenico Pace, Massimo Vieno, Hannah L. Walker, and Mathew R. Heal
Geosci. Model Dev., 16, 7433–7459, https://doi.org/10.5194/gmd-16-7433-2023,https://doi.org/10.5194/gmd-16-7433-2023, 2023
Short summary
Simulating impacts on UK air quality from net-zero forest planting scenarios
Gemma Purser, Mathew R. Heal, Edward J. Carnell, Stephen Bathgate, Julia Drewer, James I. L. Morison, and Massimo Vieno
Atmos. Chem. Phys., 23, 13713–13733, https://doi.org/10.5194/acp-23-13713-2023,https://doi.org/10.5194/acp-23-13713-2023, 2023
Short summary

Related subject area

Subject: Gases | Research Activity: Machine Learning | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Diagnosing ozone–NOx–VOC–aerosol sensitivity and uncovering causes of urban–nonurban discrepancies in Shandong, China, using transformer-based estimations
Chenliang Tao, Yanbo Peng, Qingzhu Zhang, Yuqiang Zhang, Bing Gong, Qiao Wang, and Wenxing Wang
Atmos. Chem. Phys., 24, 4177–4192, https://doi.org/10.5194/acp-24-4177-2024,https://doi.org/10.5194/acp-24-4177-2024, 2024
Short summary
Automated detection and monitoring of methane super-emitters using satellite data
Berend J. Schuit, Joannes D. Maasakkers, Pieter Bijl, Gourav Mahapatra, Anne-Wil van den Berg, Sudhanshu Pandey, Alba Lorente, Tobias Borsdorff, Sander Houweling, Daniel J. Varon, Jason McKeever, Dylan Jervis, Marianne Girard, Itziar Irakulis-Loitxate, Javier Gorroño, Luis Guanter, Daniel H. Cusworth, and Ilse Aben
Atmos. Chem. Phys., 23, 9071–9098, https://doi.org/10.5194/acp-23-9071-2023,https://doi.org/10.5194/acp-23-9071-2023, 2023
Short summary
Spatiotemporal modeling of air pollutant concentrations in Germany using machine learning
Vigneshkumar Balamurugan, Jia Chen, Adrian Wenzel, and Frank N. Keutsch
Atmos. Chem. Phys., 23, 10267–10285, https://doi.org/10.5194/acp-23-10267-2023,https://doi.org/10.5194/acp-23-10267-2023, 2023
Short summary
Estimating nitrogen and sulfur deposition across China during 2005 to 2020 based on multiple statistical models
Kaiyue Zhou, Wen Xu, Lin Zhang, Mingrui Ma, Xuejun Liu, and Yu Zhao
Atmos. Chem. Phys., 23, 8531–8551, https://doi.org/10.5194/acp-23-8531-2023,https://doi.org/10.5194/acp-23-8531-2023, 2023
Short summary
Technical note: Improving the European air quality forecast of the Copernicus Atmosphere Monitoring Service using machine learning techniques
Jean-Maxime Bertrand, Frédérik Meleux, Anthony Ung, Gaël Descombes, and Augustin Colette
Atmos. Chem. Phys., 23, 5317–5333, https://doi.org/10.5194/acp-23-5317-2023,https://doi.org/10.5194/acp-23-5317-2023, 2023
Short summary

Cited articles

Alkuwari, F. A., Guillas, S., and Wang, Y.: Statistical downscaling of an air quality model using Fitted Empirical Orthogonal Functions, Atmos. Environ., 81, 1–10, https://doi.org/10.1016/j.atmosenv.2013.08.031, 2013. 
AQEG: Ozone in the UK – Recent Trends and Future Projections, 2021. 
Bergstra, J., Yamins, D., and Cox, D. D.: Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. Presented at the Proceedings of the 30 th International Conference on Machine Learning, JMLR: W&CP, Atlanta, Georgia, USA, p. 9, 2013. 
Betancourt, C., Stomberg, T. T., Edrich, A.-K., Patnala, A., Schultz, M. G., Roscher, R., Kowalski, J., and Stadtler, S.: Global, high-resolution mapping of tropospheric ozone – explainable machine learning and impact of uncertainties, Geosci. Model Dev., 15, 4331–4354, https://doi.org/10.5194/gmd-15-4331-2022, 2022. 
Download
Short summary
High-resolution spatial fields of surface ozone are used to understand spikes in ozone concentration and predict their impact on public health. Such fields are routinely output from complex mathematical models for atmospheric conditions. These outputs are on a coarse spatial resolution and the highest concentrations tend to be biased. Using a novel data-driven machine learning methodology, we show how such output can be corrected to produce fields with both lower bias and higher resolution.
Altmetrics
Final-revised paper
Preprint