Articles | Volume 22, issue 15
https://doi.org/10.5194/acp-22-9843-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-9843-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Functionality-based formation of secondary organic aerosol from m-xylene photooxidation
Yixin Li
Department of Chemistry, Texas A&M University, College Station, TX
77843, USA
Department of Chemistry, University of California Irvine, Irvine, CA
92697, USA
Jiayun Zhao
Department of Chemistry, Texas A&M University, College Station, TX
77843, USA
Mario Gomez-Hernandez
Department of Chemistry, Texas A&M University, College Station, TX
77843, USA
Michael Lavallee
Department of Atmospheric Sciences, Texas A&M University, College
Station, TX 77843, USA
Natalie M. Johnson
Department of Environmental & Occupational Health, School of Public
Health, Texas A&M University, College Station, TX 77843, USA
Department of Chemistry, Texas A&M University, College Station, TX
77843, USA
Department of Atmospheric Sciences, Texas A&M University, College
Station, TX 77843, USA
Related authors
Yuemeng Ji, Zhang Shi, Wenjian Li, Jiaxin Wang, Qiuju Shi, Yixin Li, Lei Gao, Ruize Ma, Weijun Lu, Lulu Xu, Yanpeng Gao, Guiying Li, and Taicheng An
Atmos. Chem. Phys., 24, 3079–3091, https://doi.org/10.5194/acp-24-3079-2024, https://doi.org/10.5194/acp-24-3079-2024, 2024
Short summary
Short summary
The formation mechanisms for secondary brown carbon (SBrC) contributed by multifunctional reduced nitrogen compounds (RNCs) remain unclear. Hence, from combined laboratory experiments and quantum chemical calculations, we investigated the heterogeneous reactions of glyoxal (GL) with multifunctional RNCs, which are driven by four-step indirect nucleophilic addition reactions. Our results show a possible missing source for SBrC formation on urban, regional, and global scales.
Yuemeng Ji, Qiuju Shi, Xiaohui Ma, Lei Gao, Jiaxin Wang, Yixin Li, Yanpeng Gao, Guiying Li, Renyi Zhang, and Taicheng An
Atmos. Chem. Phys., 22, 7259–7271, https://doi.org/10.5194/acp-22-7259-2022, https://doi.org/10.5194/acp-22-7259-2022, 2022
Short summary
Short summary
The formation mechanisms of secondary organic aerosol and brown carbon from small α-carbonyls are still unclear. Thus, the mechanisms and kinetics of aqueous-phase reactions of glyoxal were investigated using quantum chemical and kinetic rate calculations. Several essential isomeric processes were identified, including protonation to yield diol/tetrol and carbenium ions as well as nucleophilic addition of carbenium ions to diol/tetrol and free methylamine/ammonia.
Yuemeng Ji, Zhang Shi, Wenjian Li, Jiaxin Wang, Qiuju Shi, Yixin Li, Lei Gao, Ruize Ma, Weijun Lu, Lulu Xu, Yanpeng Gao, Guiying Li, and Taicheng An
Atmos. Chem. Phys., 24, 3079–3091, https://doi.org/10.5194/acp-24-3079-2024, https://doi.org/10.5194/acp-24-3079-2024, 2024
Short summary
Short summary
The formation mechanisms for secondary brown carbon (SBrC) contributed by multifunctional reduced nitrogen compounds (RNCs) remain unclear. Hence, from combined laboratory experiments and quantum chemical calculations, we investigated the heterogeneous reactions of glyoxal (GL) with multifunctional RNCs, which are driven by four-step indirect nucleophilic addition reactions. Our results show a possible missing source for SBrC formation on urban, regional, and global scales.
Xiaoli Gong, Liyao Zhu, and Renyi Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-3113, https://doi.org/10.5194/egusphere-2023-3113, 2024
Preprint archived
Short summary
Short summary
Citric acid participates in and enhances the multi-component nucleation of SA·AM·Wn·CAm, SA·DMA·Wn·CAm, and SA·AM·DMA·Wn·CAm (m=0–1, n = 0–4) clusters using the M06-2X/6-311+G(2d, p) level. Three COOH and one OH groups of CA can act as both hydrogen donors and acceptors, participate in the formation of the hydrogen bonds, lower the nucleation barriers. Addition of a CA molecule to above clusters resulted in negative Gibbs free energies for all reactions.
Yun Lin, Yuan Wang, Jen-Shan Hsieh, Jonathan H. Jiang, Qiong Su, Lijun Zhao, Michael Lavallee, and Renyi Zhang
Atmos. Chem. Phys., 23, 13835–13852, https://doi.org/10.5194/acp-23-13835-2023, https://doi.org/10.5194/acp-23-13835-2023, 2023
Short summary
Short summary
Tropical cyclones (TCs) can cause catastrophic damage to coastal regions. We used a numerical model that explicitly simulates aerosol–cloud interaction and atmosphere–ocean coupling. We show that aerosols and ocean coupling work together to make TC storms bigger but weaker. Moreover, TCs in polluted air have more rainfall and higher sea levels, leading to more severe storm surges and flooding. Our research highlights the roles of aerosols and ocean-coupling feedbacks in TC hazard assessment.
Yuemeng Ji, Qiuju Shi, Xiaohui Ma, Lei Gao, Jiaxin Wang, Yixin Li, Yanpeng Gao, Guiying Li, Renyi Zhang, and Taicheng An
Atmos. Chem. Phys., 22, 7259–7271, https://doi.org/10.5194/acp-22-7259-2022, https://doi.org/10.5194/acp-22-7259-2022, 2022
Short summary
Short summary
The formation mechanisms of secondary organic aerosol and brown carbon from small α-carbonyls are still unclear. Thus, the mechanisms and kinetics of aqueous-phase reactions of glyoxal were investigated using quantum chemical and kinetic rate calculations. Several essential isomeric processes were identified, including protonation to yield diol/tetrol and carbenium ions as well as nucleophilic addition of carbenium ions to diol/tetrol and free methylamine/ammonia.
Yun Lin, Yuan Wang, Bowen Pan, Jiaxi Hu, Song Guo, Misti Levy Zamora, Pengfei Tian, Qiong Su, Yuemeng Ji, Jiayun Zhao, Mario Gomez-Hernandez, Min Hu, and Renyi Zhang
Atmos. Chem. Phys., 22, 4951–4967, https://doi.org/10.5194/acp-22-4951-2022, https://doi.org/10.5194/acp-22-4951-2022, 2022
Short summary
Short summary
Severe regional haze events, which are characterized by exceedingly high levels of fine particulate matter (PM), occur frequently in many developing countries (such as China and India), with profound implications for human health, weather, and climate. Our work establishes a synthetic view for the dominant regional features during severe haze events, unraveling rapid in situ PM production and inefficient transport, both of which are amplified by atmospheric stagnation.
Cited articles
Atkinson, R.: Atmospheric Chemistry of VOCs and NOx, Atmos. Environ.,
34, 2063–2101, 2000.
Calvert, J. G., Atkinson, R., Becker, K. H., Kamens, R. M., Seinfeld, J. H.,
Wallington, T. H., and Yarwood, G.: The Mechanisms of Atmospheric Oxidation
of Aromatic Hydrocarbons, Oxford University Press, New York, ISBN 9780195146288, 2002.
Claflin, M. S. and Ziemann, P. J.: Thermal desorption behavior of
hemiacetal, acetal, ether, and ester oligomers, Aerosol Sci. Tech.,
53, 473–484, https://doi.org/10.1080/02786826.2019.1576853, 2019.
De Haan, D. O., Hawkins, L. N., Kononenko, J. A., Turley, J. J., Corrigan,
A. L., Tolbert, M. A., and Jimenez, J. L.: Formation of Nitrogen-Containing
Oligomers by Methylglyoxal and Amines in Simulated Evaporating Cloud
Droplets, Environ. Sci. Technol., 45, 984–991, 2011.
De Haan, D. O., Hawkins, L. N., Welsh, H. G., Pednekar, R., Casar, J. R.,
Pennington, E. A., de Loera, A., Jimenez, N. G., Symons, M. A., Zauscher,
M., Pajunoja, A., Caponi, L., Cazaunau, M., Formenti, P., Gratien, A.,
Pangui, E., and Doussin, J.-F.: Brown Carbon Production in Ammonium- or
Amine-Containing Aerosol Particles by Reactive Uptake of Methylglyoxal and
Photolytic Cloud Cycling, Environ. Sci. Technol., 51, 7458–7466,
https://doi.org/10.1021/acs.est.7b00159, 2017.
Dotan, I., Albritton, D. L., Lindinger, W., and Pahl, M.: Mobilities of
CO , N2H+, H3O+, H3O , and H3O
ions in N2, J. Chem. Phys., 65, 5028–5030, https://doi.org/10.1063/1.432943, 1976.
Fan, J. and Zhang, R.: Density Functional Theory Study on OH-Initiated
Atmospheric Oxidation of m-Xylene, J. Phys. Chem. A, 112, 4314–4323,
https://doi.org/10.1021/jp077648j, 2008.
Faust, J. A., Wong, J. P. S., Lee, A. K. Y., and Abbatt, J. P. D.: Role of
Aerosol Liquid Water in Secondary Organic Aerosol Formation from Volatile
Organic Compounds, Environ. Sci. Technol., 51, 1405–1413, 2017.
Finlayson-Pitts, B. J. and Pitts, J. N.: Chemistry of the Upper and Lower
Atmosphere: Theory, Experiments and Applications, Academic Press, San Diego, ISBN 978-0-12-257060-5,
2000.
Fortner, E. C., Zhao, J., and Zhang, R.: Development of ion drift-chemical
ionization mass spectrometry, Anal. Chem., 76, 5436–5440, 2004.
Fortner, E. C., Zheng, J., Zhang, R., Berk Knighton, W., Volkamer, R. M., Sheehy, P., Molina, L., and André, M.: Measurements of Volatile Organic Compounds Using Proton Transfer Reaction – Mass Spectrometry during the MILAGRO 2006 Campaign, Atmos. Chem. Phys., 9, 467–481, https://doi.org/10.5194/acp-9-467-2009, 2009.
Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+- -Na+- - -Cl−-H2O aerosols, Atmos. Chem. Phys., 7, 4639–4659, https://doi.org/10.5194/acp-7-4639-2007, 2007.
Garmash, O., Rissanen, M. P., Pullinen, I., Schmitt, S., Kausiala, O., Tillmann, R., Zhao, D., Percival, C., Bannan, T. J., Priestley, M., Hallquist, Å. M., Kleist, E., Kiendler-Scharr, A., Hallquist, M., Berndt, T., McFiggans, G., Wildt, J., Mentel, T. F., and Ehn, M.: Multi-generation OH oxidation as a source for highly oxygenated organic molecules from aromatics, Atmos. Chem. Phys., 20, 515–537, https://doi.org/10.5194/acp-20-515-2020, 2020.
Gomez, M. E., Lin, Y., Guo, S., and Zhang, R.: Heterogeneous chemistry of
glyoxal on acidic solutions – An oligomerization pathway for secondary
organic aerosol formation, J. Phys. Chem., 118, 4457–4463,
https://doi.org/10.1021/jp509916r, 2015.
Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu,
Z., Shao, M., Zeng, L., Molina, M. J., and Zhang, R.: Elucidating severe
urban haze formation in China, P. Natl. Acad. Sci. USA, 111,
17373–17378, https://doi.org/10.1073/pnas.1419604111, 2014.
Guo, S., Hu, M., Lin, Y., Gomez-Hernandez, M., Zamora, M. L., Peng, J.,
Collins, D. R., and Zhang, R.: OH-Initiated Oxidation of m-Xylene on Black
Carbon Aging, Environ. Sci. Technol., 50, 8605–8612,
https://doi.org/10.1021/acs.est.6b01272, 2016.
Guo, S., Hu, M., Peng, J., Wu, Z., Zamora, M. L., Shang, D., Du, Z., Zheng,
J., Fang, X., Tang, R., Wu, Y., Zeng, L., Shuai, S., Zhang, W., Wang, Y.,
Ji, Y., Li, Y., Zhang, A. L., Wang, W., Zhang, F., Zhao, J., Gong, X., Wang,
C., Molina, M. J., and Zhang, R.: Remarkable nucleation and growth of
ultrafine particles from vehicular exhaust, P. Natl. Acad. Sci. USA, 117,
3427–3432, https://doi.org/10.1073/pnas.1916366117, 2020.
Heald, C. L., Jacob, D. J., Park, R. J., Russell, L. M., Huebert, B. J.,
Seinfeld, J. H., Liao, H., and Weber, R. J.: A Large Organic Aerosol Source
in the Free Troposphere Missing from Current Models, Geophys. Res. Lett.,
32, 1–4, 2005.
Hems, R. F. and Abbatt, J. P. D.: Aqueous Phase Photo-oxidation of Brown
Carbon Nitrophenols: Reaction Kinetics, Mechanism, and Evolution of Light
Absorption, ACS Earth Sp. Chem., 2, 225–234,
https://doi.org/10.1021/acsearthspacechem.7b00123, 2018.
Hodzic, A., Kasibhatla, P. S., Jo, D. S., Cappa, C. D., Jimenez, J. L., Madronich, S., and Park, R. J.: Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal, shorter lifetime, Atmos. Chem. Phys., 16, 7917–7941, https://doi.org/10.5194/acp-16-7917-2016, 2016.
Hua, W., Jubb, A. M., and Allen, H. C.: Electric Field Reversal of Na2SO4,
(NH4)2SO4, and Na2CO3 Relative to CaCl2 and NaCl at the Air/Aqueous
Interface Revealed by Heterodyne Detected Phase-Sensitive Sum Frequency, J.
Phys. Chem. Lett., 2, 2515–2520, https://doi.org/10.1021/jz200888t, 2011.
Huang, Y., Zhao, R., Charan, S. M., Kenseth, C. M., Zhang, X., and Seinfeld,
J. H.: Unified Theory of Vapor–Wall Mass Transport in Teflon-Walled
Environmental Chambers, Environ. Sci. Technol., 52, 2134–2142,
https://doi.org/10.1021/acs.est.7b05575, 2018.
IPCC (Intergovernmental Panel on Climate Change): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University
Press, 2013.
Jenkin, M. E., Saunders, S. M., Wagner, V., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds, Atmos. Chem. Phys., 3, 181–193, https://doi.org/10.5194/acp-3-181-2003, 2003.
Ji, Y., Zhao, J., Terazono, H., Misawa, K., Levitt, N. P., Li, Y., Lin, Y.,
Peng, J., Wang, Y., Duan, L., Pan, B., Zhang, F., Feng, X., An, T.,
Marrero-Ortiz, W., Secrest, J., Zhang, A. L., Shibuya, K., Molina, M. J.,
and Zhang, R.: Reassessing the atmospheric oxidation mechanism of toluene,
P. Natl. Acad. Sci. USA, 114, 8169–8174,
https://doi.org/10.1073/pnas.1705463114, 2017.
Ji, Y., Shi, Q., Li, Y., An, T., Zheng, J., Peng, J., Gao, Y., Chen, J., Li,
G., Wang, Y., Zhang, F., Zhang, A. L., Zhao, J., Molina, M. J., and Zhang,
R.: Carbenium ion-mediated oligomerization of methylglyoxal for secondary
organic aerosol formation, P. Natl. Acad. Sci. USA, 117, 13294–13299, https://doi.org/10.1073/pnas.1912235117, 2020.
Jia, L. and Xu, Y.: Effects of Relative Humidity on Ozone and Secondary
Organic Aerosol Formation from the Photooxidation of Benzene and
Ethylbenzene, Aerosol Sci. Tech., 48, 1–12,
https://doi.org/10.1080/02786826.2013.847269, 2014.
Jia, L. and Xu, Y.: Different roles of water in secondary organic aerosol formation from toluene and isoprene, Atmos. Chem. Phys., 18, 8137–8154, https://doi.org/10.5194/acp-18-8137-2018, 2018.
Li, G., Zhang, R., Fan, J., and Tie, X.: Impacts of biogenic emissions on
photochemical ozone production in Houston, Texas, J. Geophys. Res., 112,
D10309, https://doi.org/10.1029/2006JD007924, 2007.
Li, Y., Ji, Y., Zhao, J., Wang, Y., Shi, Q., Peng, J., Wang, Y., Wang, C.,
Zhang, F., Wang, Y., Seinfeld, J. H., and Zhang, R.: Unexpected
Oligomerization of Small α-Dicarbonyls for Secondary Organic Aerosol
and Brown Carbon Formation, Environ. Sci. Technol., 55, 4430–4439,
https://doi.org/10.1021/acs.est.0c08066, 2021a.
Li, Y., Zhao, J., Wang, Y., Seinfeld, J. H., and Zhang, R.: Multigeneration
Production of Secondary Organic Aerosol from Toluene Photooxidation,
Environ. Sci. Technol., 55, 8592–8603, https://doi.org/10.1021/acs.est.1c02026, 2021b.
Liu, J., Zhang, F., Xu, W., Sun, Y., Chen, L., Li, S., Ren, J., Hu, B., Wu,
H., and Zhang, R.: Hygroscopicity of Organic Aerosols Linked to Formation
Mechanisms, Geophys. Res. Lett., 48, e2020GL091683,
https://doi.org/10.1029/2020GL091683, 2021.
Marrero-Ortiz, W., Hu, M., Du, Z., Ji, Y., Wang, Y. Y., Guo, S., Lin, Y.,
Gomez-Hermandez, M., Peng, J., Li, Y., Secrest, J., Zamora, M. L., Wang, Y.
Y., An, T., and Zhang, R.: Formation and Optical Properties of Brown Carbon
from Small α-Dicarbonyls and Amines, Environ. Sci. Technol., 53, 117–126,
https://doi.org/10.1021/acs.est.8b03995, 2019.
McMurry, P. H. and Rader, D. J.: Aerosol Wall Losses in Electrically Charged
Chambers, Aerosol Sci. Tech., 4, 249–268,
https://doi.org/10.1080/02786828508959054, 1985.
Molina, L. T.: Introductory lecture: air quality in megacities, Faraday
Discuss., 226, 9–52, https://doi.org/10.1039/d0fd00123f, 2021.
Moise, T., Flores, J. M., and Rudich, Y.: Optical Properties of Secondary
Organic Aerosols and Their Changes by Chemical Processes, Chem. Rev., 115,
4400–4439, 2015.
Molteni, U., Bianchi, F., Klein, F., El Haddad, I., Frege, C., Rossi, M. J., Dommen, J., and Baltensperger, U.: Formation of highly oxygenated organic molecules from aromatic compounds, Atmos. Chem. Phys., 18, 1909–1921, https://doi.org/10.5194/acp-18-1909-2018, 2018.
NASEM (National Academies of Sciences Engineering and Medicine): The Future
of Atmospheric Chemistry Research: Remembering Yesterday, Understanding
Today, Anticipating Tomorrow, The National Academies Press, Washington, DC, https://doi.org/10.17226/23573,
2016.
Ng, N. L., Kroll, J. H., Chan, A. W. H., Chhabra, P. S., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from m-xylene, toluene, and benzene, Atmos. Chem. Phys., 7, 3909–3922, https://doi.org/10.5194/acp-7-3909-2007, 2007.
Nishino, N., Arey, J., and Atkinson, R.: Formation Yields of Glyoxal and
Methylglyoxal from the Gas-Phase OH Radical-Initiated Reactions of Toluene,
Xylenes, and Trimethylbenzenes as a Function of NO2 Concentration, J. Phys.
Chem. A, 114, 10140–10147, https://doi.org/10.1021/jp105112h, 2010.
Peng, J., Hu, M., Shang, D., Wu, Z., Du, Z., Tan, T., Wang, Y., Zhang, F.,
and Zhang, R.: Explosive secondary aerosol formation during severe haze in
the North China Plain, Environ. Sci. Technol., 55, 2189–2207, 2021.
Pope III, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D.,
Ito, K., and Thurston, G. D.: Lung Cancer, Cardiopulmonary Mortality, and
Long-Term Exposure to Fine Particulate Air Pollution, J. Am. Med. Assoc.,
287, 1132–1141, 2002.
Qi, X., Zhu, S., Zhu, C., Hu, J., Lou, S., Xu, L., Dong, J., and Cheng, P.:
Smog chamber study of the effects of NOx and NH3 on the formation of
secondary organic aerosols and optical properties from photo-oxidation of
toluene, Sci. Total Environ., 727, 138632,
https://doi.org/10.1016/j.scitotenv.2020.138632, 2020.
Ravishankara, A. R.: Heterogeneous and multiphase chemistry in the
troposphere, Science, 276, 1058–1065, 1997.
Schwantes, R. H., Schilling, K. A., McVay, R. C., Lignell, H., Coggon, M. M., Zhang, X., Wennberg, P. O., and Seinfeld, J. H.: Formation of highly oxygenated low-volatility products from cresol oxidation, Atmos. Chem. Phys., 17, 3453–3474, https://doi.org/10.5194/acp-17-3453-2017, 2017.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from
air pollution to climate change, John Wiley & Sons, ISBN 978-1-118-94740-1, 2016.
Shi, Q., Zhang, W., Ji, Y., Wang, J., Qin, D., Chen, J., Gao, Y., Li, G.,
and An, T.: Enhanced uptake of glyoxal at the acidic nanoparticle interface:
implications for secondary organic aerosol formation, Environ. Sci. Nano, 7,
1126–1135, 2020.
Shrivastava, M., Cappa, C. D., Fan, J., Goldstein, A. H., Guenther, A. B.,
Jimenez, J. L., Kuang, C., Laskin, A., Martin, S. T., Ng, N. L., Petaja, T.,
Pierce, J. R., Rasch, P. J., Roldin, P., Seinfeld, J. H., Shilling, J.,
Smith, J. N., Thornton, J. A., Volkamer, R., Wang, J., Worsnop, D. R.,
Zaveri, R. A., Zelenyuk, A., and Zhang, Q.: Recent advances in understanding
secondary organic aerosol: Implications for global climate forcing, Rev.
Geophys., 55, 509–559, https://doi.org/10.1002/2016RG000540, 2017.
Song, C., Na, K., Warren, B., Malloy, Q., and Cocker, D. R.: Secondary
Organic Aerosol Formation from m-Xylene in the Absence of NOx, Environ. Sci.
Technol., 41, 7409–7416, https://doi.org/10.1021/es070429r, 2007.
Suh, I., Lei, W., and Zhang, R.: Experimental and theoretical studies of
isoprene reaction with NO3, J. Phys. Chem., 105, 6471–6478, 2001.
Tan, Y., Lim, Y. B., Altieri, K. E., Seitzinger, S. P., and Turpin, B. J.: Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal, Atmos. Chem. Phys., 12, 801–813, https://doi.org/10.5194/acp-12-801-2012, 2012.
Wang, G., Zhang, F., Peng, J., Duan, L., Ji, Y., Marrero-Ortiz, W., Wang, J., Li, J., Wu, C., Cao, C., Wang, Y., Zheng, J., Secrest, J., Li, Y., Wang, Y., Li, H., Li, N., and Zhang, R.: Particle acidity and sulfate production during severe haze events in China cannot be reliably inferred by assuming a mixture of inorganic salts, Atmos. Chem. Phys., 18, 10123–10132, https://doi.org/10.5194/acp-18-10123-2018, 2018.
Wang, L., Khalizov, A. F., Zheng, J., Xu, W., Ma, Y., Lal, V., and Zhang, R.:
Atmospheric nanoparticles formed from heterogeneous reactions of organics,
Nat. Geosci., 3, 238–242, https://doi.org/10.1038/ngeo778, 2010.
Wang, M., Chen, D., Xiao, M., Ye, Q., Stolzenburg, D., Hofbauer, V., Ye, P.,
Vogel, A. L., Mauldin, R. L., Amorim, A., Baccarini, A., Baumgartner, B.,
Brilke, S., Dada, L., Dias, A., Duplissy, J., Finkenzeller, H., Garmash, O.,
He, X.-C., Hoyle, C. R., Kim, C., Kvashnin, A., Lehtipalo, K., Fischer, L.,
Molteni, U., Petäjä, T., Pospisilova, V., Quéléver, L. L.
J., Rissanen, M., Simon, M., Tauber, C., Tomé, A., Wagner, A. C., Weitz,
L., Volkamer, R., Winkler, P. M., Kirkby, J., Worsnop, D. R., Kulmala, M.,
Baltensperger, U., Dommen, J., El-Haddad, I., and Donahue, N. M.:
Photo-oxidation of Aromatic Hydrocarbons Produces Low-Volatility Organic
Compounds, Environ. Sci. Technol., 54, 7911–7921,
https://doi.org/10.1021/acs.est.0c02100, 2020.
Wang, Y., Khalizov, A., Levy, M., and Zhang, R.: Light absorbing aerosols
and their atmospheric impacts, Atmos. Environ., 81, 713–715,
https://doi.org/10.1016/j.atmosenv.2013.09.034, 2013.
Wang, Y., Lee, K.-H., Lin, Y., Levy, M., and Zhang, R.: Distinct effects of
anthropogenic aerosols on tropical cyclones, Nat. Clim. Change, 4,
368–373, https://doi.org/10.1038/nclimate2144, 2014.
Wennberg, P. O., Bates, K. H., Crounse, J. D., Dodson, L. G., McVay, R. C.,
Mertens, L. A., Nguyen, T. B., Praske, E., Schwantes, R. H., Smarte, M. D.,
St Clair, J. M., Teng, A. P., Zhang, X., and Seinfeld, J. H.: Gas-Phase
Reactions of Isoprene and Its Major Oxidation Products, Chem. Rev., 118,
3337–3390, 2018.
Xue, H., Khalizov, A. F., Wang, L., Zheng, J., and Zhang, R.: Effects of
Coating of Dicarboxylic Acids on the Mass–Mobility Relationship of Soot
Particles, Environ. Sci. Technol., 43, 2787–2792, https://doi.org/10.1021/es803287v,
2009.
Yuan, B., Koss, A. R., Warneke, C., Coggon, M., Sekimoto, K., and de Gouw, J.
A.: Proton-Transfer-Reaction Mass Spectrometry: Applications in Atmospheric
Sciences, Chem. Rev., 117, 13187–13229,
https://doi.org/10.1021/acs.chemrev.7b00325, 2017.
Zhang, D., Lei, W., and Zhang, R.: Mechanism of OH formation from ozonolysis
of isoprene: Kinetics and product yields, Chem. Phys. Lett., 358, 171–179,
2002.
Zhang, F., Wang, Y., Peng, J., Chen, L., Sun, Y., Duan, L., Ge, X., Li, Y.,
Zhao, J., Liu, C., Zhang, X., Zhang, G., Pan, Y., Wang, Y., Zhang, A. L., Ji,
Y., Wang, G., Hu, M., Molina, M. J., and Zhang, R.: An unexpected catalyst
dominates formation and radiative forcing of regional haze, P. Natl.
Acad. Sci. USA, 117, 3960–3966, https://doi.org/10.1073/pnas.1919343117, 2020.
Zhang, Q., Xu, Y., and Jia, L.: Secondary organic aerosol formation from OH-initiated oxidation of m-xylene: effects of relative humidity on yield and chemical composition, Atmos. Chem. Phys., 19, 15007–15021, https://doi.org/10.5194/acp-19-15007-2019, 2019.
Zhang, R., Leu, M. T., and Keyser, L. F.: Heterogeneous reactions involving
ClONO2, HCl, and HOCl on liquid sulfuric acid surfaces, J. Phys.
Chem., 98, 13563–13574, 1994.
Zhang, R., Suh, I., Zhao, J., Zhang, D., Fortner, E. C., Tie, X., Molina, L.
T., and Molina, M. J.: Atmospheric New Particle Formation Enhanced by Organic
Acids, Science, 304, 1487–1490, https://doi.org/10.1126/science.1095139, 2004.
Zhang, R., Wang, L., Khalizov, A. F., Zhao, J., Zheng, J., McGraw, R. L.,
and Molina, L. T.: Formation of nanoparticles of blue haze enhanced by
anthropogenic pollution, P. Natl. Acad. Sci. USA, 106, 17650–17654,
https://doi.org/10.1073/pnas.0910125106, 2009.
Zhang, R., Wang, G., Guo, S., Zamora, M. L., Ying, Q., Lin, Y., Wang, W.,
Hu, M., and Wang, Y.: Formation of Urban Fine Particulate Matter, Chem.
Rev., 115, 3803–3855, https://doi.org/10.1021/acs.chemrev.5b00067, 2015.
Zhang, R., Johnson, N. M., and Li, Y.: Establishing the exposure-outcome
relation between airborne particulate matter and children's health, Thorax,
77, 322–323, https://doi.org/10.1136/thoraxjnl-2021-217915, 2021.
Zhang, X., Cappa, C. D., Jathar, S. H., McVay, R. C., Ensberg, J. J.,
Kleeman, M. J., and Seinfeld, J. H.: Influence of Vapor Wall Loss in
Laboratory Chambers on Yields of Secondary Organic Aerosol, P. Natl.
Acad. Sci. USA, 111, 5802–5807, 2014.
Zhao, J. and Zhang, R.: Proton transfer reaction rate constants between
hydronium ion (H3O+) and volatile organic compounds, Atmos.
Environ., 38, 2177–2185,
https://doi.org/10.1016/j.atmosenv.2004.01.019, 2004.
Zhao, J., Zhang, R., Fortner, E. C., and North, S. W.: Quantification of
hydroxycarbonyls from OH-isoprene reactions, J. Am. Chem. Soc., 126,
2686–2687, 2004.
Zhao, J., Levitt, N. P., and Zhang, R.: Heterogeneous chemistry of octanal
and 2,4-hexadienal with sulfuric acid, Geophys. Res. Lett., 32, L09802,
https://doi.org/10.1029/2004GL022200, 2005a.
Zhao, J., Zhang, R., Misawa, K., and Shibuya, K.: Experimental product study
of the OH-initiated oxidation of m-xylene, J. Photochem. Photobio. A,
176, 199–207, https://doi.org/10.1016/j.jphotochem.2005.07.013,
2005b.
Zhu, J., Penner, J. E., Lin, G., Zhou, C., Xu, L., and Zhuang, B.: Mechanism
of SOA formation determines magnitude of radiative effects, P. Natl. Acad.
Sci. USA, 114, 12685–12690, https://doi.org/10.1073/pnas.1712273114, 2017.
Short summary
Here we elucidate the production of COOs and their roles in SOA and brown carbon formation from m-xylene oxidation by simultaneously monitoring the evolution of gas-phase products and aerosol properties in an environmental chamber. A kinetic framework is developed to predict SOA production from the concentrations and uptake coefficients for COOs. This functionality-based approach reproduces SOA formation from m-xylene oxidation well and is applicable to VOC oxidation for other species.
Here we elucidate the production of COOs and their roles in SOA and brown carbon formation from...
Altmetrics
Final-revised paper
Preprint