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Abstract. High-resolution modelling of surface ozone is an essential step in the quantification of the impacts on
health and ecosystems from historic and future concentrations. It also provides a principled way in which to ex-
tend analysis beyond measurement locations. Often, such modelling uses relatively coarse-resolution chemistry
transport models (CTMs), which exhibit biases when compared to measurements. EMEP4UK is a CTM that is
used extensively to inform UK air quality policy, including the effects on ozone from mitigation of its precur-
sors. Our evaluation of EMEP4UK for the years 2001–2018 finds a high bias in reproducing daily maximum 8 h
average ozone (MDA8), due in part to the coarse spatial resolution. We present a machine learning downscaling
methodology to downscale EMEP4UK ozone output from a 5× 5 km to 1× 1 km resolution using a gradient-
boosted tree. By addressing the high bias present in EMEP4UK, the downscaled surface better represents the
measured data, with a 128 % improvement in R2 and 37 % reduction in RMSE. Our analysis of the downscaled
surface shows a decreasing trend in annual and March–August mean MDA8 ozone for all regions of the UK
between 2001–2018, differing from increasing measurement trends in some regions. We find the proportion of
the UK which fails the government objective to have at most 10 exceedances of 100 µg m−3 per annum is 27 %
(2014–2018 average), compared to 99 % from the unadjusted EMEP4UK model. A statistically significant trend
in this proportion of −2.19 % yr−1 is found from the downscaled surface only, highlighting the importance of
bias correction in the assessment of policy metrics. Finally, we use the downscaling approach to examine the
sensitivity of UK surface ozone to reductions in UK terrestrial NOx (i.e. NO+NO2) emissions on a 1× 1 km
surface. Moderate NOx emission reductions with respect to present day (20 % or 40 %) increase both average
and high-level ozone concentrations in large portions of the UK, whereas larger NOx reductions (80 %) cause a
similarly widespread decrease in high-level ozone. In all three scenarios, very urban areas (i.e. major cities) are
the most affected by increasing concentrations of ozone, emphasizing the broader air quality challenges of NOx

control.
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1 Introduction

Ground-level ozone is a harmful air pollutant that causes res-
piratory health issues, hospitalization, and in severe cases
mortality (Ji et al., 2011; COMEAP, 2015; Nuvolone et al.,
2018), with an estimated 254 000 deaths globally in 2015 due
to elevated ozone exposure (Cohen et al., 2017). Ozone is a
secondary pollutant formed via chemical reactions of pre-
cursor pollutants – nitrogen oxides (NO and NO2, known
as NOx) and volatile organic compounds (VOCs) – in the
presence of sunlight. Because of the harmful consequences
of increased ozone levels, air quality standards of varying
degrees of stringency have been set in many countries for
both ozone and its precursors. Compliance with, and the ef-
ficacy of, these standards is primarily assessed through anal-
ysis of surface ozone measurements. Whilst useful, the em-
pirical analysis of ozone measurements is limited in scope
by the density and location of monitoring sites and length
of data records (e.g. Lang, 2020). Mathematical models, ei-
ther process-based air quality models or statistical models,
are therefore useful in further improving our understanding
of ozone formation, long-term trends, and spatial variability
at spatial and temporal scales that measurements alone can-
not match. However, it is well established that ozone con-
centrations vary spatially, seasonally, and temporally due to
meteorological conditions and precursor availability and re-
activity (Cooper et al., 2014; Pope et al., 2016), making it a
particularly challenging pollutant to model.

Recent statistical analysis of UK surface ozone has cen-
tred on data from measurement stations (Diaz et al., 2020;
Gouldsbrough et al., 2022). However, these stations are not
spread equally across the UK, leaving substantial portions of
the country unmonitored (Finch and Palmer, 2020). In conse-
quence, robust estimates of regional variability in ozone con-
centration and trends are unavailable, though it is known that
both vary significantly across sites and site type. Taking the
UK as a whole, a notable finding of the above studies is that
the probability of the occurrence of extreme ozone concen-
trations has reduced in recent decades, but reported trends are
generally not statistically significant (e.g. Finch and Palmer,
2020). Chemistry transport models (CTMs), numerical mod-
els that simulate the various processes that affect pollutant
concentrations (emissions, chemistry transport, deposition,
etc.), are routinely used to produce spatial surfaces of ozone
and other air pollutants, with a far greater spatial coverage
than can be achieved by the monitoring stations. Still, these
are run on a grid, often at a coarse resolution with respect to
what is optimal for exposure assessment, and thus may not
capture local-scale behaviour. High-resolution multi-annual
CTM simulations are also computationally expensive and,
like all process models, subject to a degree of bias (e.g. Liu
et al., 2022). An alternative to high-resolution process mod-
elling is to develop a statistical model to interpolate the ozone
measurements (Wong et al., 2004; Hooyberghs et al., 2006).
However, given the complexity of the processes that under-

pin ozone production, downscaling approaches that use mea-
sured data, where it is available, to remove local-scale bias
from the numerical model output are attractive.

Data-driven downscaling methods are used to model
complex physical systems by combining information from
ground observations or satellites with information from
process-based numerical models. Previous work to down-
scale numerical model surface ozone data includes dynam-
ical, statistical, and machine learning downscaling. Dynami-
cal downscaling uses high-resolution regional simulations to
extrapolate the effects of large-scale processes to local scales
and has been applied in the US (Nolte et al., 2021; Sun et al.,
2015; Trail et al., 2013) and Belgium (Lauwaet et al., 2013).
Statistical downscaling of surface ozone has been performed
using regression (Bravo et al., 2016; Gauthier-Manuel et al.,
2022; Guillas et al., 2008), fitted empirical orthogonal func-
tions (Alkuwari et al., 2013), and a spectral method (Reich
et al., 2014). Machine learning (ML) models have also been
used to downscale surface ozone. For example, a Bayesian
ensemble machine learning model that integrates 13 learn-
ing algorithms has been used to create a census-tract-level
daily maximum 8 h average (MDA8) ozone surface for the
US, demonstrated for 2011 (Ren et al., 2022). Global down-
scaled ozone surfaces have also been created using ML mod-
els, including a Bayesian neural network model to create a
10× 10 km ozone surface for 1990–2019 (Sun et al., 2022)
and a random forest model to create a 0.1°× 0.1° average
ozone surface for 2010–2014 (Betancourt et al., 2022). To
our knowledge, no studies have applied downscaling specifi-
cally to UK ozone.

In this paper, we develop and evaluate a novel ML-based
methodology for downscaling the EMEP4UK CTM from a
5× 5 km to 1× 1 km resolution. The CTM is developed as
the UK regional application of the European Monitoring and
Evaluation Program (EMEP) and has been widely used to
study UK air quality and to inform policy decisions (e.g.
Vieno et al., 2016). Previous EMEP4UK evaluation have
shown that whilst the model generally performs well at re-
producing observations of a range of pollutants, there is non-
negligible positive bias in ozone at almost all sites (Vieno et
al., 2010). The bias is larger at urban background locations,
possibly reflecting a dilution of local NOx emissions on the
5× 5 km grid and thus insufficient NOx titration (Lin et al.,
2017). One way to address this bias is through downscaling,
by which information from EMEPUK surfaces can be com-
bined with information from ozone measurement data and
other variables, e.g. measures of atmospheric and meteoro-
logical conditions.

By building a downscaling ML model that is trained to
predict measurement data using not only the EMEPUK out-
put but also multiple other feature variables, we can produce
high-resolution ozone surfaces that both better matches the
measurement data than the raw EMEPUK ozone surfaces and
provide greater spatial coverage – at a higher spatial resolu-
tion – than the raw measurement data. We apply the down-
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scaled model to study UK surface ozone over an 18-year pe-
riod (2001–2018), focussing on (1) quantifying regional vari-
ability in ozone, trends, and policy-related metrics; (2) com-
paring conclusions drawn from the downscaled surface rel-
ative to those from the unadjusted CTM and measurements
alone; and (3) exploring the sensitivity of UK ozone con-
centrations to reductions in NOx . Of the many ML tools
available, we use a gradient-boosted tree (GBT) (Friedman,
2001). Our choice is primarily driven by the fact that the
GBT model can learn non-linear relationships from highly
dimensional data sets. Thus, the GBT model allows us to use
several measurement stations and covariates in the downscal-
ing model and thereby model ozone as the product of mul-
tiple highly non-linear and interacting systems. Moreover,
GBTs have been used to downscaled numerical model sur-
face ozone for China (Hu et al., 2022; Liu et al., 2020) and
were found to be useful in predicting surface level ozone dur-
ing wildfires in California (Watson et al., 2019).

This paper is structured as follows. Section 2 outlines
the data used in the analysis and the features included
with the ML model. Section 3 describes the downscaling
methodology, including an evaluation of the downscaled sur-
face. In Sect. 4, we analyse the downscaled surface, fo-
cussing on regional ozone variability across the UK in re-
cent years (Sect. 4.1), longer-term trends, interannual vari-
ability (Sect. 4.2), and UK ozone–NOx sensitivity (Sect. 4.3).
Across these results we compare the conclusions drawn
from the new downscaled surface to those from the unad-
justed EMEP4UK output and measurements alone. Finally,
in Sect. 5 we present our conclusions and some brief recom-
mendations for future research.

2 Data

Accurate downscaling requires not just the measured and
modelled ozone data but also information on variables that
affect the net production or transport of ozone at the Earth’s
surface. We make use of information on the meteorology, cli-
mate, and geophysical characteristics at a given location. For
consistency with ML terminology, we refer to the individual
variables as “input features”, a concise summary of which
can be found in Table 1. All data sets cover the period 2001–
2018 (inclusive).

2.1 Modelled ozone from EMEP4UK

EMEP4UK is a UK-focussed version of the EMEP MSC-
W model (https://www.emep.int, last access: 1 November
2023), an Eulerian CTM used to assess concentrations and
deposition of various air pollutants across Europe (Simpson
et al., 2012). Various studies related to UK ozone have been
performed using EMEP4UK: quantifying the burden of heat
and ozone on mortality (Doherty et al., 2009), modelling
ozone during the 2003 heatwave (Vieno et al., 2010), mod-
elling the effect of climate change on ozone health impacts

(Vardoulakis and Heaviside, 2012), quantifying the socioe-
conomic and urban–rural differentials in exposure (Milojevic
et al., 2017), and modelling air pollution exposure in relation
to workplace mobility (Liška, 2021). The EMEP4UK model
is also used to inform policy decisions concerning air qual-
ity: the extent to which UK source abatement measures can
mitigate UK particulate matter concentrations (AQEG et al.,
2013; Carnell et al., 2019); the impact of reductions in UK
anthropogenic emissions on various pollutants (Vieno et al.,
2016); the impacts of climate change and mitigation options
for agriculture, forestry, land use, and waste sectors (SRUC,
2017); the effect of changes in vegetation coverage on air
pollution (EIDC, 2021); and the quantification of the spa-
tial variation in average ozone across the UK, including the
calculation of population-weighted ozone exposure during
workdays, long-term exposure, and the implication of a 2030
emissions scenario on surface ozone concentrations (AQEG,
2021).

Previous evaluation of the EMEP4UK model quantified its
performance in the reproduction of the 10-year mean mea-
sured ozone concentrations for 2001–2010. Considering 17
rural and 30 urban sites, R2 values of 0.21 (0.81 when re-
moving one erroneous rural site) and 0.73, respectively, were
obtained (Lin et al., 2017). A positive model bias for ozone
at urban background sites is due to the dilution of urban
NOx emissions at the model 5× 5 km resolution, meaning
that EMEP4UK insufficiently captures the urban NOx titra-
tion of ozone. In our preliminary investigations, we found
that the original EMEP4UK output fails to capture the daily
behaviour of ozone in the larger sample of 198 measurement
stations used in this analysis, with a cross-year mean R2 of
0.32 and cross-year mean RMSE of 19.4 µg m−3. Therefore,
we determined it was necessary to develop a methodology
with which to downscale the EMEP4UK model output to a
higher-resolution spatial grid and to address the above bias.

The data set we wished to downscale is a 5× 5 km
gridded data set of hourly surface ozone concentrations
from EMEP4UK covering the period 2001–2018. To pro-
duce this ozone field, the offline CTM was run with me-
teorology from the Weather Research and Forecast (WRF)
model version 3.7.1 (Skamarock et al., 2008) between 2001–
2017 and WRF4.1 (Skamarock et al., 2019) for 2018. The
WRF simulation in this work assimilates data from the nu-
merical weather prediction model meteorological reanaly-
sis of the US National Center for Environmental Prediction
(NCEP)/National Center for Atmospheric Research (NCAR)
Global Forecast System (GFS) (National Centers for Envi-
ronmental Prediction, 2000). MDA8 ozone concentrations
were calculated from the original hourly model output and
linear interpolation was used to convert the 5× 5 km field to
a 1× 1 km grid over the entire study period (2001–2018).

In addition to the output from the main transient model run
described above, a series of additional model experiments
were performed for the year 2018 to explore the sensitivity of
UK ozone to NOx reductions. These included a 2018 refer-
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ence run with terrestrial UK NO2 emissions of 743 Gg yr−1

and three otherwise identical runs with NO2 emissions re-
duced by 20 % (594 Gg yr−1 NO2), 40 % (446 Gg yr−1), and
80 % (148 Gg yr−1). These reductions do not correspond to
any specific future scenarios and are designed solely as a
sensitivity analysis based on the ongoing long-term decline
in UK NOx emissions. These emissions fell by 73 % between
1970 (2920 Gg yr−1) and 2019 (784 Gg yr−1) (Defra, 2021a),
with the expectation of further reductions in the future.

2.2 Meteorological variables

Surface ozone levels are strongly influenced by local and
synoptic weather conditions (Pope et al., 2016), and mete-
orological variables are thus common input features in ML
studies of ozone. The WRF model is a weather prediction
system designed for atmospheric forecasting (Grell et al.,
2005). For this study, WRF version 3.7.1 meteorological and
terrain variables for the years 2001–2018 were collected on
the same 5×5 km grid as the EMEP4UK model and then also
linearly interpolated to 1× 1 km. Previous work found daily
maximum temperature, relative humidity, thermal surface ra-
diation, and wind speed to be important drivers of MDA8
ozone in Europe (Otero et al., 2016). Thus, we include these
(and other similarly relevant) meteorological variables in our
ML model (Table 1).

2.3 Distance variables

Due to the link between NOx and ozone, distance to the near-
est road is a key explanatory variable (Granier and Brasseur,
2003). Distances to five road types from major to minor roads
(Meijer et al., 2018) were calculated at each ozone mea-
surement station for the calibration of the model, and on a
1× 1 km grid for the predicted downscaled surface. Simi-
larly, distance to coast from a shapefile of the UK coast-
line (Natural Earth: https://www.naturalearthdata.com, last
access: 1 November 2023) was used to account for the in-
crease of ozone concentrations in coastal areas (Entwistle et
al., 1997). Note that we do not include NOx itself or any
other precursor pollutants directly in the model. The primary
reason for this is that the EMEP4UK output for such chem-
icals is likely to be biased, and we wish to avoid this bias
propagating into the downscaled ozone field. While this ap-
proach indirectly encompasses the influence of NOx , a com-
prehensive treatment of NOx within the ML model is beyond
the current scope of our study. Additionally, the presence
of sharp gradients in NOx emissions introduces a potential
risk of introducing spurious features during the downscal-
ing process. Instead, the distance-to-road variable acts as a
proxy for NOx concentration, which is reasonable given the
importance of road transport NOx emissions in the UK. To
lessen the bias of the downscaling model towards the rela-
tively dense measurement network in London, an indicator
variable was included to delineate between inside London

and outside London, with London defined using a bounding
box from of 51.28–51.686° N, 0.489° W–0236° E.

2.4 Ozone monitoring network data

Surface ozone measurements for the years 2001–2018 were
obtained from the Automatic Urban and Rural Network
(AURN: https://uk-air.defra.gov.uk (last access: 1 Novem-
ber 2023), 108 sites), Kings College London network
(KCL: https://www.londonair.org.uk (last access: 1 Novem-
ber 2023), 68 sites), Air Quality England network (AQE:
https://www.airqualityengland.co.uk (last access: 1 Novem-
ber 2023), 12 sites), Welsh Air Quality Network (WAQN:
https://airquality.gov.wales (last access: 1 November 2023),
9 sites), and Scottish Air Quality Network (SAQN: https://
www.scottishairquality.scot (last access: 1 November 2023),
1 site). These measurements are essential for the calibration
and evaluation of the downscaling model. MDA8 ozone con-
centrations were calculated at each of the 198 measurement
sites; for locations, see Fig. A1 in the Appendix. There are
differences in the observation period across the sites, but all
sites had a minimum of 3 years data.

In our subsequent analysis, we explored regional varia-
tions in ozone concentration and trends. We considered 12
UK regions (see Fig. A2), the spatial definitions of which
are taken from the Level 1 Nomenclature of Territorial Units
for Statistics (Office for National Statistics, 2018). Estima-
tion of site-wise trends, including the magnitude and sig-
nificance, may be sensitive to the chosen statistical tech-
nique. Approaches used in previous studies include use of
the non-parametric Theil–Sen method applied to deperson-
alized monthly mean ozone time series (AQEG, 2021) and
least-squares fits to annual mean data (Finch and Palmer,
2020). In this study, we calculated trends using ordinary least
squares on the yearly averages (and seasonal averages, 90th
percentiles, 10th percentiles) of MDA8 ozone. All trends are
calculated using all available data from each region.

3 Downscaling methodology

Our goal is to produce a gridded downscaled surface ozone
product that better represents the stochastic behaviour of the
measurements than the original EMEP4UK output alone.
The downscaling approach consists of five steps. First, the
5× 5 km gridded model ozone surface is linearly interpo-
lated to a 1× 1 km resolution. Second, a matched data set
of modelled ozone is selected from the 1× 1 km EMEP4UK
surface by selecting, for each measurement station, the near-
est grid cell. Third, a machine learning model is used to per-
form bias correction on the modelled ozone data. Fourth, the
performance of the bias correction is evaluated at the mea-
surement locations by a comparison of the predicted ozone
with the observed measurements. Steps three and four are
iterated until no further improvements in the predictive capa-
bility of the model can be seen. Finally, the trained machine
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Table 1. Input features to the ML model.

Input features Source Abbreviation in source Resolution

EMEP4UK surface ozone EMEP4UK O3 1× 1 km
Latitude Measurements – –
Longitude Measurements – –
Daily maximum 2 m temperature WRF T2 1× 1 km
Daily minimum 2 m temperature WRF T2 1× 1 km
Daily mean surface pressure WRF PSFC 1× 1 km
Downward short-wave flux at ground surface WRF SWDOWN 1× 1 km
Daily mean planet boundary layer height WRF PBLH 1× 1 km
Daily mean surface vapour WRF QVAPOR 1× 1 km
Daily mean x component of wind WRF U10 1× 1 km
Daily mean y component of wind WRF V10 1× 1 km
Terrain height WRF HGT 1× 1 km
Distance to highways GRIP 1 Vector
Distance to primary roads GRIP 2 Vector
Distance to secondary roads GRIP 3 Vector
Distance to tertiary roads GRIP 4 Vector
Distance to local roads GRIP 5 Vector
Distance to coast Natural Earth – Vector
Year EMEP4UK – –
Month EMEP4UK – –
Date (as integer) EMEP4UK – –
London (or not) Bounding box – –

learning model is used to predict MDA8 surface ozone on a
1×1 km resolution grid for the UK. Figure 1 shows an exam-
ple of the resulting downscaled surface. This surface consists
of 234 187 cells, compared to the 10 941 cells of the original
EMEP4UK surface. The increased resolution in the down-
scaled surface leads to greater local-level detail, resulting
in improved inference on the probabilistic behaviour of the
ozone surface, which we demonstrate in our subsequent anal-
ysis. Further details on the specific machine learning model
and how it was tuned are as follows.

3.1 Machine learning model

A gradient-boosting tree (GBT) is an iterative, supervised,
machine learning model, consisting of a parameterized en-
semble of decision trees (Friedman, 2001). These decision
trees are trained sequentially; each additional tree minimizes
the prediction error from the previous tree using gradient de-
scent. As a supervised learning algorithm, training the model
requires both a training data set and a predefined objective
function, the latter consisting of a loss function and a reg-
ularization term. The training data set is the subset of the
full set of data from which the best-fitting model is found.
The loss function and regularization term quantify the qual-
ity of model fit given the complexity of the model. The er-
ror for each decision tree is calculated from the loss func-
tion (Friedman, 2001), which measures how well the model
predicts the training data, whilst the regularization term pe-
nalizes against model complexity to prevent overfitting. The

fitting algorithm ends when either a predetermined number
of trees have been fitted, the loss function falls below a pre-
determined threshold, or the addition of more trees provides
no significant improvement to the model fit. The latter cri-
terion is determined by an external validation data set. The
final model is then the summation over the entire ensemble.

Several characteristics of GBTs make them suitable for
downscaling: they can capture non-linear relationships be-
tween variables far more effectively than competitor ap-
proaches (e.g. statistical regression models), and they are
both computationally efficient and scalable, i.e. are suitable
for large data sets (Chen and Guestrin, 2016). The specific
GBT implementation used for this analysis is XGBoost, a
highly optimized Python package (Chen and Guestrin, 2016).
Since the measurement ozone data are long tailed, we chose
a gamma regression for objective and evaluation functions
of the GBT model; gamma regression is suited to mod-
elling continuous, non-negative, and long-tailed data, i.e.
non-normally distributed data with few but large extreme val-
ues. Like many ML models, the fitting process used to train
the GBTs prioritizes the fit of the mean behaviour at the ex-
pense of characterizing the tails (i.e. largest and smallest ob-
servations). To reduce this inequality and reduce the mean
bias, the tails of the measurement data – data above (and be-
low) high (and low) concentrations of ozone – were oversam-
pled. Resampling is a common approach to rebalance the dis-
tribution of training data for a ML model when the goal is to
forecast rare values of the target variable (Torgo et al., 2015).

https://doi.org/10.5194/acp-24-3163-2024 Atmos. Chem. Phys., 24, 3163–3196, 2024



3168 L. Gouldsbrough et al.: A machine learning approach to downscale EMEP4UK

Figure 1. (a) An example of the downscaled MDA8 (µg m−3) surface (1×1 km resolution) and (b) original EMEP4UK surface (b, 5×5 km)
for 1 January 2008.

Lastly, as with any machine learning analysis, we require
a balance between the fit of the model on the training data
and the ability to apply the model to unseen data, i.e. making
sure that the model is not overfit or underfit to the training
data. To get satisfactory results, the hyperparameters of the
XGBoost model needed substantial tuning. Initial hyperpa-
rameters were found using Hyperopt, a Bayesian optimiza-
tion package (Bergstra et al., 2013). Subsequent fine tuning
was performed manually until no further improvement could
be found in the cross-validation (CV) tests.

3.2 Evaluation of downscaling

3.3 Predicting ozone at measurement locations

Evaluation of the downscaling model used CV to assess the
prediction of MDA8 ozone across multiple measurement lo-
cations. CV requires the model to be trained on a random
subsample of the whole data set, and the resulting model then
used to predict the remaining and previously unseen data.
The first CV test is to split the data into two random samples
selected from the entire data set: 70 % of the data are used to
train the model, and the remaining 30 % are used for evalu-
ation. Table 2 shows the annual R2 and RMSE for the pre-
dictions combined across all sites. We found a good agree-
ment between predicted ozone and measurement ozone, with
a cross-year mean R2 of 0.80 and RMSE of 10.61 µg m−3

for 2001–2018, and we found no evidence of substantial
between-year variation in performance.

The second CV test assesses predictive performance at lo-
cations that are completely excluded from the model training.
To do this, we divided the measurement data into 10 sub-

sets by their location. The model was trained on 9 subsets,
while the remaining subset served as the evaluation set. We
repeated this process for all subsets, ensuring that each sub-
set was used for evaluation exactly once. Again, we found a
good agreement between predicted and measurement ozone,
with a cross-year mean R2 of 0.70, as seen in Table 2.

3.3.1 Downscaled surface vs. measurements

Having assessed the accuracy of the ML downscaling model,
we created the downscaled surface by training the ML model
on all measurement data. To compare the downscaled sur-
face to both measurements and the unadjusted EMEP4UK
surface, the data from the cell nearest to each measurement
station were extracted. Due to the different grid specifica-
tions, the matched cells were not concentric, but they are very
close. Table 3 shows the R2 for each year for the downscaled
surface and original EMEP4UK surface when compared to
the measurement data. The cross-year mean R2 of the down-
scaled surface is 0.73 %, 128 % higher than the equivalent for
the unadjusted EMEP4UK at 0.32. Notably, the extremely
low R2 values for 2014–2016 in the latter are significantly
improved in the downscaled surface, e.g. 0.06 vs. 0.73 in
2016. Notable improvement is also seen in 2003, the best-
performing year for EMEP4UK, with a downscaled R2 of
0.81 compared with 0.61 for unadjusted EMEP4UK. There
is also a 37 % reduction in the cross-year mean RMSE for the
downscaled surface compared with the unadjusted product:
12.26 µg m−3 vs. 19.40 µg m−3. Our results are not incon-
sistent with other machine learning downscaling approaches
for ozone. Liu et al. (2020) applied a similar method to pro-
duce a spatiotemporal surface of ozone concentrations in
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Table 2. R2 and RMSE (µg m−3) results of predicted MDA8 ozone
vs. MDA8 measurements for the two cross-validation tests: 70/30
train/test split and 10-fold CV. All metrics are calculated using all
available data, i.e. daily data across all sites.

70/30 train/test split 10-fold CV

Year R2 RMSE R2 RMSE
2001 0.82 11.33 0.71 14.09
2002 0.79 11.36 0.70 13.72
2003 0.82 12.88 0.74 15.52
2004 0.79 11.42 0.69 13.82
2005 0.77 11.50 0.66 13.98
2006 0.84 11.66 0.74 14.72
2007 0.82 10.09 0.72 12.52
2008 0.83 10.56 0.74 12.89
2009 0.81 10.23 0.71 12.50
2010 0.79 10.43 0.68 12.87
2011 0.79 10.43 0.67 13.06
2012 0.79 10.18 0.68 12.61
2013 0.81 10.09 0.71 12.52
2014 0.77 10.22 0.65 12.56
2015 0.77 9.66 0.65 12.05
2016 0.80 9.88 0.73 11.63
2017 0.81 9.29 0.69 11.80
2018 0.83 9.81 0.73 12.42

Mean 0.80 10.61 0.70 13.07

China from 2005 to 2017 and achieved a daily site cross-
validation R2 score of 0.64 and RMSE of 27.27 µg m−3. Ren
et al. (2020) investigated various machine learning models to
predict ozone across the US and the highest spatial validation
R2 score was 0.68.

Further differences in the capabilities of the two gridded
products to represent surface ozone measurements are shown
in Fig. 2. A considerable reduction in noise can be seen in the
scatter density plots of the downscaled surface vs. measure-
ments (Fig. 2a), which has a stronger linear signal and less
scatter in comparison to the equivalent plot for EMEP4UK
(Fig. 2b). This indicates that the unadjusted EMEP4UK sur-
face is a less accurate representation of the measurement
data. The bias in the stochastic behaviour of the unadjusted
EMEP4UK output is evident when comparing the percentiles
of the measurement data to the percentiles of the (i) unad-
justed and (ii) downscaled EMEP4UK (Fig. 2c); the per-
centiles for the unadjusted output are consistently higher
than those of the measurements, whilst those of the down-
scaled data are almost identical to those of the measurements.
Similarly, we see a considerable shift in the density of the
EMEP4UK percentiles compared to that of the measurement
data (panel d); again, there is a far smaller discrepancy be-
tween the densities of the measurements and the downscaled
data.

3.4 Feature importance

Complex ensemble models, of which GBTs are an example,
can be difficult to interpret. We make use of Shapley additive
explanations (SHAP) to quantify the importance of the input
features to the trained GBT, and hence their importance to the
predictive process, and to show that these features are consis-
tent with what would be expected given our understanding
of the generating mechanisms of surface ozone. The Shapley
value (Lundberg and Lee, 2017) is one measure of feature
importance that has been used previously to understand the
relationship between input features and ozone in ML stud-
ies (e.g. Liu et al., 2022). It is important to note that SHAP
values cannot be interpreted as correlation coefficients. In-
stead, SHAP values display the difference between the aver-
age value of the response and the conditional average of the
response given a specific value of the feature. Positive SHAP
values can co-occur with either high (red) or low (blue) val-
ues of a feature, and this is similar for negative SHAP values.
This means that high values of a given feature may result in
low or high ozone levels.

Figure 3 shows the feature importance (as SHAP values)
for the final GBT model trained on all data, where negative
SHAP values result in lower predictions and positive ones
in higher predictions. Unsurprisingly, EMEP4UK ozone is
the most important feature in predicting the measured ozone,
followed by daily maximum 2 m temperature, date (as an in-
teger), month, and distance to road type 1 (i.e. motorways).
Lower concentrations of EMEP4UK ozone have a greater
impact on the GBT model output than high values, signifying
that lower EMEP4UK ozone concentrations better represent
the behaviour of measurement ozone than higher concentra-
tions. Daily maximum 2 m temperature is the most important
meteorological feature, reflecting the well-established ob-
served temperature–MDA8 relationship (e.g. Gouldsbrough
et al., 2022) that is likely underpinned by several processes
(Sun et al., 2017; Romer et al., 2018; Porter and Heald,
2019). Lower temperatures decreased the model prediction,
while higher temperatures increase the prediction. The high
importance of the temporal features (date and month) indi-
cates that seasonality and long-term trends of measurement
ozone are not wholly captured in EMEP4UK. Road type 1 is
the most important of the road types, and the fifth-most im-
portant feature overall, reflecting the strong link between ve-
hicles, NOx , and ozone. Type 1 roads typically have a higher
traffic volume and considerably higher NOx concentrations
than background locations, due to higher driving speeds and
numbers of heavy good vehicles (Mann, 1997).

4 Results – analysis of the downscaled surface

We perform three analyses of our downscaled ozone sur-
face: recent years (2014–2018), time trends (2001–2018),
and heatwave years (2003, 2006 and 2018). In all cases,
we compare the behaviour of four characteristics – an-
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Table 3. R2 and RMSE (µg m−3) results for downscaled ozone vs. measurements and EMEP4UK ozone vs. measurements. All metrics are
calculated using all available data, i.e. daily data across all sites.

Year Downscaled R2 Downscaled RMSE EMEP4UK R2 EMEP4UK RMSE

2001 0.79 12.10 0.45 19.52
2002 0.77 12.05 0.30 20.91
2003 0.81 13.10 0.61 19.05
2004 0.76 12.25 0.47 18.01
2005 0.73 12.54 0.36 19.22
2006 0.80 13.13 0.54 19.81
2007 0.76 11.64 0.41 18.08
2008 0.78 11.97 0.44 19.07
2009 0.74 12.05 0.31 19.45
2010 0.70 12.65 0.29 19.40
2011 0.69 12.62 0.29 19.17
2012 0.71 12.02 0.29 18.88
2013 0.72 12.24 0.28 19.58
2014 0.65 12.73 0.08 20.54
2015 0.64 12.20 0.07 19.66
2016 0.73 11.46 0.06 21.52
2017 0.70 11.70 0.14 19.73
2018 0.74 12.15 0.45 17.62

Mean 0.73 12.26 0.32 19.40

nual mean, March–August mean, and the annual 10th and
90th percentiles – across the measurement stations and the
EMEP4UK and downscaled surfaces.

4.1 Recent years analysis (2014–2018)

We examine the years 2014–2018 as these are the most recent
years in the data set. The 5-year period accommodates the
interannual variability in ozone concentrations, resulting in
a broader overview of ozone behaviour. In the UK, elevated
ozone mostly occurs in spring and summer (March–August)
during anticyclonic conditions when slow-moving air masses
from mainland Europe contribute to increased accumulation
of precursor emissions and increased rates of photochemical
ozone production (AQEG, 2021). Figure 4 shows the 2014–
2018 annual (i.e. all months) and March–August (only) mean
MDA8 ozone for each region and each data product. Recall
that the measurement means are based on a limited and vary-
ing number of monitoring sites within each region (Fig. A1).
Regional means, both annual and March–August, are consis-
tently higher for the original EMEP4UK surface compared
to the downscaled surface and measurements reflecting a
high bias in the unadjusted CTM. See also Tables A1 and
A2, which contain a summary of the data plotted in Fig. 4.
The all-region annual mean MDA8 from the downscaled
surface (∼ 62 µg m−3) and measurements (∼ 61 µg m−3) are
in close agreement, while the original EMEP4UK surface
(∼ 76 µg m−3) is significantly larger (Table A1). A similar
pattern of agreement is found for the March–August means
(Table A2). One region where the downscaled surface and

measurements differ considerably is London. Here, the an-
nual mean MDA8 for the downscaled surface and measure-
ments are 57 and 49 µg m−3, respectively (and 68 µg m−3 vs.
58 µg m−3 for the March–August mean). The high proportion
of urban measurement sites in London (i.e. sampling more
NOx titration), in contrast to the more varied site type sam-
pling of the gridded downscaled surface, likely contributes to
the higher MDA8 ozone in the downscaled surface.

While numerous studies have reported differences in UK
ozone across different site types based on measurement anal-
ysis (Diaz et al., 2020; Finch and Palmer, 2020), there has
been less focus on characterizing regional variability. Con-
sidering the regional averages, analysis of the downscaled
surface reveals a relatively modest amount of inter-region
variability. For instance, the difference between the high-
est and lowest regional mean is 10 µg m−3 for the annual
mean and 13 µg m−3 for the March–August mean. Similarly,
across all regions the relative standard deviation is less than
6 %. Variability in the regional means based on the origi-
nal EMEP4UK surface is smaller (< 1 %). Additionally, we
find that the region with the highest annual mean MDA8
ozone differs across all three data sets: Southwest England
at 66 µg m−3 in the downscaled surface, Wales at 79 µg m−3

in the original EMEP4UK surface, and Southeast England at
67 µg m−3 in the measurements. Comparatively, the region
with the highest March–August mean is Southeast England at
75 µg m−3 for both the downscaled surface and measurement
data, whilst the highest March–August mean for EMEP4UK
is eastern England at 88 µg m−3.
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Figure 2. (a) Scatter density plot of downscaled surface vs. measurement ozone; (b) scatter density plot of EMEP4UK surface vs. mea-
surement ozone; (c) percentile–percentile plot comparing ordered percentiles of downscaled vs. measurement ozone (green) and EMEP4UK
vs. measurement ozone (orange); and (d) density plots of measurement ozone (blue), corresponding downscaled surface ozone (green), and
corresponding EMEP4UK surface ozone (orange).

Figure 5 shows the 2014–2018 regional average 90th and
10th percentiles of MDA8 ozone. The EMEP4UK 90th and
10th percentiles are higher for all regions compared to the
downscaled surface and measurements, further demonstrat-
ing the high ozone bias present in the EMEP4UK surface.
Southeastern England has the highest regional 90th per-
centile MDA8 ozone concentration in both the downscaled
(88 µg m−3) and EMEP4UK (99 µg m−3,) surfaces, while
Southwest England has the highest 90th percentile in the
measurements at 90 µg m−3. The most noticeable difference
between the three data sets is the 90th percentile estimate for
Scotland: 79 µg m−3 for the downscaled surface, 95 µg m−3

for the EMEP4UK surface, and 86 µg m−3 for the measure-
ments. Wales has the highest 10th percentile MDA8 ozone
concentration in the EMEP4UK and downscaled surfaces,
62 and 50 µg m−3, respectively, while having only the third
highest 10th percentile in the measurements, at 40 µg m−3.
The highest regional 10th percentile in the measurement

data is 45 µg m−3 for Scotland. The 10th percentiles for
Scotland in the EMEP4UK and downscaled surfaces are
higher still: 61 and 48 µg m−3, respectively. The relatively
high 10th percentile in Scotland is likely due to the low re-
gional NOx emissions, as ozone in northern Scotland reflects
hemispheric background concentrations instead of the pho-
tochemical generated concentrations (Entwistle et al., 1997).
The inter-region variation in 90th percentile is 12 µg m−3 in
the downscaled surface, whereas the inter-region variation in
the 10th percentile is considerably higher at 21 µg m−3, due
to the particularly low 10th percentile ozone concentration
in London of 29 µg m−3. See Tables A3 and A4 for regional
point estimates and confidence intervals and point estimates.

Reports from Defra highlight that very few UK regions
currently meet the UK government long-term ozone objec-
tive of MDA8 to not exceed 100 µg m−3 more than 10 times
in a year. Similarly, the EU’s long-term objective (no MDA8
exceedances of 120 µg m−3) is routinely breached in most
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Figure 3. Feature importance in the GBT model ordered from most important (top) to least important (bottom). Local SHAP values (a) show
the model impact of each feature based on feature value, negative SHAP value results in a lower ozone prediction, and positive SHAP value
results in a higher ozone prediction. Mean absolute SHAP values (b) show the overall impact of each feature on model output.

areas. A summary of the guidelines against which the UK
reports is given in Table 1 of Defra (2021b). For the above
assessments, which are based on measurements from the
AURN network, if one location (monitoring site) within a re-
gion is in breach of the objective, that region is deemed non-
compliant. For example, in 2021 no regions outside of Scot-
land met the EU objective (Defra, 2022). Our downscaled
surface provides an additional perspective on adherence that
is not possible to obtain from a relatively sparse monitoring
network alone or from a CTM with significant bias. Figure 6
shows the number of days in a year exceeding 100 µg m−3

averaged over 2014–2018 for both the downscaled and un-
adjusted EMEP4UK data sets, with yellow cells highlighting
areas where 100 µg m−3 is exceeded less than 10 times per
year and therefore passing the government objective. We find
that 27 % of the downscaled UK surface exceeds the govern-
ment objective, compared to 99 % from EMEP4UK. This un-
derpins the importance of bias correction when using process
models to examine policy metrics and air quality exposure
indicators. At least one downscaled cell in all the 12 UK re-
gions was found to have more than 10 d with MDA8 greater
than 100 µg m−3 averaged over 2014–2018; however, the re-
gions in the southeast of the UK have the greatest proportion

of failing cells, with 86 % and 88 % of the eastern and South-
east England regions failing.

4.2 Trends over time

As mentioned earlier, the use of measurement data only is
limited by varying, and in some cases very short, measure-
ment periods, and this can prove problematic in air quality
trend analysis (Lang, 2020). The gridded downscaled and
EMEP4UK data sets facilitate the estimation of trends for
all regions, regardless of the density of the measurement net-
work and/or the completeness of the measurement records.
We illustrate this in the subsequent analysis by quantifying
regional trends in ozone concentrations, comparing, as be-
fore, measurement, downscaled, and EMEP4UK estimates.
We do not quantify a single UK-wide trend since the be-
haviour of ozone, and consequently also the observed long-
term trends, differ considerably across the UK.

A benefit of using a gridded ozone surface is greater spa-
tial coverage; this enables estimation of regional trends in
regions where measurement stations are sparse, and there-
fore more comprehensive regional estimates. Figure 7 shows
the annual and March–August regional mean MDA8 ozone
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Figure 4. Comparing regional averages of EMEP4UK (a, d), downscaled (b, e), and measurement (c, f) MDA8 ozone (µg m−3) for 2014–
2018 annual mean (a–c) and March–August mean (d–f).

trends for 2001–2018 for the three data sets. These trends are
also given in Table A5 and Table A6, respectively. All re-
gions have a decreasing trend in annual mean MDA8 ozone
in the downscaled surface; however, no trends are statis-
tically significant. Southeastern England has the greatest
trend at −026 [−056, 0.04], followed by Southwest Eng-
land and Wales, at −025 [−055, 0.04] and −025 [−050,
0.00] µg m−3, respectively. In comparison, the measurements
and EMEP4UK surfaces both have a combination of in-
creasing and decreasing regional trends (few of which are
statistically significant). In the measurements, the York-
shire and The Humber region shows the greatest increas-
ing trend in annual mean ozone concentrations, at 0.33
[0.02, 0.64] µg m−3 yr−1, followed by the West Midlands and
Northwest England at 0.28 [−001, 0.56] and 0.29 [−002,
0.59] µg m−3 yr−1, respectively. EMEP4UK is the only data
set for which London has a significant increasing trend in
annual mean ozone, at 0.43 [0.20, 0.66] µg m−3, with non-
significant decreasing trends of−020 [−048, 0.09] and−023

[−050, 0.05] µg m−3 yr−1 in the measurements and down-
scaled surface, respectively.

In contrast to the annual mean case discussed above, most
March–August mean ozone trends are statistically signifi-
cant in the downscaled and EMEP4UK surfaces (Table A6).
When comparing the March–August mean trends we also see
a greater similarity between the downscaled and EMEP4UK
surfaces (in terms of the sign of the trend), except for Lon-
don where the trend is again positive in the EMEP4UK
surface (0.17 [−006, 0.39] µg m−3 yr−1) and negative in
the downscaled surface (−034 [−077, 0.10] µg m−3 yr−1).
While all regions have a decreasing March–August mean
trend in the downscaled surface, the largest reductions are
seen in the south of the UK: Southeast England and South-
west England at −058 [−1.02, −015] and −052 [−095,
−009] µg m−3 yr−1, respectively. Note that the MDA8 ozone
data that underpin the above trend analysis are shown in
Figs. A3–A5 and A6–A8 for the annual mean and March–
August mean, respectively. These figures demonstrate the re-
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Figure 5. Comparing regional averages of EMEP4UK (a, d), downscaled (b, e), measurement (c, f) MDA8 ozone for 2014–2018 90th
percentile (a–c), and 10th percentile (d–f).

gional interannual variation in MDA8 ozone concentrations,
which is missed by only considering the trends.

Figure 8 shows the regional trends of 90th and 10th per-
centile ozone concentrations for the period 2001–2018; es-
timates and confidence intervals are also given in Tables
A7 and A8. The 90th percentile ozone is decreasing for all
regions and all data sets. Looking at the downscaled sur-
face, the downward trend is significant in half of the re-
gions considered, with the greatest changes in 90th percentile
ozone in the south of the UK, particularly for Southeast Eng-
land with a trend of −074 [−1.35, −012] µg m−3 yr−1. In
comparison, regions with the greatest change in 90th per-
centile ozone in the EMEP4UK surface and measurements
are the east of England at −075 [−1.09, −040], and North-
east England at −059 [−095, −022] µg m−3 yr−1. The 10th
percentile ozone is increasing for most regions in the down-
scaled and EMEP4UK surface and for all regions in the
measurements. Northern Ireland, Wales, and Scotland have a
slightly decreasing 10th percentile trends in the downscaled
surface, at −001, −001, and 0.06 µg m−3 yr−1, respectively,
though none of these trends are statistically significant. We

find a greater increase in 10th percentile ozone for London
in the downscaled surface than in the measurements, at 1.19
[0.75, 1.62] and 0.17 [−004, 0.37] µg m−3 yr−1, respectively.
We suspect this is again due to urban site type bias in the
measurements, compared with the more varied sampling in
the gridded downscaled surface. The regional yearly 90th
percentiles in the downscaled, EMEP4UK, and measurement
data sets are shown in Figs. A9, A10, and A11, respectively.
The equivalent figures for the 10th percentiles are shown in
Figs. A12, A13, and A14.

The analysis presented above provides valuable insights
into the trends derived from downscaled and EMEP4UK
data across a given domain. The downscaled and EMEP4UK
trends encompass all pixels within a designated area. To
delve deeper into the sensitivity of the trend analysis con-
cerning sample size, we undertook a sub-sampling process
for both the downscaled and EMEP4UK data specifically
at measurement locations. The resulting annual mean trends
are given in Table A9, demonstrating the impact of sam-
ple size on trend outcomes. However, a note of caution is
warranted against drawing excessive conclusions from small,
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Figure 6. The 2014–2018 average number of days per year where each cell exceeds a level of 100 µg m−3 in (a) downscaled ozone surface
and (b) EMEP4UK ozone surface.

largely non-significant trends observed across data sets. Both
the downscaled and EMEP4UK products are susceptible to
sampling errors due to the process of condensing a coarse
grid model to specific point locations. As a result, over-
interpreting these trends might lead to misleading assump-
tions. Therefore, the trends derived from the gridded prod-
ucts are anticipated to be the most regionally representative
when considering the entire domain.

The UK government has a long-term objective that MDA8
ozone should not exceed a level of 100 µg m−3 more than 10
times per year. Earlier we showed that conclusions regarding
the degree to which this objective is being met differ sub-
stantially between the downscaled and original EMEP4UK
model (Fig. 6). As the downscaled surface, measurement
data, and EMEP4UK surface all have a different number of
cells and stations, we look at the time trend in the percent-
age of sites or grid cells that fail to meet this rather than
the trend in absolute number. A decreasing time trend in the
percentage of the UK failing to meet the objective is seen
for all three data sets. However, the only statistically signif-
icant trend is for the downscaled surface at −2.19 [−4.32,
−007] % yr−1. The EMEP4UK trend is less steep, −060
[−1.62, 0.43] % yr−1, and the measurements trend lies in be-
tween at −1.73 [−3.78, 0.32] % yr−1.

Recalling that a core aim for our downscaling methodol-
ogy was to better represent the tail behaviour of measure-

ment ozone, we now consider the specific years 2003, 2006,
and 2018 (hereafter “heatwave years”), which were signifi-
cantly warmer than average (see below), and when UK ozone
levels were elevated (Diaz et al., 2020). Figure 9 shows the
number of days that exceed a level of 100 µg m−3 for each
heatwave year, along with the number of days per year with
daily maximum temperature exceeding 25 °C, the minimum
heatwave temperature threshold for the UK (McCarthy et al.,
2019). Yellow cells highlight areas where 100 µg m−3 is ex-
ceeded less than 10 times per year and that therefore pass
the government objective. In the EMEP4UK surface, almost
all of the UK (more than 99 %) is exceeding the government
objective in the heatwave years. In the downscaled surface,
88 %, 87 %, and 53 % of the UK is failing the government
objective in 2003, 2006, and 2018, respectively. These per-
centages are substantially higher than the 2014–2018 aver-
age percentage of 27 %, demonstrating the more frequent oc-
currence of exceedance days above 100 µg m−3 in heatwave
years. Both the EMEP4UK and downscaled surfaces show a
change over time in the amount of the UK exceeding the gov-
ernment objective in heatwave years, with the highest num-
ber of exceedances in 2003 and lowest in 2018. The areas
with the highest number of exceedances are correlated with
the temperature frequency maps, with more exceedances oc-
curring where the number of days exceeds 25 °C, consistent
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Figure 7. Annual mean and March–August mean trends for each region for each data set. Regions with insignificant trends are hatched.

with the well-documented link between MDA8 ozone and
temperature in the literature.

4.3 Analysis of NOX scenarios

A major application of CTMs is to aid understanding of pol-
lutant behaviour under future emissions or climate change
scenarios. In this section we explore the effect of reductions
in UK NOx emissions on ozone under 2018 meteorologi-
cal conditions. We compare the following four downscaled
surfaces: (1) a 2018 base run, (2) a run as base but with a
20 % reduction in UK terrestrial NOx emissions, (3) a 40 %
reduction, and (4) an 80 % reduction (see also Sect. 2.1).
The year 2018 is of specific interest as it was the seventh-
warmest year in the UK since 1884 (Kendon et al., 2019)
with a mean temperature that was 0.6 °C above the 1981–
2010 average. The ozone–NOx–VOC response is dealt with
by EMEP4UK before EMEP4UK ozone is used in our ML
model and in all cases (i.e. base run+ scenario runs). Con-
sequently, our predicted surfaces may inherit some inaccura-
cies from the EMEP4UK surfaces resulting from the repre-
sentation of ozone regimes in the CTM. However, we note

that the model is widely used and well evaluated and has
been used in this application (i.e. NOx sensitivity analysis)
previously (Vieno et al., 2010).

Since 2018 was, climatologically, an atypical year for the
UK, we first compared two 2018 EMEP4UK base run down-
scaled surfaces. The first was obtained from the ML down-
scaling model trained on the 2001–2018 EMEP4UK data
used in Sects. 3 and 4, and the second from the same down-
scaling model but trained only on the 2018 base run data.
We found that the two sets of predicted surfaces performed
almost identically in capturing the behaviour of the 2018
measurement data (both have an R2 of 0.74 and RMSE of
∼ 12.15 µg m−3). These findings support our decision to use
the downscaling model trained on the 2001–2018 data (see
Sect. 3) to downscale not just the base run of 2018 but also
the ozone surfaces under the three NOx scenario runs. Im-
plicit in downscaling the scenarios in this way is the assump-
tion that the associations of the input features and surface
level ozone remain the same, even as NOx levels decrease.
We acknowledge this as a potential limitation but note that
similar assumptions are endemic throughout the downscal-
ing literature.
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Figure 8. The 90th and 10th percentile trends for each region for each data set. Regions with insignificant trends are hatched.

Figure 10 shows the point-wise differences in down-
scaled annual mean, March–August mean, and 90th per-
centile ozone for the three NOx scenarios compared to the
equivalent statistics for the 2018 base run. Both 20 % and
40 % NOx reductions result in most of the UK seeing in-
creased annual mean ozone concentrations, except rural ar-
eas in Scotland. Conversely, the more drastic NOx reduction
of 80 % results in a decrease in annual mean ozone for much
of the UK, particularly large portions of Southwest England,
Wales, Scotland, Northern Ireland, Northwest England, and
Northeast England. In contrast to the trends seen in the an-
nual mean, larger and more widely spread decreases are seen
in the March–August mean for all NOx reduction scenarios,
suggesting the impact on spring and summer mean ozone is
greater than on the annual mean. The change in 90th per-
centile ozone is far more granular, largely due to the dif-
ferences in tail behaviour of ozone at rural and urban loca-
tions. The relatively moderate reductions in NOx concentra-
tions of 20 % and 40 % lead to increases in 90th percentile
ozone in parts of the UK, whereas the more substantial re-
duction in NOx concentrations of 80 % results in only very
urban areas having increases in 90th percentile ozone, such

as Manchester, Leeds, Sheffield, Birmingham, London, New-
castle, Edinburgh, Glasgow, and Aberdeen. Similar increases
in high-level ozone due to NOx reductions have been shown
for several cities in the US (Gao et al., 2013) and reflect the
interdependence of ozone concentrations and NOx mitiga-
tion strategies. Finally, a similar sensitivity analysis based on
the unadjusted EMEP4UK output (Fig. A15) exhibits a very
similar pattern of ozone response.

In summary, the above analysis demonstrates the applica-
bility of our downscaled EMEP4UK surface to examine the
sensitivity of UK ozone to changes in precursor emissions
at high spatial resolution. These results also emphasize the
challenges in controlling surface ozone (especially in urban
areas) if NOx emissions continue to decline substantially –
an effect that few studies to date have demonstrated for the
UK using models.

5 Conclusions

We have proposed a machine learning methodology to spa-
tially downscale surface ozone output from the EMEP4UK
chemical transport model from its native 5×5 km resolution
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Figure 9. Number of days where each cell exceeds a level of 100 µg m−3 in downscaled surface ozone (a, d, g) and EMEP4UK surface
ozone (b, e, h) for heatwave years 2003, 2006, and 2018. Also given are the number of days exceeding 25 °C for each heatwave year.

to a 1× 1 km resolution. Taking a 1× 1 km interpolation of
the original EMEP4UK grid as input, our algorithm uses a
gradient boosting tree to predict a high-resolution gridded
ozone surface. The algorithm was trained to predict mea-
surement data from sites across the UK, and in addition to
the EMEP4UK data has 21 input feature variables. We find
that the downscaled surface better represents the behaviour
of measurement ozone, with a 128 % improvement in R2 and
37 % reduction in RMSE compared to the EMEP4UK sur-
face. The GBT allows replication of the behaviour of com-
plex non-linear systems and the ability to work with high
dimensional data sets. Producing the downscaled surface us-
ing the proposed methodology is far quicker and less com-
putationally expensive than running a high-resolution CTM.
We therefore consider this methodology to be a useful post-
processing tool for CTMs that can efficiently produce higher-
resolution ozone surfaces and, as is the case for EMEP4UK,

reduce biases by incorporating information from measure-
ments. A further advantage of the proposed ML downscaling
model is the ability to identify the most important features
for the prediction of MDA8 ozone. Consistent with previ-
ous work, daily maximum 2 m temperature is found to be the
most important meteorological feature, with elevated temper-
atures strongly associated with high-level ozone.

Our analysis on recent years (2014–2018) finds that South-
east England and Southwest England experience higher
March–August concentrations of ozone than other regions.
We find greater inter-region differences in spring and sum-
mer mean ozone concentrations than the annual mean. There
is a clear north–south difference in high-percentile ozone in
the downscaled surface, with high ozone concentrations in
the south of the UK. Low-percentile ozone has the greatest
inter-region variation in the downscaled surface due to the
particularly low 10th percentile ozone concentration in Lon-
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Figure 10. Difference in annual mean (a–c), March–August mean (middle), and 90th percentile (d–f) MDA8 ozone compared to 2018 for
three UK NOx scenarios: 20 % reduction in NOx (a, d, g), 40 % reduction in NOx (b, e, h), and 80 % reduction in NOx (c, f, i).

don. This demonstrates the effect that greater NOx concen-
trations in highly urban areas have in reducing background
ozone concentrations through NOx titration.

We have estimated regional trends in various statistics of
ozone using data from 2001–2018 for the three data sets:
EMEP4UK, downscaled surface, and measurements. Annual

and March–August mean ozone decrease for all regions in
the downscaled surface, while some regions have increasing
trends in the measurements. EMEP4UK is the only data set
to estimate an increase in annual mean ozone for London.
The proposed downscaling surface is useful when consider-
ing how UK ozone has changed over time as it is higher reso-

https://doi.org/10.5194/acp-24-3163-2024 Atmos. Chem. Phys., 24, 3163–3196, 2024



3180 L. Gouldsbrough et al.: A machine learning approach to downscale EMEP4UK

lution than EMEP4UK and provides more spatially complete
coverage than measurements alone. The downscaling process
also addresses the high bias present in EMEP4UK, resulting
in a better reflection of high-level ozone relevant to health.
We find an improved picture of high-level ozone when us-
ing the downscaled surface, with only 53 % of the UK fail-
ing its government objective (to not exceed an ozone level of
100 µg m−3 more than 10 times per year) in 2018, compared
to 99 % of the UK failing this objective in EMEP4UK. Fur-
ther improvement in high-level ozone is apparent from con-
sidering trends in 90th percentile ozone. We find significant
reductions in 90th percentile ozone for half of the regions
considered in the downscaled surface, with the greatest re-
ductions in the south of the UK, particularly for Southeast
England.

Through a sensitivity analysis, we considered the effect of
three NOx reduction scenarios on UK ozone concentrations
downscaled using the proposed downscaling method. Mod-
erate (20 % and 40 %) reductions in NOx concentrations are
shown to increase annual mean ozone for most of the UK,
whereas significant (80 %) reductions decrease annual mean
ozone for large parts of the UK. More of the UK shows a
decrease in March–August mean ozone for all NOx scenar-
ios, suggesting a stronger link between spring and summer
ozone concentrations and NOx than annual mean concentra-
tions. The differences in the tail behaviour of ozone at ur-
ban and rural locations is made evident in the effect of NOx

reductions on 90th percentile ozone. Very urban areas see
the largest increases in 90th percentile ozone when reducing
NOx concentrations by 80 %, this includes many of the UK’s
biggest cities. We determine this to be important to further
understand the effect of NOx reductions on UK ozone, as a
considerable portion of the UK population live in these ur-
ban areas. These results reemphasize the broader challenges
around NOx mitigation strategies. To conclude, machine-
learning-based downscaling approaches offer a promising
way to study pollutant trends and to assess the impact of poli-
cies regarding ozone and in principle other pollutants. A fo-
cus of future work will be to exploit the bias-corrected down-
scaled surfaces for the assessment of population exposure to
poor air quality and to help quantify the resulting health im-
pacts.
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Appendix A: Additional figures and data

Figure A1. Measurement station map with the number of years of data used for each station.

Figure A2. The region definitions for this paper (Level 1 Nomenclature of Territorial Units for Statistics).
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Table A1. Annual mean MDA8 (µg m−3) per region for 2001–2018, with 95 % confidence intervals of the mean estimate shown in square
brackets.

Region Downscaled EMEP4UK Measurements

East Midlands (England) 62.38 [62.37, 62.38] 75.02 [74.99, 75.05] 62.15 [61.76, 62.54]
East of England 64.96 [64.95, 64.96] 75.89 [75.86, 75.93] 64.55 [64.23, 64.87]
London 57.37 [57.34, 57.39] 70.41 [70.31, 70.54] 48.56 [48.37, 48.75]
Northeast (England) 60.68 [60.68, 60.69] 77.31 [77.27, 77.35] 58.79 [58.30, 59.24]
Northwest (England) 59.72 [59.72, 59.73] 76.39 [76.35, 76.42] 58.76 [58.46, 59.10]
Northern Ireland 59.16 [59.15, 59.16] 77.44 [77.42, 77.46] 59.40 [58.97, 59.85]
Scotland 62.77 [62.77, 62.77] 78.30 [78.29, 78.31] 66.14 [65.92, 66.37]
Southeast (England) 66.24 [66.24, 66.25] 76.82 [76.79, 76.84] 66.49 [66.28, 66.73]
Southwest (England) 67.11 [67.11, 67.12] 78.71 [78.70, 78.74] 65.43 [65.05, 65.81]
Wales 66.61 [66.61, 66.62] 79.29 [79.26, 79.31] 64.66 [64.36, 64.92]
West Midlands (England) 62.67 [62.66, 62.67] 75.00 [74.95, 75.03] 60.90 [60.58, 61.22]
Yorkshire and The Humber 59.27 [59.26, 59.27] 74.90 [74.88, 74.93] 58.97 [58.57, 59.35]

All-region mean 62.41 [62.40, 62.42] 76.29 [76.26, 76.33] 61.23 [60.91, 61.56]
All-region SD (% of mean) 3.13 (5.01) 2.37 (3.10) 4.99 (8.15)

Table A2. March–August mean MDA8 ozone (µg m−3) per region for 2001–2018, with 95 % confidence intervals of the mean estimate
shown in square brackets.

Region Downscaled EMEP4UK Measurements

East Midlands (England) 71.12 [71.11, 71.13] 86.42 [86.38, 86.44] 71.35 [70.85, 71.82]
East of England 75.14 [75.13, 75.14] 88.07 [88.04, 88.10] 74.17 [73.78, 74.59]
London 68.90 [68.87, 68.93] 84.37 [84.27, 84.49] 58.04 [57.78, 58.34]
Northeast (England) 66.09 [66.08, 66.10] 85.18 [85.13, 85.22] 66.16 [65.59, 66.74]
Northwest (England) 65.57 [65.56, 65.58] 85.20 [85.17, 85.23] 66.48 [66.12, 66.90]
Northern Ireland 62.76 [62.75, 62.77] 82.61 [82.57, 82.65] 63.35 [62.78, 63.94]
Scotland 66.30 [66.29, 66.30] 83.66 [83.65, 83.68] 70.64 [70.34, 70.95]
Southeast (England) 75.56 [75.55, 75.57] 87.86 [87.83, 87.89] 75.07 [74.79, 75.34]
Southwest (England) 73.05 [73.05, 73.06] 86.12 [86.10, 86.15] 71.91 [71.38, 72.46]
Wales 71.51 [71.50, 71.51] 85.84 [85.81, 85.87] 69.21 [68.81, 69.58]
West Midlands (England) 70.40 [70.39, 70.40] 85.06 [85.03, 85.09] 69.32 [68.89, 69.71]
Yorkshire and The Humber 66.69 [66.69, 66.70] 85.19 [85.16, 85.22] 67.02 [66.45, 67.52]

All-region mean 69.42 [69.41, 69.43] 85.47 [85.43, 85.50] 68.56 [68.13, 68.99]
All-region SD (% of mean) 4.04 (5.82) 1.57 (1.83) 4.75 (6.93)
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Table A3. Regional average 90th percentiles of MDA8 ozone (µg m−3) for 2001–2018, with 95 % confidence intervals of the mean estimate
shown in square brackets.

Region Downscaled EMEP4UK Measurements

East Midlands (England) 82.58 [82.59, 82.56] 97.22 [97.17, 97.26] 84.87 [84.27, 85.57]
East of England 86.52 [86.53, 86.51] 98.11 [98.08, 98.14] 87.32 [86.78, 87.91]
London 82.52 [82.57, 82.48] 96.71 [96.44, 96.94] 77.19 [76.88, 77.47]
Northeast (England) 77.84 [77.85, 77.83] 96.18 [96.13, 96.24] 80.22 [79.38, 80.74]
Northwest (England) 78.32 [78.34, 78.32] 96.90 [96.86, 96.95] 81.34 [81.01, 81.76]
Northern Ireland 75.61 [75.62, 75.60] 95.59 [95.55, 95.63] 79.00 [78.28, 79.56]
Scotland 79.03 [79.04, 79.03] 95.41 [95.40, 95.42] 86.20 [85.90, 86.50]
Southeast (England) 87.86 [87.87, 87.84] 99.48 [99.43, 99.53] 89.48 [89.13, 89.77]
Southwest (England) 85.53 [85.54, 85.52] 98.99 [98.95, 99.03] 89.63 [88.94, 90.07]
Wales 83.88 [83.89, 83.87] 98.72 [98.69, 98.75] 86.41 [86.00, 86.84]
West Midlands (England) 81.90 [81.91, 81.89] 97.22 [97.18, 97.28] 84.07 [83.59, 84.78]
Yorkshire and The Humber 78.38 [78.39, 78.37] 96.23 [96.19, 96.28] 82.52 [81.60, 83.26]

All-region mean 81.66 [81.65, 81.68] 97.23 [97.17, 97.29] 84.02 [83.48, 84.52]
All-region SD (% of mean) 3.86 (4.72) 1.34 (1.37) 4.04 (4.80)

Table A4. Regional average 10th percentiles of MDA8 ozone (µg m−3) for 2001–2018, with 95 % confidence intervals of the mean estimate
shown in square brackets.

Region Downscaled EMEP4UK Measurements

East Midlands (England) 41.52 [41.50, 41.53] 52.02 [51.94, 52.09] 37.09 [36.38, 37.79]
East of England 42.05 [42.04, 42.07] 51.79 [51.71, 51.87] 39.25 [38.69, 40.04]
London 29.18 [29.12, 29.23] 40.57 [40.25, 40.79] 16.96 [16.65, 17.27]
Northeast (England) 45.32 [45.31, 45.33] 58.97 [58.88, 59.04] 36.11 [34.80, 36.80]
Northwest (England) 41.71 [41.70, 41.73] 56.10 [56.01, 56.17] 31.52 [30.72, 32.29]
Northern Ireland 44.42 [44.41, 44.43] 60.97 [60.92, 61.00] 38.88 [38.27, 39.61]
Scotland 48.31 [48.31, 48.31] 61.49 [61.47, 61.51] 45.34 [44.99, 45.66]
Southeast (England) 44.13 [44.12, 44.15] 54.18 [54.10, 54.24] 41.09 [40.63, 41.55]
Southwest (England) 49.22 [49.21, 49.22] 60.95 [60.91, 60.99] 38.72 [37.78, 39.48]
Wales 50.28 [50.27, 50.29] 62.08 [62.04, 62.11] 39.90 [39.17, 40.42]
West Midlands (England) 42.27 [42.26, 42.29] 53.48 [53.40, 53.55] 35.86 [35.37, 36.63]
Yorkshire and The Humber 40.31 [40.30, 40.33] 52.82 [52.74, 52.89] 34.63 [33.80, 35.45]

All-region mean 43.23 [43.21, 43.24] 55.45 [55.36, 55.52] 36.28 [35.60, 36.92]
All-region SD (% of mean) 5.49 (12.70) 6.13 (11.05) 7.00 (19.30)
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Table A5. Annual mean trend of MDA8 ozone (µg m−3 yr−1) per region for 2001–2018, with 95 % confidence intervals of the mean estimate
shown in brackets. Significant trends are shown in bold.

Region Downscaled EMEP4UK Measurements

East Midlands (England) −0.15 [−0.42, 0.13] 0.05 [−0.16, 0.26] 0.24 [−0.08, 0.55]
East of England −0.16 [−0.46, 0.15] −0.07 [−0.27, 0.12] 0.09 [−0.19, 0.36]
London −0.06 [−038, 0.26] 0.43 [0.20, 0.66] −0.23 [−0.50, 0.05]
Northeast (England) −0.19 [−0.41, 0.03] −0.10 [−0.30, 0.09] −0.18 [−0.42, 0.06]
Northwest (England) −0.09 [−0.34, 0.15] 0.03 [−0.18, 0.24] 0.29 [−0.02, 0.59]
Northern Ireland −0.10 [−0.32, 0.12] −0.16 [−0.36, 0.04] −0.06 [−0.27, 0.15]
Scotland −0.17 [−0.40, 0.05] −0.16 [−0.38, 0.06] 0.18 [−004, 0.39]
Southeast (England) −0.26 [−0.56, 0.04] −0.04 [−0.26, 0.17] 0.06 [−0.24, 0.37]
Southwest (England) −0.25 [−0.55, 0.04] −0.11 [−0.32, 0.10] 0.19 [−0.10, 0.47]
Wales −0.25 [−0.50, 0.00] −0.14 [−0.34, 0.05] −0.13 [−0.36, 0.11]
West Midlands (England) −0.17 [−0.45, 0.11] 0.03 [−0.18, 0.23] 0.28 [−0.01, 0.56]
Yorkshire and The Humber −013 [−0.35, 0.10] 0.01 [−0.17, 0.19] 0.33 [0.02, 0.64]

Table A6. March–August mean trends of MDA8 ozone (µg m−3 yr−1) per region for 2001–2018, with 95 % confidence intervals of the mean
estimate shown in brackets. Significant trends are shown in bold.

Region Downscaled EMEP4UK Measurements

East Midlands (England) −0.47 [−0.86,−0.07] −0.32 [−0.56,−0.08] −0.01 [−0.42, 0.40]
East of England −0.46 [−0.88,−0.04] −0.43 [−0.65,−0.21] −0.21 [−0.60, 0.18]
London −0.34 [−0.77, 0.10] 0.17 [−0.06, 0.39] −0.51 [−0.89, −0.13]
Northeast (England) −0.40 [−0.71,−0.08] −0.40 [−0.62,−0.18] −0.44 [−0.76,−0.12]
Northwest (England) −0.32 [−0.65, 0.02] −0.28 [−0.50,−0.06] 0.11 [−0.26, 0.47]
Northern Ireland −0.22 [−0.53, 0.09] −0.36 [−0.59,−0.13] −0.24 [−0.51, 0.02]
Scotland −0.32 [−0.67, 0.02] −0.37 [−0.62,−0.11] 0.00 [−0.33, 0.33]
Southeast (England) −0.58 [−1.02,−0.15] −0.39 [−0.62,−0.16] −0.21 [−0.63, 0.2]
Southwest (England) −0.52 [−0.95,−0.09] −0.41 [−0.64,−0.18] −0.02 [−0.46, 0.41]
Wales −0.46 [−0.82,−0.10] −0.44 [−0.65,−0.23] −0.40 [−0.77,−0.02]
West Midlands (England) −0.46 [−0.85,−0.06] −0.33 [−0.57,−0.10] 0.02 [−0.38, 0.41]
Yorkshire and The Humber −0.35 [−0.68,−0.02] −0.29 [−0.50,−0.08] 0.15 [−0.29, 0.59]
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Table A7. The 90th percentile trends of MDA8 ozone (µg m−3 yr−1) per region for 2001–2018, with 95 % confidence intervals of the mean
estimate shown in brackets. Significant trends are shown in bold.

Region Downscaled EMEP4UK Measurements

East Midlands (England) −0.57 [−1.12,−0.02] −0.55 [−0.90,−0.20] −0.17 [−0.63, 0.28]
East of England −0.61 [−1.18,−0.04] −0.75 [−1.09,−0.40] −0.50 [−1.02, 0.02]
London −0.48 [−1.14, 0.19] −0.16 [−0.48, 0.16] −0.51 [−0.95,−0.07]
Northeast (England) −0.39 [−0.77,−0.01] −0.52 [−0.79,−0.25] −0.59 [[−0.95,−0.22]
Northwest (England) −0.29 [−0.69, 0.11] −0.42 [−0.70,−0.14] −0.19 [−0.57, 0.20]
Northern Ireland −0.16 [−0.49, 0.16] −0.26 [−0.50,−0.02] −0.33 [−0.62,−0.03]
Scotland −0.27 [−0.62, 0.09] −0.43 [−0.74,−0.13] −011 [−045, 0.22]
Southeast (England) −0.74 [−1.35,−0.12] −0.63 [−0.97,−0.28] −0.36 [−0.87, 0.14]
Southwest (England) −0.55 [−1.06,−0.05] −0.48 [−0.79,−0.18] −0.03 [−0.47, 0.40]
Wales −0.48 [−0.90,−0.06] −0.47 [−0.74,−0.19] −037 [−080, 0.05]
West Midlands (England) −0.50 [−1.02, 0.02] −0.41 [−0.74,−0.09] 0.01 [−0.42, 0.45]
Yorkshire and The Humber −0.39 [−0.82, 0.05] −0.42 [−0.70,−0.15] −0.04 [−0.53, 0.46]

Table A8. The 10th percentile trends of MDA8 ozone (µg m−3 yr−1) per region for 2001–2018, with 95 % confidence intervals of the mean
estimate shown in brackets. Significant trends are shown in bold.

Region Downscaled EMEP4UK Measurements

East Midlands (England) 0.42 [0.14, 0.69] 0.75 [0.40, 1.09] 0.80 [0.45, 1.15]
East of England 0.40 [0.10, 0.69] 0.60 [0.27, 0.92] 0.71 [0.42, 1.01]
London 0.53 [0.22, 0.84] 1.19 [0.75, 1.62] 0.17 [−004, 0.37]
Northeast (England) 0.07 [−0.16, 0.31] 0.37 [0.05, 0.68] 0.28 [−003, 0.59]
Northwest (England) 0.24 [−0.07, 0.54] 0.61 [0.27, 0.96] 0.81 [0.42, 1.20]
Northern Ireland −0.01 [−0.30, 0.27] −0.03 [−0.30, 0.24] 0.20 [−0.12, 0.52]
Scotland −0.06 [−0.29, 0.17] 0.04 [−0.21, 0.29] 0.57 [0.27, 0.86]
Southeast (England) 0.34 [0.03, 0.64] 0.68 [0.30, 1.07] 0.70 [0.44, 0.96]
Southwest (England) 0.10 [−018, 0.38] 0.40 [0.05, 0.75] 0.53 [0.24, 0.82]
Wales −001 [−026, 0.24] 0.23 [−008, 0.53] 0.21 [0.01, 0.41]
West Midlands (England) 0.36 [0.03, 0.69] 0.78 [0.40, 1.16] 0.83 [0.48, 1.18]
Yorkshire and The Humber 0.26 [0.03, 0.49] 0.57 [0.27, 0.88] 0.86 [0.53, 1.20]
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Table A9. Annual mean trend of MDA8 ozone (µg m−3 yr−1) per region for 2001–2018, with 95 % confidence intervals of the mean estimate
shown in brackets. Downscaled and EMEPUK estimates are from nearest cell locations to measurement stations only. Significant trends are
shown in bold.

Region Downscaled EMEP4UK

East Midlands (England) 0.04 [−0.30, 0.37] 0.33 [0.10, 0.56]
East of England −0.16 [−047, 0.14] 0.15 [−0.09, 0.39]
London −0.11 [−0.42, 0.20] 0.48 [0.25, 0.72]
Northeast (England) −0.43 [−0.68, −0.17] 0.11 [−0.11, 0.33]
Northwest (England) 0.13 [−0.13, 0.40] 0.39 [0.18, 0.60]
Northern Ireland −0.03 [−0.23, 0.16] −0.06 [−0.26, 0.14]
Scotland −0.24 [−0.47, −0.02] 0.20 [−0.03, 0.42]
(England) −0.11 [−0.39, 0.17] 0.12 [−0.09, 0.35]
Southwest (England) −0.22 [−0.46, 0.04] 0.00 [−0.21, 0.22]
Wales −0.21 [−0.46, 0.04] 0.21 [−0.01, 0.42]
West Midlands (England) 0.06 [−0.23, 0.35] −0.66 [0.45, 0.87]
Yorkshire and The Humber 0.09 [−0.14, 0.33] 0.38 [0.21, 0.57]

Figure A3. Regional yearly boxplots of annual mean MDA8 ozone for the downscaled surface for 2001–2018.
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Figure A4. Regional yearly boxplots of annual mean MDA8 ozone for the EMEP4UK surface for 2001–2018.

Figure A5. Regional yearly boxplots of annual mean MDA8 ozone for the measurement data for 2001–2018.
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Figure A6. Regional yearly boxplots of March–August mean MDA8 ozone for the downscaled surface for 2001–2018.

Figure A7. Regional yearly boxplots of March–August mean MDA8 ozone for the EMEP4UK surface for 2001–2018.
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Figure A8. Regional yearly boxplots of March–August mean MDA8 ozone for the measurement data for 2001–2018.

Figure A9. Regional yearly boxplots of 90th percentile MDA8 ozone for the downscaled surface for 2001–2018.
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Figure A10. Regional yearly boxplots of 90th percentile mean MDA8 ozone for the EMEP4UK surface for 2001–2018.

Figure A11. Regional yearly boxplots of 90th percentile MDA8 ozone for the measurement data for 2001–2018.
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Figure A12. Regional yearly boxplots of 10th percentile MDA8 ozone for the downscaled surface for 2001–2018.

Figure A13. Regional yearly boxplots of 10th percentile MDA8 ozone for the EMEP4UK surface for 2001–2018.
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Figure A14. Regional yearly boxplots of 10th percentile MDA8 ozone for the measurement data for 2001–2018.
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Figure A15. Original EMEP4UK difference in annual mean (top), March–August mean (middle), and 90th percentile (bottom) MDA8 ozone
compared to 2018 for three UK NOx scenarios: 20 % reduction in NOx (left), 40 % reduction in NOx (middle), and 80 % reduction in NOx

(right).
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Code and data availability. The EMEP4UK ozone data
are available for 2001–2015 from https://catalogue.ceh.ac.uk/
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