Articles | Volume 23, issue 2
https://doi.org/10.5194/acp-23-1103-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-1103-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Examination of aerosol indirect effects during cirrus cloud evolution
Flor Vanessa Maciel
Department of Meteorology and Climate Science, San José State
University, San José, 95192, USA
Current address: Department of Atmospheric and Oceanic Sciences, University of
California, Los Angeles, 90095, USA
Department of Meteorology and Climate Science, San José State
University, San José, 95192, USA
Ryan Patnaude
Department of Meteorology and Climate Science, San José State
University, San José, 95192, USA
Current address: Department of Atmospheric Science, Colorado State University, Fort
Collins, 80521, USA
Related authors
Flor Vanessa Maciel and Minghui Diao
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-256, https://doi.org/10.5194/amt-2022-256, 2022
Revised manuscript under review for AMT
Short summary
Short summary
The transition from supercooled liquid water to ice crystals in mixed-phase clouds is investigated using aircraft-based in-situ observations over the Southern Ocean. A novel method was developed to distinguish four transition phases for mixed-phase cloud evolution. Relationships between cloud macrophysical and microphysical properties are quantified. Effects of aerosols, thermodynamic and dynamical conditions on ice nucleation and phase partitioning are investigated.
Ryan Patnaude, Kathryn Moore, Russell Perkins, Thomas Hill, Paul DeMott, and Sonia Kreidenweis
EGUsphere, https://doi.org/10.5194/egusphere-2023-1016, https://doi.org/10.5194/egusphere-2023-1016, 2023
Short summary
Short summary
In this study, we examined the effect of atmospheric aging on sea spray aerosols (SSA) to form ice at cirrus temperatures (< -38 ºC), and how newly formed secondary marine aerosols (SMA) produced from gas-phase emissions may freeze in the cirrus regime. Results show that SSA freeze at different relative humidities (RHs) depending the on the temperature and are not affected by atmospheric aging. SMA are shown to freeze at high RHs and likely have very little effect on cirrus cloud formation.
Flor Vanessa Maciel and Minghui Diao
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-256, https://doi.org/10.5194/amt-2022-256, 2022
Revised manuscript under review for AMT
Short summary
Short summary
The transition from supercooled liquid water to ice crystals in mixed-phase clouds is investigated using aircraft-based in-situ observations over the Southern Ocean. A novel method was developed to distinguish four transition phases for mixed-phase cloud evolution. Relationships between cloud macrophysical and microphysical properties are quantified. Effects of aerosols, thermodynamic and dynamical conditions on ice nucleation and phase partitioning are investigated.
Rachel Atlas, Johannes Mohrmann, Joseph Finlon, Jeremy Lu, Ian Hsiao, Robert Wood, and Minghui Diao
Atmos. Meas. Tech., 14, 7079–7101, https://doi.org/10.5194/amt-14-7079-2021, https://doi.org/10.5194/amt-14-7079-2021, 2021
Short summary
Short summary
Many clouds with temperatures between 0 °C and −40 °C contain both liquid and ice particles, and the ratio of liquid to ice particles influences how the clouds interact with radiation and moderate Earth's climate. We use a machine learning method called random forest to classify images of individual cloud particles as either liquid or ice. We apply our algorithm to images captured by aircraft within clouds overlying the Southern Ocean, and we find that it outperforms two existing algorithms.
Ryan Patnaude, Minghui Diao, Xiaohong Liu, and Suqian Chu
Atmos. Chem. Phys., 21, 1835–1859, https://doi.org/10.5194/acp-21-1835-2021, https://doi.org/10.5194/acp-21-1835-2021, 2021
Short summary
Short summary
A comprehensive, in situ observation dataset of cirrus clouds was developed based on seven field campaigns, ranging from 87° N–75° S. The observations were compared with a global climate model. Several key factors for cirrus cloud formation were examined, including thermodynamics, dynamics, aerosol indirect effects and geographical locations. Model biases include lower ice mass concentrations, smaller ice crystals and weaker aerosol indirect effects.
Chenglai Wu, Xiaohong Liu, Minghui Diao, Kai Zhang, Andrew Gettelman, Zheng Lu, Joyce E. Penner, and Zhaohui Lin
Atmos. Chem. Phys., 17, 4731–4749, https://doi.org/10.5194/acp-17-4731-2017, https://doi.org/10.5194/acp-17-4731-2017, 2017
Short summary
Short summary
This study utilizes a novel approach to directly compare the CAM5-simulated cloud macro- and microphysics with the collocated HIPPO observations for the period of 2009 to 2011. The model cannot capture the large spatial variabilities of observed RH, which is responsible for much of the model missing low-level warm clouds. A large portion of the RH bias results from the discrepancy in water vapor. The model underestimates the observed number concentration and ice water content.
M. Diao, M. A. Zondlo, A. J. Heymsfield, L. M. Avallone, M. E. Paige, S. P. Beaton, T. Campos, and D. C. Rogers
Atmos. Chem. Phys., 14, 2639–2656, https://doi.org/10.5194/acp-14-2639-2014, https://doi.org/10.5194/acp-14-2639-2014, 2014
Related subject area
Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Differences in microphysical properties of cirrus at high and mid-latitudes
Sub-cloud rain evaporation in the North Atlantic winter trade winds derived by pairing isotopic data with a bin-resolved microphysical model
Overview and statistical analysis of boundary layer clouds and precipitation over the western North Atlantic Ocean
A set of methods to evaluate the below-cloud evaporation effect on local precipitation isotopic composition: a case study for Xi'an, China
Earth-system-model evaluation of cloud and precipitation occurrence for supercooled and warm clouds over the Southern Ocean's Macquarie Island
Pollution slightly enhances atmospheric cooling by low-level clouds in tropical West Africa
Investigating an indirect aviation effect on mid-latitude cirrus clouds – linking lidar-derived optical properties to in situ measurements
Investigating the vertical extent and short-wave radiative effects of the ice phase in Arctic summertime low-level clouds
Microphysical and thermodynamic phase analyses of Arctic low-level clouds measured above the sea ice and the open ocean in spring and summer
Characterizing the near-global cloud vertical structures over land using high-resolution radiosonde measurements
Aircraft observations of gravity wave activity and turbulence in the tropical tropopause layer: prevalence, influence on cirrus clouds, and comparison with global storm-resolving models
Influence of air mass origin on microphysical properties of low-level clouds in a subarctic environment
Sensitivity of convectively driven tropical tropopause cirrus properties to ice habits in high-resolution simulations
Upper-tropospheric slightly ice-subsaturated regions: frequency of occurrence and statistical evidence for the appearance of contrail cirrus
In situ microphysics observations of intense pyroconvection from a large wildfire
Conditions favorable for secondary ice production in Arctic mixed-phase clouds
Interaction between cloud–radiation, atmospheric dynamics and thermodynamics based on observational data from GoAmazon 2014/15 and a cloud-resolving model
Snowfall in Northern Finland derives mostly from ice clouds
Observation of secondary ice production in clouds at low temperatures
In situ and satellite-based estimates of cloud properties and aerosol–cloud interactions over the southeast Atlantic Ocean
Ice fog observed at cirrus temperatures at Dome C, Antarctic Plateau
Life cycle of stratocumulus clouds over 1 year at the coast of the Atacama Desert
Experimental study on the evolution of droplet size distribution during the fog life cycle
Significant continental source of ice-nucleating particles at the tip of Chile's southernmost Patagonia region
Retrieving ice-nucleating particle concentration and ice multiplication factors using active remote sensing validated by in situ observations
Temporal and vertical distributions of the occurrence of cirrus clouds over a coastal station in the Indian monsoon region
Continental thunderstorm ground enhancement observed at an exceptionally low altitude
Ice-nucleating particles from multiple aerosol sources in the urban environment of Beijing under mixed-phase cloud conditions
In situ observation of riming in mixed-phase clouds using the PHIPS probe
Measurement report: Introduction to the HyICE-2018 campaign for measurements of ice-nucleating particles and instrument inter-comparison in the Hyytiälä boreal forest
North Atlantic Ocean SST-gradient-driven variations in aerosol and cloud evolution along Lagrangian cold-air outbreak trajectories
Factors affecting precipitation formation and precipitation susceptibility of marine stratocumulus with variable above- and below-cloud aerosol concentrations over the Southeast Atlantic
An assessment of macrophysical and microphysical cloud properties driving radiative forcing of shallow trade-wind clouds
High concentrations of ice crystals in upper-tropospheric tropical clouds: is there a link to biomass and fossil fuel combustion?
Atmospheric rivers and associated precipitation patterns during the ACLOUD and PASCAL campaigns near Svalbard (May–June 2017): case studies using observations, reanalyses, and a regional climate model
Mass of different snow crystal shapes derived from fall speed measurements
Measurement report: Impact of African aerosol particles on cloud evolution in a tropical montane cloud forest in the Caribbean
Annual exposure to polycyclic aromatic hydrocarbons in urban environments linked to wintertime wood-burning episodes
Reduced ice number concentrations in contrails from low-aromatic biofuel blends
Distinct impacts on precipitation by aerosol radiative effect over three different megacity regions of eastern China
Estimation of the terms acting on local 1 h surface temperature variations in Paris region: the specific contribution of clouds
Contrasting characteristics of open- and closed-cellular stratocumulus cloud in the eastern North Atlantic
Mass and density of individual frozen hydrometeors
Linear relationship between effective radius and precipitation water content near the top of convective clouds: measurement results from ACRIDICON–CHUVA campaign
Supercooled liquid water and secondary ice production in Kelvin–Helmholtz instability as revealed by radar Doppler spectra observations
Morning boundary layer conditions for shallow to deep convective cloud evolution during the dry season in the central Amazon
Analysis of aerosol–cloud interactions and their implications for precipitation formation using aircraft observations over the United Arab Emirates
Impact of wind pattern and complex topography on snow microphysics during International Collaborative Experiment for PyeongChang 2018 Olympic and Paralympic winter games (ICE-POP 2018)
Evaluation of simulated cloud liquid water in low clouds over the Beaufort Sea in the Arctic System Reanalysis using ARISE airborne in situ observations
Comprehensive quantification of height dependence of entrainment mixing between stratiform cloud top and environment
Elena De La Torre Castro, Tina Jurkat-Witschas, Armin Afchine, Volker Grewe, Valerian Hahn, Simon Kirschler, Martina Krämer, Johannes Lucke, Nicole Spelten, Heini Wernli, Martin Zöger, and Christiane Voigt
Atmos. Chem. Phys., 23, 13167–13189, https://doi.org/10.5194/acp-23-13167-2023, https://doi.org/10.5194/acp-23-13167-2023, 2023
Short summary
Short summary
In this study, we show the differences in the microphysical properties between high-latitude (HL) cirrus and mid-latitude (ML) cirrus over the Arctic, North Atlantic, and central Europe during summer. The in situ measurements are combined with backward trajectories to investigate the influence of the region on cloud formation. We show that HL cirrus are characterized by a lower concentration of larger ice crystals when compared to ML cirrus.
Mampi Sarkar, Adriana Bailey, Peter Blossey, Simon P. de Szoeke, David Noone, Estefanía Quiñones Meléndez, Mason D. Leandro, and Patrick Y. Chuang
Atmos. Chem. Phys., 23, 12671–12690, https://doi.org/10.5194/acp-23-12671-2023, https://doi.org/10.5194/acp-23-12671-2023, 2023
Short summary
Short summary
We study rain evaporation characteristics below shallow cumulus clouds over the North Atlantic Ocean by pairing isotope observations with a microphysical model. The modeled fraction of rain mass that evaporates below the cloud strongly depends on the raindrop size and distribution width. Moreover, the higher the rain mass fraction evaporated, the greater the change in deuterium excess. In this way, rain evaporation could be studied independently using only isotope and microphysical observations.
Simon Kirschler, Christiane Voigt, Bruce E. Anderson, Gao Chen, Ewan C. Crosbie, Richard A. Ferrare, Valerian Hahn, Johnathan W. Hair, Stefan Kaufmann, Richard H. Moore, David Painemal, Claire E. Robinson, Kevin J. Sanchez, Amy J. Scarino, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 23, 10731–10750, https://doi.org/10.5194/acp-23-10731-2023, https://doi.org/10.5194/acp-23-10731-2023, 2023
Short summary
Short summary
In this study we present an overview of liquid and mixed-phase clouds and precipitation in the marine boundary layer over the western North Atlantic Ocean. We compare microphysical properties of pure liquid clouds to mixed-phase clouds and show that the initiation of the ice phase in mixed-phase clouds promotes precipitation. The observational data presented in this study are well suited for investigating the processes that give rise to liquid and mixed-phase clouds, ice, and precipitation.
Meng Xing, Weiguo Liu, Jing Hu, and Zheng Wang
Atmos. Chem. Phys., 23, 9123–9136, https://doi.org/10.5194/acp-23-9123-2023, https://doi.org/10.5194/acp-23-9123-2023, 2023
Short summary
Short summary
The below-cloud evaporation effect (BCE) on precipitation largely impacts the final isotopic composition. However, determining the BCE effect remains poorly constrained. Our work used a ΔdΔδ diagram to differentiate the below-cloud processes. Moreover, by comparing two different computing methods, we considered that both methods are suitable for evaluation the BCE, except for snowfall events. Overall, our work compiled a set of effective methods to evaluate the BCE effect.
McKenna W. Stanford, Ann M. Fridlind, Israel Silber, Andrew S. Ackerman, Greg Cesana, Johannes Mülmenstädt, Alain Protat, Simon Alexander, and Adrian McDonald
Atmos. Chem. Phys., 23, 9037–9069, https://doi.org/10.5194/acp-23-9037-2023, https://doi.org/10.5194/acp-23-9037-2023, 2023
Short summary
Short summary
Clouds play an important role in the Earth’s climate system as they modulate the amount of radiation that either reaches the surface or is reflected back to space. This study demonstrates an approach to robustly evaluate surface-based observations against a large-scale model. We find that the large-scale model precipitates too infrequently relative to observations, contrary to literature documentation suggesting otherwise based on satellite measurements.
Valerian Hahn, Ralf Meerkötter, Christiane Voigt, Sonja Gisinger, Daniel Sauer, Valéry Catoire, Volker Dreiling, Hugh Coe, Cyrille Flamant, Stefan Kaufmann, Jonas Kleine, Peter Knippertz, Manuel Moser, Philip Rosenberg, Hans Schlager, Alfons Schwarzenboeck, and Jonathan Taylor
Atmos. Chem. Phys., 23, 8515–8530, https://doi.org/10.5194/acp-23-8515-2023, https://doi.org/10.5194/acp-23-8515-2023, 2023
Short summary
Short summary
During the DACCIWA campaign in West Africa, we found a 35 % increase in the cloud droplet concentration that formed in a polluted compared with a less polluted environment and a decrease of 17 % in effective droplet diameter. Radiative transfer simulations, based on the measured cloud properties, reveal that these low-level polluted clouds radiate only 2.6 % more energy back to space, compared with a less polluted cloud. The corresponding additional decrease in temperature is rather small.
Silke Groß, Tina Jurkat-Witschas, Qiang Li, Martin Wirth, Benedikt Urbanek, Martina Krämer, Ralf Weigel, and Christiane Voigt
Atmos. Chem. Phys., 23, 8369–8381, https://doi.org/10.5194/acp-23-8369-2023, https://doi.org/10.5194/acp-23-8369-2023, 2023
Short summary
Short summary
Aviation-emitted aerosol can have an impact on cirrus clouds. We present optical and microphysical properties of mid-latitude cirrus clouds which were formed under the influence of aviation-emitted aerosol or which were formed under rather pristine conditions. We find that cirrus clouds affected by aviation-emitted aerosol show larger values of the particle linear depolarization ratio, larger mean effective ice particle diameters and decreased ice particle number concentrations.
Emma Järvinen, Franziska Nehlert, Guanglang Xu, Fritz Waitz, Guillaume Mioche, Regis Dupuy, Olivier Jourdan, and Martin Schnaiter
Atmos. Chem. Phys., 23, 7611–7633, https://doi.org/10.5194/acp-23-7611-2023, https://doi.org/10.5194/acp-23-7611-2023, 2023
Short summary
Short summary
The Arctic is warming faster than other regions. Arctic low-level mixed-phase clouds, where ice crystals and liquid droplets co-exist, are thought to have an important role in Arctic warming. Here we show airborne measurements of vertical distribution of liquid and ice particles and their relative abundance. Ice particles are found in relative warm clouds, which can be explained by multiplication of existing ice crystals. However, the role of ice particles in redistributing sun light is minimal.
Manuel Moser, Christiane Voigt, Tina Jurkat-Witschas, Valerian Hahn, Guillaume Mioche, Olivier Jourdan, Régis Dupuy, Christophe Gourbeyre, Alfons Schwarzenboeck, Johannes Lucke, Yvonne Boose, Mario Mech, Stephan Borrmann, André Ehrlich, Andreas Herber, Christof Lüpkes, and Manfred Wendisch
Atmos. Chem. Phys., 23, 7257–7280, https://doi.org/10.5194/acp-23-7257-2023, https://doi.org/10.5194/acp-23-7257-2023, 2023
Short summary
Short summary
This study provides a comprehensive microphysical and thermodynamic phase analysis of low-level clouds in the northern Fram Strait, above the sea ice and the open ocean, during spring and summer. Using airborne in situ cloud data, we show that the properties of Arctic low-level clouds vary significantly with seasonal meteorological situations and surface conditions. The observations presented in this study can help one to assess the role of clouds in the Arctic climate system.
Hui Xu, Jianping Guo, Bing Tong, Jinqiang Zhang, Tianmeng Chen, Xiaoran Guo, Jian Zhang, and Wenqing Chen
EGUsphere, https://doi.org/10.5194/egusphere-2023-472, https://doi.org/10.5194/egusphere-2023-472, 2023
Short summary
Short summary
The radiative effect of cloud remains one of the largest uncertain factors in climate change, largely due to the lack of cloud vertical structure (CVS) observations. The study presents the first near-global CVS climatology by using high-vertical-resolution soundings. Single-layer cloud mainly occurs over arid regions. As the number of cloud layer increases, clouds tend to have lower bases and thinner layer thicknesses. The occurrence frequency of cloud exhibits pronounced seasonal diurnal cycle.
Rachel Atlas and Christopher S. Bretherton
Atmos. Chem. Phys., 23, 4009–4030, https://doi.org/10.5194/acp-23-4009-2023, https://doi.org/10.5194/acp-23-4009-2023, 2023
Short summary
Short summary
The tropical tropopause layer exists between the troposphere and the stratosphere in the tropics. Very thin cirrus clouds cool Earth's surface by scrubbing water vapor (a greenhouse gas) out of air parcels as they ascend through the tropical tropopause layer on their way to the stratosphere. We show observational evidence from aircraft that small-scale (< 100 km) gravity waves and turbulence increase the amount of ice in these clouds and may allow them to remove more water vapor from the air.
Konstantinos Matthaios Doulgeris, Ville Vakkari, Ewan J. O'Connor, Veli-Matti Kerminen, Heikki Lihavainen, and David Brus
Atmos. Chem. Phys., 23, 2483–2498, https://doi.org/10.5194/acp-23-2483-2023, https://doi.org/10.5194/acp-23-2483-2023, 2023
Short summary
Short summary
We investigated how different long-range-transported air masses can affect the microphysical properties of low-level clouds in a clean subarctic environment. A connection was revealed. Higher values of cloud droplet number concentrations were related to continental air masses, whereas the lowest values of number concentrations were related to marine air masses. These were characterized by larger cloud droplets. Clouds in all regions were sensitive to increases in cloud number concentration.
Fayçal Lamraoui, Martina Krämer, Armin Afchine, Adam B. Sokol, Sergey Khaykin, Apoorva Pandey, and Zhiming Kuang
Atmos. Chem. Phys., 23, 2393–2419, https://doi.org/10.5194/acp-23-2393-2023, https://doi.org/10.5194/acp-23-2393-2023, 2023
Short summary
Short summary
Cirrus in the tropical tropopause layer (TTL) can play a key role in vertical transport. We investigate the role of different cloud regimes and the associated ice habits in regulating the properties of the TTL. We use high-resolution numerical experiments at the scales of large-eddy simulations (LESs) and aircraft measurements. We found that LES-scale parameterizations that predict ice shape are crucial for an accurate representation of TTL cirrus and thus the associated (de)hydration process.
Yun Li, Christoph Mahnke, Susanne Rohs, Ulrich Bundke, Nicole Spelten, Georgios Dekoutsidis, Silke Groß, Christiane Voigt, Ulrich Schumann, Andreas Petzold, and Martina Krämer
Atmos. Chem. Phys., 23, 2251–2271, https://doi.org/10.5194/acp-23-2251-2023, https://doi.org/10.5194/acp-23-2251-2023, 2023
Short summary
Short summary
The radiative effect of aviation-induced cirrus is closely related to ambient conditions and its microphysical properties. Our study investigated the occurrence of contrail and natural cirrus measured above central Europe in spring 2014. It finds that contrail cirrus appears frequently in the pressure range 200 to 245 hPa and occurs more often in slightly ice-subsaturated environments than expected. Avoiding slightly ice-subsaturated regions by aviation might help mitigate contrail cirrus.
David E. Kingsmill, Jeffrey R. French, and Neil P. Lareau
Atmos. Chem. Phys., 23, 1–21, https://doi.org/10.5194/acp-23-1-2023, https://doi.org/10.5194/acp-23-1-2023, 2023
Short summary
Short summary
This study uses in situ aircraft measurements to characterize the size and shape distributions of 10 µm to 6 mm diameter particles observed during six penetrations of wildfire-induced pyroconvection. Particles sampled in one penetration of a smoke plume are most likely pyrometeors composed of ash. The other penetrations are through pyrocumulus clouds where particle composition is most likely a combination of hydrometeors (ice particles) and pyrometeors (ash).
Julie Thérèse Pasquier, Jan Henneberger, Fabiola Ramelli, Annika Lauber, Robert Oscar David, Jörg Wieder, Tim Carlsen, Rosa Gierens, Marion Maturilli, and Ulrike Lohmann
Atmos. Chem. Phys., 22, 15579–15601, https://doi.org/10.5194/acp-22-15579-2022, https://doi.org/10.5194/acp-22-15579-2022, 2022
Short summary
Short summary
It is important to understand how ice crystals and cloud droplets form in clouds, as their concentrations and sizes determine the exact radiative properties of the clouds. Normally, ice crystals form from aerosols, but we found evidence for the formation of additional ice crystals from the original ones over a large temperature range within Arctic clouds. In particular, additional ice crystals were formed during collisions of several ice crystals or during the freezing of large cloud droplets.
Layrson J. M. Gonçalves, Simone M. S. C. Coelho, Paulo Y. Kubota, and Dayana C. Souza
Atmos. Chem. Phys., 22, 15509–15526, https://doi.org/10.5194/acp-22-15509-2022, https://doi.org/10.5194/acp-22-15509-2022, 2022
Short summary
Short summary
This research aims to study the environmental conditions that are favorable and not favorable to cloud formation, in this case specifically for the Amazon region. The results found in this research will be used to improve the representation of clouds in numerical models that are used in weather and climate prediction. In general, it is expected that with better knowledge regarding the cloud–radiation interaction, it is possible to make a better forecast of weather and climate.
Claudia Mignani, Lukas Zimmermann, Rigel Kivi, Alexis Berne, and Franz Conen
Atmos. Chem. Phys., 22, 13551–13568, https://doi.org/10.5194/acp-22-13551-2022, https://doi.org/10.5194/acp-22-13551-2022, 2022
Short summary
Short summary
We determined over the course of 8 winter months the phase of clouds associated with snowfall in Northern Finland using radiosondes and observations of ice particle habits at ground level. We found that precipitating clouds were extending from near ground to at least 2.7 km altitude and approximately three-quarters of them were likely glaciated. Possible moisture sources and ice formation processes are discussed.
Alexei Korolev, Paul J. DeMott, Ivan Heckman, Mengistu Wolde, Earle Williams, David J. Smalley, and Michael F. Donovan
Atmos. Chem. Phys., 22, 13103–13113, https://doi.org/10.5194/acp-22-13103-2022, https://doi.org/10.5194/acp-22-13103-2022, 2022
Short summary
Short summary
The present study provides the first explicit in situ observation of secondary ice production at temperatures as low as −27 °C, which is well outside the range of the Hallett–Mossop process (−3 to −8 °C). This observation expands our knowledge of the temperature range of initiation of secondary ice in clouds. The obtained results are intended to stimulate laboratory and theoretical studies to develop physically based parameterizations for weather prediction and climate models.
Siddhant Gupta, Greg M. McFarquhar, Joseph R. O'Brien, Michael R. Poellot, David J. Delene, Ian Chang, Lan Gao, Feng Xu, and Jens Redemann
Atmos. Chem. Phys., 22, 12923–12943, https://doi.org/10.5194/acp-22-12923-2022, https://doi.org/10.5194/acp-22-12923-2022, 2022
Short summary
Short summary
The ability of NASA’s Terra and Aqua satellites to retrieve cloud properties and estimate the changes in cloud properties due to aerosol–cloud interactions (ACI) was examined. There was good agreement between satellite retrievals and in situ measurements over the southeast Atlantic Ocean. This suggests that, combined with information on aerosol properties, satellite retrievals of cloud properties can be used to study ACI over larger domains and longer timescales in the absence of in situ data.
Étienne Vignon, Lea Raillard, Christophe Genthon, Massimo Del Guasta, Andrew J. Heymsfield, Jean-Baptiste Madeleine, and Alexis Berne
Atmos. Chem. Phys., 22, 12857–12872, https://doi.org/10.5194/acp-22-12857-2022, https://doi.org/10.5194/acp-22-12857-2022, 2022
Short summary
Short summary
The near-surface atmosphere over the Antarctic Plateau is cold and pristine and resembles to a certain extent the high troposphere where cirrus clouds form. In this study, we use innovative humidity measurements at Concordia Station to study the formation of ice fogs at temperatures <−40°C. We provide observational evidence that ice fogs can form through the homogeneous freezing of solution aerosols, a common nucleation pathway for cirrus clouds.
Jan H. Schween, Camilo del Rio, Juan-Luis García, Pablo Osses, Sarah Westbrook, and Ulrich Löhnert
Atmos. Chem. Phys., 22, 12241–12267, https://doi.org/10.5194/acp-22-12241-2022, https://doi.org/10.5194/acp-22-12241-2022, 2022
Short summary
Short summary
Marine stratocumulus clouds of the eastern Pacific play an essential role in the Earth's climate. These clouds form the major source of water to parts of the extreme dry Atacama Desert at the northern coast of Chile. For the first time these clouds are observed over a whole year with three remote sensing instruments. It is shown how these clouds are influenced by the land–sea wind system and the distribution of ocean temperatures.
Marie Mazoyer, Frédéric Burnet, and Cyrielle Denjean
Atmos. Chem. Phys., 22, 11305–11321, https://doi.org/10.5194/acp-22-11305-2022, https://doi.org/10.5194/acp-22-11305-2022, 2022
Short summary
Short summary
The evolution of the droplet size distribution during the fog life cycle remains poorly understood and progress is required to reduce the uncertainty of fog forecasts. To gain insights into the physical processes driving the microphysics, intensive field campaigns were conducted during three winters at the SIRTA site in the south of Paris. This study analyzed the variations in fog microphysical properties and their potential interactions at the different evolutionary stages of the fog events.
Xianda Gong, Martin Radenz, Heike Wex, Patric Seifert, Farnoush Ataei, Silvia Henning, Holger Baars, Boris Barja, Albert Ansmann, and Frank Stratmann
Atmos. Chem. Phys., 22, 10505–10525, https://doi.org/10.5194/acp-22-10505-2022, https://doi.org/10.5194/acp-22-10505-2022, 2022
Short summary
Short summary
The sources of ice-nucleating particles (INPs) are poorly understood in the Southern Hemisphere (SH). We studied INPs in the boundary layer in the southern Patagonia region. No seasonal cycle of INP concentrations was observed. The majority of INPs are biogenic particles, likely from local continental sources. The INP concentrations are higher when strong precipitation occurs. While previous studies focused on marine INP sources in SH, we point out the importance of continental sources of INPs.
Jörg Wieder, Nikola Ihn, Claudia Mignani, Moritz Haarig, Johannes Bühl, Patric Seifert, Ronny Engelmann, Fabiola Ramelli, Zamin A. Kanji, Ulrike Lohmann, and Jan Henneberger
Atmos. Chem. Phys., 22, 9767–9797, https://doi.org/10.5194/acp-22-9767-2022, https://doi.org/10.5194/acp-22-9767-2022, 2022
Short summary
Short summary
Ice formation and its evolution in mixed-phase clouds are still uncertain. We evaluate the lidar retrieval of ice-nucleating particle concentration in dust-dominated and continental air masses over the Swiss Alps with in situ observations. A calibration factor to improve the retrieval from continental air masses is proposed. Ice multiplication factors are obtained with a new method utilizing remote sensing. Our results indicate that secondary ice production occurs at temperatures down to −30 °C.
Saleem Ali, Sanjay Kumar Mehta, Aravindhavel Ananthavel, and Tondapu Venkata Ramesh Reddy
Atmos. Chem. Phys., 22, 8321–8342, https://doi.org/10.5194/acp-22-8321-2022, https://doi.org/10.5194/acp-22-8321-2022, 2022
Short summary
Short summary
Multiple cirrus clouds frequently occur over regions of deep convection in the tropics. Tropical convection has a strong diurnal pattern, with peaks in the afternoon to early evening, over the continents. Continuous micropulse lidar observations over a coastal station in the Indian monsoon region enable us, for the first time, to demonstrate a robust diurnal pattern of single and multiple cirrus occurrences, with peaks during the late afternoon and early morning hours, respectively.
Ivana Kolmašová, Ondřej Santolík, Jakub Šlegl, Jana Popová, Zbyněk Sokol, Petr Zacharov, Ondřej Ploc, Gerhard Diendorfer, Ronald Langer, Radek Lán, and Igor Strhárský
Atmos. Chem. Phys., 22, 7959–7973, https://doi.org/10.5194/acp-22-7959-2022, https://doi.org/10.5194/acp-22-7959-2022, 2022
Short summary
Short summary
Gamma ray radiation related to thunderstorms was previously observed at the high-altitude mountain observatories or on the western coast of Japan, usually being terminated by lightning discharges. We show unusual observations of gamma rays at an altitude below 1000 m, coinciding with peculiar rapid variations in the vertical electric field, which are linked to inverted intracloud lightning discharges. This indicates that a strong, lower positive-charge region was present inside the thundercloud.
Cuiqi Zhang, Zhijun Wu, Jingchuan Chen, Jie Chen, Lizi Tang, Wenfei Zhu, Xiangyu Pei, Shiyi Chen, Ping Tian, Song Guo, Limin Zeng, Min Hu, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 7539–7556, https://doi.org/10.5194/acp-22-7539-2022, https://doi.org/10.5194/acp-22-7539-2022, 2022
Short summary
Short summary
The immersion ice nucleation effectiveness of aerosols from multiple sources in the urban environment remains elusive. In this study, we demonstrate that the immersion ice-nucleating particle (INP) concentration increased dramatically during a dust event in an urban atmosphere. Pollutant aerosols, including inorganic salts formed through secondary transformation (SIA) and black carbon (BC), might not act as effective INPs under mixed-phase cloud conditions.
Fritz Waitz, Martin Schnaiter, Thomas Leisner, and Emma Järvinen
Atmos. Chem. Phys., 22, 7087–7103, https://doi.org/10.5194/acp-22-7087-2022, https://doi.org/10.5194/acp-22-7087-2022, 2022
Short summary
Short summary
Riming, i.e., the accretion of small droplets on the surface of ice particles via collision, is one of the major uncertainties in model prediction of mixed-phase clouds. We discuss the occurrence (up to 50% of particles) and aging of rimed ice particles and show correlations of the occurrence and the degree of riming with ambient meteorological parameters using data gathered by the Particle Habit Imaging and Polar Scattering (PHIPS) probe during three airborne in situ field campaigns.
Zoé Brasseur, Dimitri Castarède, Erik S. Thomson, Michael P. Adams, Saskia Drossaart van Dusseldorp, Paavo Heikkilä, Kimmo Korhonen, Janne Lampilahti, Mikhail Paramonov, Julia Schneider, Franziska Vogel, Yusheng Wu, Jonathan P. D. Abbatt, Nina S. Atanasova, Dennis H. Bamford, Barbara Bertozzi, Matthew Boyer, David Brus, Martin I. Daily, Romy Fösig, Ellen Gute, Alexander D. Harrison, Paula Hietala, Kristina Höhler, Zamin A. Kanji, Jorma Keskinen, Larissa Lacher, Markus Lampimäki, Janne Levula, Antti Manninen, Jens Nadolny, Maija Peltola, Grace C. E. Porter, Pyry Poutanen, Ulrike Proske, Tobias Schorr, Nsikanabasi Silas Umo, János Stenszky, Annele Virtanen, Dmitri Moisseev, Markku Kulmala, Benjamin J. Murray, Tuukka Petäjä, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 22, 5117–5145, https://doi.org/10.5194/acp-22-5117-2022, https://doi.org/10.5194/acp-22-5117-2022, 2022
Short summary
Short summary
The present measurement report introduces the ice nucleation campaign organized in Hyytiälä, Finland, in 2018 (HyICE-2018). We provide an overview of the campaign settings, and we describe the measurement infrastructure and operating procedures used. In addition, we use results from ice nucleation instrument inter-comparison to show that the suite of these instruments deployed during the campaign reports consistent results.
Kevin J. Sanchez, Bo Zhang, Hongyu Liu, Matthew D. Brown, Ewan C. Crosbie, Francesca Gallo, Johnathan W. Hair, Chris A. Hostetler, Carolyn E. Jordan, Claire E. Robinson, Amy Jo Scarino, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Elizabeth B. Wiggins, Edward L. Winstead, Luke D. Ziemba, Georges Saliba, Savannah L. Lewis, Lynn M. Russell, Patricia K. Quinn, Timothy S. Bates, Jack Porter, Thomas G. Bell, Peter Gaube, Eric S. Saltzman, Michael J. Behrenfeld, and Richard H. Moore
Atmos. Chem. Phys., 22, 2795–2815, https://doi.org/10.5194/acp-22-2795-2022, https://doi.org/10.5194/acp-22-2795-2022, 2022
Short summary
Short summary
Atmospheric particle concentrations impact clouds, which strongly impact the amount of sunlight reflected back into space and the overall climate. Measurements of particles over the ocean are rare and expensive to collect, so models are necessary to fill in the gaps by simulating both particle and clouds. However, some measurements are needed to test the accuracy of the models. Here, we measure changes in particles in different weather conditions, which are ideal for comparison with models.
Siddhant Gupta, Greg M. McFarquhar, Joseph R. O'Brien, Michael R. Poellot, David J. Delene, Rose M. Miller, and Jennifer D. Small Griswold
Atmos. Chem. Phys., 22, 2769–2793, https://doi.org/10.5194/acp-22-2769-2022, https://doi.org/10.5194/acp-22-2769-2022, 2022
Short summary
Short summary
This study evaluates the impact of biomass burning aerosols on precipitation in marine stratocumulus clouds using observations from the NASA ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) field campaign over the Southeast Atlantic. Instances of contact and separation between aerosol and cloud layers show polluted clouds have a lower precipitation rate and a lower precipitation susceptibility. This information will help improve cloud representation in Earth system models.
Anna E. Luebke, André Ehrlich, Michael Schäfer, Kevin Wolf, and Manfred Wendisch
Atmos. Chem. Phys., 22, 2727–2744, https://doi.org/10.5194/acp-22-2727-2022, https://doi.org/10.5194/acp-22-2727-2022, 2022
Short summary
Short summary
A combination of aircraft and satellite observations is used to show how the characteristics of tropical shallow clouds interact with incoming and outgoing energy. A complete depiction of these clouds is challenging to obtain, but such data are useful for understanding how models can correctly represent them. The amount of cloud is found to be the most important factor, while other cloud characteristics become increasingly impactful when more cloud is present.
Graciela B. Raga, Darrel Baumgardner, Blanca Rios, Yanet Díaz-Esteban, Alejandro Jaramillo, Martin Gallagher, Bastien Sauvage, Pawel Wolff, and Gary Lloyd
Atmos. Chem. Phys., 22, 2269–2292, https://doi.org/10.5194/acp-22-2269-2022, https://doi.org/10.5194/acp-22-2269-2022, 2022
Short summary
Short summary
The In-Service Aircraft for a Global Observing System (IAGOS) is a small fleet of commercial aircraft that carry a suite of meteorological, gas, aerosol, and cloud sensors and have been measuring worldwide for almost 9 years, since late 2011. Extreme ice events (EIEs) have been identified from the IAGOS cloud measurements and linked to surface emissions for biomass and fossil fuel consumption. The results reported here are highly relevant for climate change and flight operations forecasting.
Carolina Viceto, Irina V. Gorodetskaya, Annette Rinke, Marion Maturilli, Alfredo Rocha, and Susanne Crewell
Atmos. Chem. Phys., 22, 441–463, https://doi.org/10.5194/acp-22-441-2022, https://doi.org/10.5194/acp-22-441-2022, 2022
Short summary
Short summary
We focus on anomalous moisture transport events known as atmospheric rivers (ARs). During ACLOUD and PASCAL, three AR events were identified: 30 May, 6 June, and 9 June 2017. We explore their spatio-temporal evolution and precipitation patterns using measurements, reanalyses, and a model. We show the importance of the following: Atlantic and Siberian pathways during spring–summer in the Arctic, AR-associated heat/moisture increase, precipitation phase transition, and high-resolution datasets.
Sandra Vázquez-Martín, Thomas Kuhn, and Salomon Eliasson
Atmos. Chem. Phys., 21, 18669–18688, https://doi.org/10.5194/acp-21-18669-2021, https://doi.org/10.5194/acp-21-18669-2021, 2021
Short summary
Short summary
High-resolution top- and side-view images of snow ice particles taken by the D-ICI instrument are used to determine the shape; size; cross-sectional area; fall speed; and, based upon these properties, the mass of the individual snow particles. The study analyses the relationships between these fundamental properties as a function of particle shape and highlights that the choice of size parameter, maximum dimension or another characteristic length, is crucial when relating fall speed to mass.
Elvis Torres-Delgado, Darrel Baumgardner, and Olga L. Mayol-Bracero
Atmos. Chem. Phys., 21, 18011–18027, https://doi.org/10.5194/acp-21-18011-2021, https://doi.org/10.5194/acp-21-18011-2021, 2021
Short summary
Short summary
African dust aerosols can travel thousands of kilometers and reach the Caribbean and other places, where they can serve as ice and cloud condensation nuclei and alter precipitation patterns. Cloud microphysical properties (droplet number and size) were measured in a Caribbean tropical montane cloud forest along with models and satellite products. The results of the study suggest that meteorology and air mass history are more important for cloud processes than aerosols transported from Africa.
Irini Tsiodra, Georgios Grivas, Kalliopi Tavernaraki, Aikaterini Bougiatioti, Maria Apostolaki, Despina Paraskevopoulou, Alexandra Gogou, Constantine Parinos, Konstantina Oikonomou, Maria Tsagkaraki, Pavlos Zarmpas, Athanasios Nenes, and Nikolaos Mihalopoulos
Atmos. Chem. Phys., 21, 17865–17883, https://doi.org/10.5194/acp-21-17865-2021, https://doi.org/10.5194/acp-21-17865-2021, 2021
Short summary
Short summary
We analyze observations from year-long measurements at Athens, Greece. Nighttime wintertime PAH levels are 4 times higher than daytime, and wintertime values are 15 times higher than summertime. Biomass burning aerosol during wintertime pollution events is responsible for these significant wintertime enhancements and accounts for 43 % of the population exposure to PAH carcinogenic risk. Biomass burning poses additional health risks beyond those associated with the high PM levels that develop.
Tiziana Bräuer, Christiane Voigt, Daniel Sauer, Stefan Kaufmann, Valerian Hahn, Monika Scheibe, Hans Schlager, Felix Huber, Patrick Le Clercq, Richard H. Moore, and Bruce E. Anderson
Atmos. Chem. Phys., 21, 16817–16826, https://doi.org/10.5194/acp-21-16817-2021, https://doi.org/10.5194/acp-21-16817-2021, 2021
Short summary
Short summary
Over half of aviation climate impact is caused by contrails. Biofuels can reduce the ice crystal numbers in contrails and mitigate the climate impact. The experiment ECLIF II/NDMAX in 2018 assessed the effects of biofuels on contrails and aviation emissions. The NASA DC-8 aircraft performed measurements inside the contrail of the DLR A320. One reference fuel and two blends of the biofuel HEFA and kerosene are analysed. We find a max reduction of contrail ice numbers through biofuel use of 40 %.
Yue Sun and Chuanfeng Zhao
Atmos. Chem. Phys., 21, 16555–16574, https://doi.org/10.5194/acp-21-16555-2021, https://doi.org/10.5194/acp-21-16555-2021, 2021
Short summary
Short summary
Using high-resolution multi-year warm season data, the influence of aerosol on precipitation time over the North China Plain (NCP), Yangtze River Delta (YRD), and Pearl River Delta (PRD) is investigated. Aerosol amount and type have significant influence on precipitation time: precipitation start time is advanced by 3 h in the NCP, delayed 2 h in the PRD, and negligibly changed in the YRD. Aerosol impact on precipitation is also influenced by precipitation type and meteorological conditions.
Oscar Javier Rojas Muñoz, Marjolaine Chiriaco, Sophie Bastin, and Justine Ringard
Atmos. Chem. Phys., 21, 15699–15723, https://doi.org/10.5194/acp-21-15699-2021, https://doi.org/10.5194/acp-21-15699-2021, 2021
Short summary
Short summary
A method is developed and evaluated to quantify each process that affects hourly 2 m temperature variations on a local scale, based almost exclusively on observations retrieved from an observatory near the Paris region. Each term involved in surface temperature variations is estimated, and its contribution and importance are also assessed. It is found that clouds are the main modulator on hourly temperature variations for most hours of the day, and thus their characterization is addressed.
Michael P. Jensen, Virendra P. Ghate, Dié Wang, Diana K. Apoznanski, Mary J. Bartholomew, Scott E. Giangrande, Karen L. Johnson, and Mandana M. Thieman
Atmos. Chem. Phys., 21, 14557–14571, https://doi.org/10.5194/acp-21-14557-2021, https://doi.org/10.5194/acp-21-14557-2021, 2021
Short summary
Short summary
This work compares the large-scale meteorology, cloud, aerosol, precipitation, and thermodynamics of closed- and open-cell cloud organizations using long-term observations from the astern North Atlantic. Open-cell cases are associated with cold-air outbreaks and occur in deeper boundary layers, with stronger winds and higher rain rates compared to closed-cell cases. These results offer important benchmarks for model representation of boundary layer clouds in this climatically important region.
Karlie N. Rees, Dhiraj K. Singh, Eric R. Pardyjak, and Timothy J. Garrett
Atmos. Chem. Phys., 21, 14235–14250, https://doi.org/10.5194/acp-21-14235-2021, https://doi.org/10.5194/acp-21-14235-2021, 2021
Short summary
Short summary
Accurate predictions of weather and climate require descriptions of the mass and density of snowflakes as a function of their size. Few measurements have been obtained to date because snowflakes are so small and fragile. This article describes results from a new instrument that automatically measures individual snowflake size, mass, and density. Key findings are that small snowflakes have much lower densities than is often assumed and that snowflake density increases with temperature.
Ramon Campos Braga, Daniel Rosenfeld, Ovid O. Krüger, Barbara Ervens, Bruna A. Holanda, Manfred Wendisch, Trismono Krisna, Ulrich Pöschl, Meinrat O. Andreae, Christiane Voigt, and Mira L. Pöhlker
Atmos. Chem. Phys., 21, 14079–14088, https://doi.org/10.5194/acp-21-14079-2021, https://doi.org/10.5194/acp-21-14079-2021, 2021
Short summary
Short summary
Quantifying the precipitation within clouds is crucial for our understanding of the Earth's hydrological cycle. Using in situ measurements of cloud and rain properties over the Amazon Basin and Atlantic Ocean, we show here a linear relationship between the effective radius (re) and precipitation water content near the tops of convective clouds for different pollution states and temperature levels. Our results emphasize the role of re to determine both initiation and amount of precipitation.
Haoran Li, Alexei Korolev, and Dmitri Moisseev
Atmos. Chem. Phys., 21, 13593–13608, https://doi.org/10.5194/acp-21-13593-2021, https://doi.org/10.5194/acp-21-13593-2021, 2021
Short summary
Short summary
Kelvin–Helmholtz (K–H) clouds embedded in a stratiform precipitation event were uncovered via radar Doppler spectral analysis. Given the unprecedented detail of the observations, we show that multiple populations of secondary ice columns were generated in the pockets where larger cloud droplets are formed and not at some constant level within the cloud. Our results highlight that the K–H instability is favorable for liquid droplet growth and secondary ice formation.
Alice Henkes, Gilberto Fisch, Luiz A. T. Machado, and Jean-Pierre Chaboureau
Atmos. Chem. Phys., 21, 13207–13225, https://doi.org/10.5194/acp-21-13207-2021, https://doi.org/10.5194/acp-21-13207-2021, 2021
Short summary
Short summary
The Amazonian boundary layer is investigated during the dry season in order to better understand the processes that occur between night and day until the stage where shallow cumulus clouds become deep. Observations show that shallow to deep clouds are characterized by a shorter morning transition stage (e.g., the time needed to eliminate the stable boundary layer inversion), while higher humidity above the boundary layer favors the evolution from shallow to deep cumulus clouds.
Youssef Wehbe, Sarah A. Tessendorf, Courtney Weeks, Roelof Bruintjes, Lulin Xue, Roy Rasmussen, Paul Lawson, Sarah Woods, and Marouane Temimi
Atmos. Chem. Phys., 21, 12543–12560, https://doi.org/10.5194/acp-21-12543-2021, https://doi.org/10.5194/acp-21-12543-2021, 2021
Short summary
Short summary
The role of dust aerosols as ice-nucleating particles is well established in the literature, whereas their role as cloud condensation nuclei is less understood, particularly in polluted desert environments. We analyze coincident aerosol size distributions and cloud particle imagery collected over the UAE with a research aircraft. Despite the presence of ultra-giant aerosol sizes associated with dust, an active collision–coalescence process is not observed within the limited depths of warm cloud.
Kwonil Kim, Wonbae Bang, Eun-Chul Chang, Francisco J. Tapiador, Chia-Lun Tsai, Eunsil Jung, and Gyuwon Lee
Atmos. Chem. Phys., 21, 11955–11978, https://doi.org/10.5194/acp-21-11955-2021, https://doi.org/10.5194/acp-21-11955-2021, 2021
Short summary
Short summary
This study analyzes the microphysical characteristics of snow in complex terrain and the nearby ocean according to topography and wind pattern during the ICE-POP 2018 campaign. The observations from collocated vertically pointing radars and disdrometers indicate that the riming in the mountainous region is likely caused by a strong shear and turbulence. The different behaviors of aggregation and riming were found by three different synoptic patterns (air–sea interaction, cold low, and warm low).
J. Brant Dodson, Patrick C. Taylor, Richard H. Moore, David H. Bromwich, Keith M. Hines, Kenneth L. Thornhill, Chelsea A. Corr, Bruce E. Anderson, Edward L. Winstead, and Joseph R. Bennett
Atmos. Chem. Phys., 21, 11563–11580, https://doi.org/10.5194/acp-21-11563-2021, https://doi.org/10.5194/acp-21-11563-2021, 2021
Short summary
Short summary
Aircraft in situ observations of low-level Beaufort Sea cloud properties and thermodynamics from the ARISE campaign are compared with the Arctic System Reanalysis (ASR) to better understand deficiencies in simulated clouds. ASR produces too little cloud water, which coincides with being too warm and dry. In addition, ASR struggles to produce cloud water even in favorable thermodynamic conditions. A random sampling experiment also shows the effects of the limited aircraft sampling on the results.
Sinan Gao, Chunsong Lu, Yangang Liu, Seong Soo Yum, Jiashan Zhu, Lei Zhu, Neel Desai, Yongfeng Ma, and Shang Wu
Atmos. Chem. Phys., 21, 11225–11241, https://doi.org/10.5194/acp-21-11225-2021, https://doi.org/10.5194/acp-21-11225-2021, 2021
Short summary
Short summary
Only a few studies have been focused on the vertical variation of entrainment mixing with low resolutions which are crucial to cloud-related processes. A sawtooth pattern allows for an examination of mixing with high vertical resolution. A new measure is introduced to estimate entrainment mixing to overcome difficulties in existing measures, where vertical profile indicates that entrainment mixing becomes more homogeneous with decreasing altitudes, consistent with the dynamical measures.
Cited articles
Barth, M. C., Cantrell, C. A., Brune, W. H., Rutledge, S. A., Crawford, et
al.: The Deep Convective Clouds and Chemistry (DC3) Field Campaign, Bull.
Am. Meteorol. Soc., 96, 1281–1309,
https://doi.org/10.1175/BAMS-D-13-00290.1, 2015.
Bogenschutz, P. A., Gettelman, A., Morrison, H., Larson, V. E., Craig, C.,
and Schanen, D. P.: Higher-order turbulence closure and its impact on
climate simulations in the community atmosphere model, J. Climate, 26,
9655–9676, https://doi.org/10.1175/JCLI-D-13-00075.1, 2013.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S. K., Sherwood, S., Stevens, B., and Zhang, X.-Y.: IPCC AR5 Clouds and
Aerosols, in: Climate Change 2013: The Physical Science Basis, Contribution
of Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M.,
Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., 571–658 pp., 2013.
Bruce, A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science,
245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227,
1989.
Cziczo, D. J., Froyd, K. D., Hoose, C., Jensen, E. J., Diao, M., Zondlo, M.
A., Smith, J. B., Twohy, C. H., and Murphy, D. M.: Clarifying the Dominant
Sources and Mechanisms of Cirrus Cloud Formation, Science, 340,
1320–1324, https://doi.org/10.1126/science.1234145, 2013.
Diao, M., Zondlo, M. A., Heymsfield, A. J., Beaton, S. P., and Rogers, D.
C.: Evolution of ice crystal regions on the microscale based on in situ
observations, Geophys. Res. Lett., 40, 3473–3478,
https://doi.org/10.1002/grl.50665, 2013.
Diao, M., Zondlo, M. A., Heymsfield, A. J., Avallone, L. M., Paige, M. E., Beaton, S. P., Campos, T., and Rogers, D. C.: Cloud-scale ice-supersaturated regions spatially correlate with high water vapor heterogeneities, Atmos. Chem. Phys., 14, 2639–2656, https://doi.org/10.5194/acp-14-2639-2014, 2014a.
Diao, M., Zondlo, M. A., Heymsfield, A. J., and Beaton, S. P.: Hemispheric
comparison of cirrus cloud evolution using in situ measurements in HIAPER
Pole-to-Pole Observations, Geophys. Res. Lett., 41, 4090–4099,
https://doi.org/10.1002/2014GL059873, 2014b.
Eidhammer, T., Morrison, H., Bansemer, A., Gettelman, A., and Heymsfield, A. J.: Comparison of ice cloud properties simulated by the Community Atmosphere Model (CAM5) with in-situ observations, Atmos. Chem. Phys., 14, 10103–10118, https://doi.org/10.5194/acp-14-10103-2014, 2014.
Fan, J., Wang, Y., Rosenfeld, D., and Liu, X.: Review of Aerosol–Cloud
Interactions: Mechanisms, Significance, and Challenges, J. Atmos. Sci., 73,
4221–4252, https://doi.org/10.1175/JAS-D-16-0037.1, 2016.
Fu, Q. and Liou, K.-N.: Parameterization of the Radiative Properties of
Cirrus Clouds, J. Atmos. Sci., 50, 2008–2025,
https://doi.org/10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2, 1993.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.:
The modern-era retrospective analysis for research and applications, version
2 (MERRA-2), J. Climate, 30, 5419–5454,
https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gayet, J.-F., Ovarlez, J., Shcherbakov, V., Ström, J., Schumann, U.,
Minikin, A., Auriol, F., Petzold, A., and Monier, M.: Cirrus cloud
microphysical and optical properties at southern and northern midlatitudes
during the INCA experiment, J. Geophys. Res.-Atmos., 109, D20206,
https://doi.org/10.1029/2004JD004803, 2004.
Gettelman, A. and Morrison, H.: Advanced two-moment bulk microphysics for
global models. Part I: Off-line tests and comparison with other schemes, J.
Climate, 28, 1268–1287, https://doi.org/10.1175/JCLI-D-14-00102.1, 2015.
Gettelman, A., Fetzer, E. J., Eldering, A., and Irion, F. W.: The Global
Distribution of Supersaturation in the Upper Troposphere from the
Atmospheric Infrared Sounder, J. Clim., 19, 6089–6103,
https://doi.org/10.1175/JCLI3955.1, 2006.
Gettelman, A., Liu, X., Ghan, S. J., Morrison, H., Park, S., Conley, A. J.,
Klein, S. A., Boyle, J., Mitchell, D. L., and Li, J.-L. F.: Global
simulations of ice nucleation and ice supersaturation with an improved cloud
scheme in the Community Atmosphere Model, J. Geophys. Res., 115, D18216,
https://doi.org/10.1029/2009JD013797, 2010.
Haag, W., Kärcher, B., Ström, J., Minikin, A., Lohmann, U., Ovarlez, J., and Stohl, A.: Freezing thresholds and cirrus cloud formation mechanisms inferred from in situ measurements of relative humidity, Atmos. Chem. Phys., 3, 1791–1806, https://doi.org/10.5194/acp-3-1791-2003, 2003.
Heymsfield, A. J., Krämer, M., Luebke, A., Brown, P., Cziczo, D. J.,
Franklin, C., Lawson, P., Lohmann, U., McFarquhar, G., Ulanowski, Z., and
Van Tricht, K.: Cirrus Clouds, Meteorol. Monogr., 58, 2.1–2.26,
https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0010.1, 2017.
Kärcher, B.: Cirrus Clouds and Their Response to Anthropogenic
Activities, Curr. Clim. Chang. Reports, 3, 45–57,
https://doi.org/10.1007/s40641-017-0060-3, 2017.
Kärcher, B. and Jensen, E. J.: Microscale characteristics of homogeneous
freezing events in cirrus clouds, Geophys. Res. Lett., 44, 2027–2034,
https://doi.org/10.1002/2016GL072486, 2017.
Kärcher, B., DeMott, P. J., Jensen, E. J., and Harrington, J. Y.:
Studies on the Competition Between Homogeneous and Heterogeneous Ice
Nucleation in Cirrus Formation, J. Geophys. Res.-Atmos., 127, e2021JD035805,
https://doi.org/10.1029/2021JD035805, 2022.
Krämer, M., Schiller, C., Afchine, A., Bauer, R., Gensch, I., Mangold, A., Schlicht, S., Spelten, N., Sitnikov, N., Borrmann, S., de Reus, M., and Spichtinger, P.: Ice supersaturations and cirrus cloud crystal numbers, Atmos. Chem. Phys., 9, 3505–3522, https://doi.org/10.5194/acp-9-3505-2009, 2009.
Krämer, M., Rolf, C., Luebke, A., Afchine, A., Spelten, N., Costa, A., Meyer, J., Zöger, M., Smith, J., Herman, R. L., Buchholz, B., Ebert, V., Baumgardner, D., Borrmann, S., Klingebiel, M., and Avallone, L.: A microphysics guide to cirrus clouds – Part 1: Cirrus types, Atmos. Chem. Phys., 16, 3463–3483, https://doi.org/10.5194/acp-16-3463-2016, 2016.
Liou, K.-N.: Influence of Cirrus Clouds on Weather and Climate Processes: A
Global Perspective, Mon. Weather Rev., 114, 1167–1199,
https://doi.org/10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2, 1986.
Liou, K.-N.: Radiation and cloud processes in the atmosphere. Theory,
observation, and modeling, New York, NY (United States), Oxford University
Press, United States, ISBN 978-0195049107, 1992.
Liu, X. and Penner, J. E.: Ice nucleation parameterization for global
models, Meteorol. Z., 14, 499–514,
https://doi.org/10.1127/0941-2948/2005/0059, 2005.
Liu, X., Penner, J. E., Ghan, S. J., and Wang, M.: Inclusion of Ice
Microphysics in the NCAR Community Atmospheric Model Version 3 (CAM3), J.
Clim., 20, 4526–4547, https://doi.org/10.1175/JCLI4264.1, 2007.
Lohmann, U. and Feichter, J.: Global indirect aerosol effects: a review, Atmos. Chem. Phys., 5, 715–737, https://doi.org/10.5194/acp-5-715-2005, 2005.
Lynch, D. K., Sassen, K., Starr, D. O., and Stephens, G.: Cirrus, Oxford
University Press, ISBN 978-0195130720, 2002.
Mace, G. G. and Wrenn, F. J.: Evaluation of the Hydrometeor Layers in the
East and West Pacific within ISCCP Cloud-Top Pressure–Optical Depth Bins
Using Merged CloudSat and CALIPSO Data, J. Clim., 26, 9429–9444,
https://doi.org/10.1175/JCLI-D-12-00207.1, 2013.
McGraw, Z., Storelvmo, T., Samset, B. H., and Stjern, C. W.: Global
Radiative Impacts of Black Carbon Acting as Ice Nucleating Particles,
Geophys. Res. Lett., 47, e2020GL089056,
https://doi.org/10.1029/2020GL089056, 2020.
Montgomery, M. T., Davis, C., Dunkerton, T., Wang, Z., Velden, C., Torn, R.,
Majumdar, S. J., Zhang, F., Smith, R. K., Bosart, L., Bell, M. M., Haase, J.
S., Heymsfield, A., Jensen, J., Campos, T., and Boothe, M. A.: The
Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT)
Experiment: Scientific Basis, New Analysis Tools, and Some First Results,
B. Am. Meteorol. Soc., 93, 153–172,
https://doi.org/10.1175/BAMS-D-11-00046.1, 2012.
Morrison, H. and Pinto, J. O.: Mesoscale modeling of springtime Arctic
mixed-phase stratiform clouds using a new two-moment bulk microphysics
scheme, J. Atmos. Sci., 62, 3683–3794, 2005.
Murphy, D. M. and Koop, T.: Review of the vapour pressures of ice and
supercooled water for atmospheric applications, Q. J. Roy. Meteorol. Soc.,
131, 1539–1565, https://doi.org/10.1256/qj.04.94, 2005.
NASA ESPO data archive: NASA ATTREX flight campaign data archive, NASA [data set], https://espoarchive.nasa.gov/archive/browse/attrex (last access: 20 December 2022), 2011a.
NASA ESPO data archive: NASA MACPEX flight campaign data archive, NASA [data set], https://espoarchive.nasa.gov/archive/browse/macpex (last access: 20 December 2022), 2011b.
NASA ESPO data archive: NASA POSIDON flight campaign data archive, NASA [data set], https://espoarchive.nasa.gov/archive/browse/posidon (last access: 20 December 2022), 2016.
NASA LaRC Airborne Science Data for Atmospheric Composition: NASA DC3 flight campaign data archive, NASA [data set], https://www-air.larc.nasa.gov/cgi-bin/ArcView/dc3 (last access: 20 December 2022), 2012.
NASA LaRC Airborne Science Data for Atmospheric Composition: NASA SEAC4RS flight campaign data archive, NASA [data set], https://www-air.larc.nasa.gov/cgi-bin/ArcView/seac4rs (last access: 20 December 2022), 2013.
O'Shea, S. J., Choularton, T. W., Lloyd, G., Crosier, J., Bower, K. N.,
Gallagher, M., Abel, S. J., Cotton, R. J., Brown, P. R. A., Fugal, J. P.,
Schlenczek, O., Borrmann, S., and Pickering, J. C.: Airborne observations of
the microphysical structure of two contrasting cirrus clouds, J. Geophys.
Res. Atmos., 121, 13510–13536,
https://doi.org/10.1002/2016JD025278, 2016.
Ovarlez, J., Gayet, J.-F., Gierens, K., Ström, J., Ovarlez, H., Auriol,
F., Busen, R., and Schumann, U.: Water vapour measurements inside cirrus
clouds in Northern and Southern hemispheres during INCA, Geophys. Res.
Lett., 29, 60–64, https://doi.org/10.1029/2001GL014440,
2002.
Pan, L. L., Bowman, K. P., Atlas, E. L., Wofsy, S. C., Zhang, F., Bresch, J.
F., Ridley, B. A., Pittman, J. V, Homeyer, C. R., Romashkin, P., and Cooper,
W. A.: The Stratosphere–Troposphere Analyses of Regional Transport 2008
Experiment, B. Am. Meteorol. Soc., 91, 327–342,
https://doi.org/10.1175/2009BAMS2865.1, 2010.
Pan, L. L., Atlas, E. L., Salawitch, R. J., Honomichl, S. B., Bresch, J. F.,
Randel, W. J., Apel, E. C., Hornbrook, R. S., Weinheimer, A. J., Anderson,
D. C., Andrews, S. J., Baidar, S., Beaton, S. P., Campos, T. L., Carpenter,
L. J., Chen, D., Dix, B., Donets, V., Hall, S. R., Hanisco, T. F., Homeyer,
C. R., Huey, L. G., Jensen, J. B., Kaser, L., Kinnison, D. E., Koenig, T.
K., Lamarque, J.-F., Liu, C., Luo, J., Luo, Z. J., Montzka, D. D., Nicely,
J. M., Pierce, R. B., Riemer, D. D., Robinson, T., Romashkin, P.,
Saiz-Lopez, A., Schauffler, S., Shieh, O., Stell, M. H., Ullmann, K.,
Vaughan, G., Volkamer, R., and Wolfe, G.: The Convective Transport of Active
Species in the Tropics (CONTRAST) Experiment, B. Am. Meteorol. Soc., 98,
106–128, https://doi.org/10.1175/BAMS-D-14-00272.1, 2017.
Park, S. and Bretherton, C. S.: The University of Washington Shallow
Convection and Moist Turbulence Schemes and Their Impact on Climate
Simulations with the Community Atmosphere Model, J. Clim., 22, 3449–3469,
https://doi.org/10.1175/2008JCLI2557.1, 2009.
Patnaude, R. and Diao, M.: Aerosol Indirect Effects on Cirrus Clouds Based
on Global Aircraft Observations, Geophys. Res. Lett., 47, e2019GL086550,
https://doi.org/10.1029/2019GL086550, 2020.
Patnaude, R., Diao, M., Liu, X., and Chu, S.: Effects of thermodynamics, dynamics and aerosols on cirrus clouds based on in situ observations and NCAR CAM6, Atmos. Chem. Phys., 21, 1835–1859, https://doi.org/10.5194/acp-21-1835-2021, 2021.
Patnaude, R., Maciel, F. V., and Diao, M.: NSF CAM Simulations, Mendeley Data [code], V1, https://doi.org/10.17632/99hdjty6sb.1, 2023a.
Patnaude, R., Maciel, F. V., and Diao, M.: NASA CAM Simulations, Mendeley Data [code], V1, https://doi.org/10.17632/fjw3zw2p6g.1, 2023b.
Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and
Precipitation, 2nd ed., Springer Netherlands, Dordrecht, 954 pp.,
https://doi.org/10.1007/978-0-306-48100-0, 2010.
Sassen, K., Wang, Z., and Liu, D.: Global distribution of cirrus clouds from
CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations
(CALIPSO) measurements, J. Geophys. Res., 113, D00A12,
https://doi.org/10.1029/2008JD009972, 2008.
Shi, X., Liu, X., and Zhang, K.: Effects of pre-existing ice crystals on cirrus clouds and comparison between different ice nucleation parameterizations with the Community Atmosphere Model (CAM5), Atmos. Chem. Phys., 15, 1503–1520, https://doi.org/10.5194/acp-15-1503-2015, 2015.
Spichtinger, P. and Gierens, K. M.: Modelling of cirrus clouds – Part 2: Competition of different nucleation mechanisms, Atmos. Chem. Phys., 9, 2319–2334, https://doi.org/10.5194/acp-9-2319-2009, 2009.
Stephens, B. B., Long, M. C., Keeling, R. F., Kort, E. A., Sweeney, C.,
Apel, E. C., Atlas, E. L., Beaton, S., Bent, J. D., Blake, N. J., Bresch, J.
F., Casey, J., Daube, B. C., Diao, M., Diaz, E., Dierssen, H., Donets, V.,
Gao, B.-C., Gierach, M., Green, R., Haag, J., Hayman, M., Hills, A. J.,
Hoecker-Martínez, M. S., Honomichl, S. B., Hornbrook, R. S., Jensen, J.
B., Li, R.-R., McCubbin, I., McKain, K., Morgan, E. J., Nolte, S., Powers,
J. G., Rainwater, B., Randolph, K., Reeves, M., Schauffler, S. M., Smith,
K., Smith, M., Stith, J., Stossmeister, G., Toohey, D. W., and Watt, A. S.:
The O N2 Ratio and CO2 Airborne Southern Ocean Study, B. Am. Meteorol.
Soc., 99, 381–402, https://doi.org/10.1175/BAMS-D-16-0206.1, 2018.
Twomey, S.: The Influence of Pollution on the Shortwave Albedo of Clouds, J.
Atmos. Sci., 34, 1149–1152,
https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2, 1977.
UCAR/NCAR – Earth Observing Laboratory: Low Rate (LRT – 1 sps) Navigation, State Parameter, and Microphysics Flight-Level Data (NetCDF), Version 3.0, UCAR/NCAR – Earth Observing Laboratory [data set], https://doi.org/10.5065/D6BC3WKB, 2018a.
UCAR/NCAR – Earth Observing Laboratory: Low Rate (LRT – 1 sps) Navigation, State Parameter, and Microphysics Flight-Level Data, Version 1.2, UCAR/NCAR – Earth Observing Laboratory [data set], https://doi.org/10.5065/D6TX3CK0, 2018b.
UCAR/NCAR – Earth Observing Laboratory: Low Rate (LRT – 1 sps) Navigation, State Parameter, and Microphysics Flight-Level Data, Version 1.1, UCAR/NCAR – Earth Observing Laboratory [data set], https://doi.org/10.5065/D65T3HWR, 2018c.
UCAR/NCAR – Earth Observing Laboratory: Low Rate (LRT – 1 sps) Navigation, State Parameter, and Microphysics Flight-Level Data, Version 2.0, UCAR/NCAR – Earth Observing Laboratory [data set], https://doi.org/10.5065/D6NZ85Z4, 2019a.
UCAR/NCAR – Earth Observing Laboratory: Low Rate (LRT – 1 sps) Navigation, State Parameter, and Microphysics Flight-Level Data, Version 5.0, UCAR/NCAR – Earth Observing Laboratory [data set], https://doi.org/10.5065/D6JW8C64, 2019b.
UCAR/NCAR – Earth Observing Laboratory: Low Rate (LRT – 1 sps) Navigation, State Parameter, and Microphysics Flight-Level Data, Version 5.0, UCAR/NCAR – Earth Observing Laboratory [data set], https://doi.org/10.5065/D6QF8R6R, 2019c.
UCAR/NCAR – Earth Observing Laboratory: Low Rate (LRT – 1 sps) Navigation, State Parameter, and Microphysics Flight-Level Data, Version 3.0, UCAR/NCAR – Earth Observing Laboratory [data set], https://doi.org/10.5065/D6V40SK6, 2019d.
UCAR/NCAR – Earth Observing Laboratory: Low Rate (LRT – 1 sps) Navigation, State Parameter, and Microphysics Flight-Level Data, Version 3.0, UCAR/NCAR – Earth Observing Laboratory [data set], https://doi.org/10.5065/D6CZ35HX, 2019e.
UCAR/NCAR – Earth Observing Laboratory: Low Rate (LRT – 1 sps) Navigation, State Parameter, and Microphysics Flight-Level Data, Version 2.0, UCAR/NCAR – Earth Observing Laboratory [data set], https://doi.org/10.5065/D61R6NV5, 2019f.
UCAR/NCAR – Earth Observing Laboratory: Low Rate (LRT – 1 sps) Navigation, State Parameter, and Microphysics Flight-Level Data, Version 3.0, UCAR/NCAR – Earth Observing Laboratory [data set], https://doi.org/10.5065/D6668BHR, 2019g.
Volkamer, R., Baidar, S., Campos, T. L., Coburn, S., DiGangi, J. P., Dix, B., Eloranta, E. W., Koenig, T. K., Morley, B., Ortega, I., Pierce, B. R., Reeves, M., Sinreich, R., Wang, S., Zondlo, M. A., and Romashkin, P. A.: Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2–O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements, Atmos. Meas. Tech., 8, 2121–2148, https://doi.org/10.5194/amt-8-2121-2015, 2015.
Wofsy, S. C.: HIAPER Pole-to-Pole Observations (HIPPO): fine-grained,
global-scale measurements of climatically important atmospheric gases and
aerosols, Philos. T. Roy. Soc. A, 369, 2073–2086,
2011.
Zhang, G. J. and McFarlane, N. A.: Sensitivity of climate simulations to the
parameterization of cumulus convection in the canadian climate centre
general circulation model, Atmos.-Ocean, 33, 407–446,
https://doi.org/10.1080/07055900.1995.9649539, 1995.
Zhao, B., Wang, Y., Gu, Y., Liou, K.-N., Jiang, J. H., Fan, J., Liu, X.,
Huang, L., and Yung, Y. L.: Ice nucleation by aerosols from anthropogenic
pollution, Nat. Geosci., 12, 602–607,
https://doi.org/10.1038/s41561-019-0389-4, 2019.
Zondlo, M. A., Paige, M. E., Massick, S. M., and Silver, J. A.: Vertical
cavity laser hygrometer for the National Science Foundation Gulfstream-V
aircraft, J. Geophys. Res., 115, D20309,
https://doi.org/10.1029/2010JD014445, 2010.
Short summary
Aerosol indirect effects on cirrus clouds are investigated during cirrus evolution, using global-scale in situ observations and climate model simulations. As cirrus evolves, the mechanisms to form ice crystals also change with time. Both small and large aerosols are found to affect cirrus properties. Southern Hemisphere cirrus appears to be more sensitive to additional aerosols. The climate model underestimates ice crystal mass, likely due to biases of relative humidity and vertical velocity.
Aerosol indirect effects on cirrus clouds are investigated during cirrus evolution, using...
Altmetrics
Final-revised paper
Preprint