Articles | Volume 22, issue 13
https://doi.org/10.5194/acp-22-9175-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-9175-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A novel pathway of atmospheric sulfate formation through carbonate radicals
Yangyang Liu
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention, Department of Environmental Science and Engineering, Fudan
University, Shanghai 200433, P.R. China
Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, Peoples' Republic of China
Yue Deng
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention, Department of Environmental Science and Engineering, Fudan
University, Shanghai 200433, P.R. China
Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, Peoples' Republic of China
Jiarong Liu
Key Laboratory of Cluster Science, Ministry of Education of China,
School of Chemistry and Chemical Engineering, Beijing Institute of
Technology, Beijing 100081, P.R. China
Xiaozhong Fang
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention, Department of Environmental Science and Engineering, Fudan
University, Shanghai 200433, P.R. China
Tao Wang
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention, Department of Environmental Science and Engineering, Fudan
University, Shanghai 200433, P.R. China
Kejian Li
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention, Department of Environmental Science and Engineering, Fudan
University, Shanghai 200433, P.R. China
Kedong Gong
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention, Department of Environmental Science and Engineering, Fudan
University, Shanghai 200433, P.R. China
Aziz U. Bacha
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention, Department of Environmental Science and Engineering, Fudan
University, Shanghai 200433, P.R. China
Iqra Nabi
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention, Department of Environmental Science and Engineering, Fudan
University, Shanghai 200433, P.R. China
Qiuyue Ge
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention, Department of Environmental Science and Engineering, Fudan
University, Shanghai 200433, P.R. China
Xiuhui Zhang
Key Laboratory of Cluster Science, Ministry of Education of China,
School of Chemistry and Chemical Engineering, Beijing Institute of
Technology, Beijing 100081, P.R. China
Christian George
Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON,
69626 Villeurbanne, France
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention, Department of Environmental Science and Engineering, Fudan
University, Shanghai 200433, P.R. China
Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, Peoples' Republic of China
Related authors
Tao Wang, Yangyang Liu, Hanyun Cheng, Zhenzhen Wang, Hongbo Fu, Jianmin Chen, and Liwu Zhang
Atmos. Chem. Phys., 22, 13467–13493, https://doi.org/10.5194/acp-22-13467-2022, https://doi.org/10.5194/acp-22-13467-2022, 2022
Short summary
Short summary
This study compared the gas-phase, aqueous-phase, and heterogeneous SO2 oxidation pathways by combining laboratory work with a modelling study. The heterogeneous oxidation, particularly that induced by the dust surface drivers, presents positive implications for the removal of airborne SO2 and formation of sulfate aerosols. This work highlighted the atmospheric significance of heterogeneous oxidation and suggested a comparison model to evaluate the following heterogeneous laboratory research.
Jiaqi Jin, Runlong Cai, Yiliang Liu, Gan Yang, Yueyang Li, Chuang Li, Lei Yao, Jingkun Jiang, Xiuhui Zhang, and Lin Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2787, https://doi.org/10.5194/egusphere-2025-2787, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Based on observed atmospheric new particle formation events at multiple sites in eastern China, we find that the dominant nucleation mechanism in this region is sulfuric acid-dimethylamine and the differences in the nucleation intensity among campaigns can be largely attributed to temperature and precursor concentrations. Our results also show that oxygenated organic molecules can make a great contribution to the initial growth of freshly nucleated particles in the real atmosphere.
Jing Li, An Ning, Ling Liu, Fengyang Bai, Qishen Huang, Pai Liu, Xiucong Deng, Yunhong Zhang, and Xiuhui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1194, https://doi.org/10.5194/egusphere-2025-1194, 2025
Short summary
Short summary
Iodic acid (IA) particles are frequently observed in the upper troposphere and lower stratosphere (UTLS), yet their formation mechanism remains unclear. Nitric acid (NA) and ammonia (NH3) are key nucleation precursors in the UTLS. This study investigates the IA–NA–NH3 system using a theoretical approach. Our proposed nucleation mechanism highlights the crucial role of NA in IA nucleation, providing molecular-level evidence for the missing sources of IA particles in the UTLS.
Jiewen Shen, Bin Zhao, Shuxiao Wang, An Ning, Yuyang Li, Runlong Cai, Da Gao, Biwu Chu, Yang Gao, Manish Shrivastava, Jingkun Jiang, Xiuhui Zhang, and Hong He
Atmos. Chem. Phys., 24, 10261–10278, https://doi.org/10.5194/acp-24-10261-2024, https://doi.org/10.5194/acp-24-10261-2024, 2024
Short summary
Short summary
We extensively compare various cluster-dynamics-based parameterizations for sulfuric acid–dimethylamine nucleation and identify a newly developed parameterization derived from Atmospheric Cluster Dynamic Code (ACDC) simulations as being the most reliable one. This study offers a valuable reference for developing parameterizations of other nucleation systems and is meaningful for the accurate quantification of the environmental and climate impacts of new particle formation.
Dandan Li, Dongyu Wang, Lucia Caudillo, Wiebke Scholz, Mingyi Wang, Sophie Tomaz, Guillaume Marie, Mihnea Surdu, Elias Eccli, Xianda Gong, Loic Gonzalez-Carracedo, Manuel Granzin, Joschka Pfeifer, Birte Rörup, Benjamin Schulze, Pekka Rantala, Sébastien Perrier, Armin Hansel, Joachim Curtius, Jasper Kirkby, Neil M. Donahue, Christian George, Imad El-Haddad, and Matthieu Riva
Atmos. Meas. Tech., 17, 5413–5428, https://doi.org/10.5194/amt-17-5413-2024, https://doi.org/10.5194/amt-17-5413-2024, 2024
Short summary
Short summary
Due to the analytical challenges of measuring organic vapors, it remains challenging to identify and quantify organic molecules present in the atmosphere. Here, we explore the performance of the Orbitrap chemical ionization mass spectrometer (CI-Orbitrap) using ammonium ion chemistry. This study shows that ammonium-ion-based chemistry associated with the high mass resolution of the Orbitrap mass analyzer can measure almost all inclusive compounds.
Haotian Zu, Biwu Chu, Yiqun Lu, Ling Liu, and Xiuhui Zhang
Atmos. Chem. Phys., 24, 5823–5835, https://doi.org/10.5194/acp-24-5823-2024, https://doi.org/10.5194/acp-24-5823-2024, 2024
Short summary
Short summary
The nucleation of iodic acid (HIO3) and iodous acid (HIO2) was proven to be critical in marine areas. However, HIO3–HIO2 nucleation cannot effectively derive the rapid nucleation in some polluted coasts. We find a significant enhancement of dimethylamine (DMA) on the HIO3–HIO2 nucleation in marine and polar regions with abundant DMA sources, which may establish reasonable connections between the HIO3–HIO2 nucleation and the rapid formation of new particles in polluted marine and polar regions.
Jing Li, Nan Wu, Biwu Chu, An Ning, and Xiuhui Zhang
Atmos. Chem. Phys., 24, 3989–4000, https://doi.org/10.5194/acp-24-3989-2024, https://doi.org/10.5194/acp-24-3989-2024, 2024
Short summary
Short summary
Iodic acid (HIO3) nucleates with iodous acid (HIO2) efficiently in marine areas; however, whether methanesulfonic acid (MSA) can synergistically participate in the HIO3–HIO2-based nucleation is unclear. We provide molecular-level evidence that MSA can efficiently promote the formation of HIO3–HIO2-based clusters using a theoretical approach. The proposed MSA-enhanced iodine nucleation mechanism may help us to deeply understand marine new particle formation events with bursts of iodine particles.
Qianqian Gao, Shengqiang Zhu, Kaili Zhou, Jinghao Zhai, Shaodong Chen, Qihuang Wang, Shurong Wang, Jin Han, Xiaohui Lu, Hong Chen, Liwu Zhang, Lin Wang, Zimeng Wang, Xin Yang, Qi Ying, Hongliang Zhang, Jianmin Chen, and Xiaofei Wang
Atmos. Chem. Phys., 23, 13049–13060, https://doi.org/10.5194/acp-23-13049-2023, https://doi.org/10.5194/acp-23-13049-2023, 2023
Short summary
Short summary
Dust is a major source of atmospheric aerosols. Its chemical composition is often assumed to be similar to the parent soil. However, this assumption has not been rigorously verified. Dust aerosols are mainly generated by wind erosion, which may have some chemical selectivity. Mn, Cd and Pb were found to be highly enriched in fine-dust (PM2.5) aerosols. In addition, estimation of heavy metal emissions from dust generation by air quality models may have errors without using proper dust profiles.
Yiqun Lu, Yingge Ma, Dan Dan Huang, Shengrong Lou, Sheng'ao Jing, Yaqin Gao, Hongli Wang, Yanjun Zhang, Hui Chen, Yunhua Chang, Naiqiang Yan, Jianmin Chen, Christian George, Matthieu Riva, and Cheng Huang
Atmos. Chem. Phys., 23, 3233–3245, https://doi.org/10.5194/acp-23-3233-2023, https://doi.org/10.5194/acp-23-3233-2023, 2023
Short summary
Short summary
N-containing oxygenated organic molecules have been identified as important precursors of aerosol particles. We used an ultra-high-resolution mass spectrometer coupled with an online sample inlet to accurately measure their molecular composition, concentration level and variation patterns. We show their formation process and influencing factors in a Chinese megacity involving various volatile organic compound precursors and atmospheric oxidants, and we highlight the influence of PM2.5 episodes.
Yu Han, Tao Wang, Rui Li, Hongbo Fu, Yusen Duan, Song Gao, Liwu Zhang, and Jianmin Chen
Atmos. Chem. Phys., 23, 2877–2900, https://doi.org/10.5194/acp-23-2877-2023, https://doi.org/10.5194/acp-23-2877-2023, 2023
Short summary
Short summary
Limited knowledge is available on volatile organic compound (VOC) multi-site research of different land-use types at city level. This study performed a concurrent multi-site observation campaign on the three typical land-use types of Shanghai, East China. The results showed that concentrations, sources and ozone and secondary organic aerosol formation potentials of VOCs varied with the land-use types.
Tao Wang, Yangyang Liu, Hanyun Cheng, Zhenzhen Wang, Hongbo Fu, Jianmin Chen, and Liwu Zhang
Atmos. Chem. Phys., 22, 13467–13493, https://doi.org/10.5194/acp-22-13467-2022, https://doi.org/10.5194/acp-22-13467-2022, 2022
Short summary
Short summary
This study compared the gas-phase, aqueous-phase, and heterogeneous SO2 oxidation pathways by combining laboratory work with a modelling study. The heterogeneous oxidation, particularly that induced by the dust surface drivers, presents positive implications for the removal of airborne SO2 and formation of sulfate aerosols. This work highlighted the atmospheric significance of heterogeneous oxidation and suggested a comparison model to evaluate the following heterogeneous laboratory research.
An Ning, Ling Liu, Lin Ji, and Xiuhui Zhang
Atmos. Chem. Phys., 22, 6103–6114, https://doi.org/10.5194/acp-22-6103-2022, https://doi.org/10.5194/acp-22-6103-2022, 2022
Short summary
Short summary
Iodic acid (IA) and methanesulfonic acid (MSA) were previously proved to be significant nucleation precursors in marine areas. However, the nucleation process involved in IA and MSA remains unclear. We show the enhancement of MSA on IA cluster formation and reveal the IAM-SA nucleating mechanism using a theoretical approach. This study helps to understand the clustering process in which marine sulfur- and iodine-containing species are jointly involved and its impact on new particle formation.
Narcisse Tsona Tchinda, Lin Du, Ling Liu, and Xiuhui Zhang
Atmos. Chem. Phys., 22, 1951–1963, https://doi.org/10.5194/acp-22-1951-2022, https://doi.org/10.5194/acp-22-1951-2022, 2022
Short summary
Short summary
This study explores the effect of pyruvic acid (PA) both in the SO3 hydrolysis and in sulfuric-acid-based aerosol formation. Results show that in dry and polluted areas, PA-catalyzed SO3 hydrolysis is about 2 orders of magnitude more efficient at forming sulfuric acid than the water-catalyzed reaction. Moreover, PA can effectively enhance the ternary SA-PA-NH3 particle formation rate by up to 4.7×102 relative to the binary SA-NH3 particle formation rate at cold temperatures.
Letizia Abis, Carmen Kalalian, Bastien Lunardelli, Tao Wang, Liwu Zhang, Jianmin Chen, Sébastien Perrier, Benjamin Loubet, Raluca Ciuraru, and Christian George
Atmos. Chem. Phys., 21, 12613–12629, https://doi.org/10.5194/acp-21-12613-2021, https://doi.org/10.5194/acp-21-12613-2021, 2021
Short summary
Short summary
Biogenic volatile organic compound (BVOC) emissions from rapeseed leaf litter have been investigated by means of a controlled atmospheric simulation chamber. The diversity of emitted VOCs increased also in the presence of UV light irradiation. SOA formation was observed when leaf litter was exposed to both UV light and ozone, indicating a potential contribution to particle formation or growth at local scales.
Ling Liu, Fangqun Yu, Kaipeng Tu, Zhi Yang, and Xiuhui Zhang
Atmos. Chem. Phys., 21, 6221–6230, https://doi.org/10.5194/acp-21-6221-2021, https://doi.org/10.5194/acp-21-6221-2021, 2021
Short summary
Short summary
Trifluoroacetic acid (TFA) was previously proved to participate in sulfuric acid (SA)–dimethylamine (DMA) nucleation in Shanghai, China. However, complex atmospheric environments can influence the nucleation of aerosol significantly. We show the influence of different atmospheric conditions on the SA-DMA-TFA nucleation and find the enhancement by TFA can be significant in cold and polluted areas, which provides the perspective of the realistic role of TFA in different atmospheric environments.
Runlong Cai, Yihao Li, Yohann Clément, Dandan Li, Clément Dubois, Marlène Fabre, Laurence Besson, Sebastien Perrier, Christian George, Mikael Ehn, Cheng Huang, Ping Yi, Yingge Ma, and Matthieu Riva
Atmos. Meas. Tech., 14, 2377–2387, https://doi.org/10.5194/amt-14-2377-2021, https://doi.org/10.5194/amt-14-2377-2021, 2021
Short summary
Short summary
Orbitool is an open-source software tool, mainly coded in Python, with a graphical user interface (GUI), specifically developed to facilitate the analysis of online Orbitrap mass spectrometric data. It is notably optimized for long-term atmospheric measurements and laboratory studies.
Cited articles
Abou-Ghanem, M., Oliynyk, A. O., Chen, Z. H., Matchett, L. C., McGrath, D. T., Katz, M. J., Locock, A. J., and Styler, S. A.: Significant Variability in the Photocatalytic Activity of Natural Titanium-Containing Minerals: Implications for Understanding and Predicting Atmospheric Mineral Dust Photochemistry, Environ. Sci. Technol., 54, 13509–13516, https://doi.org/10.1021/acs.est.0c05861, 2020.
Agustine, I., Yulinawati, H., Gunawan, D., and Suswantoro, E.: Potential
impact of particulate matter less than 10 micron (PM10) to ambient air
quality of Jakarta and Palembang, Iop C Ser. Earth Env., 106, 012057,
https://doi.org/10.1088/1755-1315/106/1/012057, 2018.
Al-Hosney, H. A. and Grassian, V. H.: Water, sulfur dioxide and nitric acid
adsorption on calcium carbonate: A transmission and ATR-FTIR study, Phys.
Chem. Chem. Phys., 7, 1266–1276, https://doi.org/10.1039/b417872f, 2005.
Al-Salihi, A. M. and Mohammed, T. H.: The effect of dust storms on some
meteorological elements over Baghdad, Iraq: Study Cases, IOSR Journal of
Applied Physics, 7, Ver. II PP 01-07, https://iosrjournals.org/iosr-jap/papers/Vol7-issue2/Version-2/A07220107.pdf (last access: 12 July 2022), 2015.
Balachandran, U. and Eror, N. G.: Raman-Spectra Of Titanium-Dioxide, J.
Sol. State Chem., 42, 276–282, https://doi.org/10.1016/0022-4596(82)90006-8, 1982.
Baltrusaitis, J., Schuttlefield, J., Zeitler, E., and Grassian, V. H.:
Carbon dioxide adsorption on oxide nanoparticle surfaces, Chem. Eng. J.,
170, 471–481, https://doi.org/10.1016/j.cej.2010.12.041, 2011.
Bao, H., Yu, S., and Tong, D. Q.: Massive volcanic SO2 oxidation and
sulphate aerosol deposition in Cenozoic North America, Nature, 465, 909–912,
https://doi.org/10.1038/nature09100, 2010.
Bauer, S. E. and Koch, D.: Impact of heterogeneous sulfate formation at
mineral dust surfaces on aerosol loads and radiative forcing in the Goddard
Institute for Space Studies general circulation model, J. Geophys. Res.,
110, D17202, https://doi.org/10.1029/2005jd005870, 2005.
Behrman, E. J.: Degradation kinetics and mechanism of aniline by
heat-assisted persulfate oxidation Comment, J. Environ. Sci. China, 64,
352–352, https://doi.org/10.1016/j.jes.2018.02.008, 2018.
Beig, G. and Brasseur, G. P.: Model of tropospheric ion composition: A first
attempt, J. Geophys. Res., 105, 22671–22684, https://doi.org/10.1029/2000JD900119, 2000.
Bhattacharya, A., Amitabha, D., and Mandal, P. C.: Carbonate radical induced
polymerisation of pyrrole: A steady state and flash photolysis study, J.
Radioanal. Nucl. Ch., 230, 91–95, https://doi.org/10.1007/BF02387452, 1998.
Bisby, R. H., Johnson, S. A., Parker, A. W., and Tavender, S. M.:
Time-resolved resonance Raman spectroscopy of the carbonate radical, J.
Chem. Soc. Faraday Trans., 94, 2069–2072, https://doi.org/10.1039/A801239C, 1998.
Busset, C., Mazellier, P., Sarakha, M., and De Laat, J.: Photochemical
generation of carbonate radicals and their reactivity with phenol, J.
Photoch. Photobio. A, 185, 127–132, https://doi.org/10.1016/j.jphotochem.2006.04.045, 2007.
Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B.: Critical
Review of rate constants for reactions of hydrated electrons, hydrogen atoms
and hydroxyl radicals (⚫OH/⚫O− in aqueous
solution, J. Phys. Chem. Ref. Data, 17, 513–886, https://doi.org/10.1063/1.555805, 2009.
Cao, J. J., Lee, S. C., Zhang, X. Y., Chow, J. C., An, Z. S., Ho, K. F.,
Watson, J. G., Fung, K., Wang, Y. Q., and Shen, Z. X.: Characterization of
airborne carbonate over a site near Asian dust source regions during spring
2002 and its climatic and environmental significance, J. Geophys. Res., 110,
1–8, https://doi.org/10.1029/2004JD005244, 2005.
Chameides, W. L. and Davis, D. D.: The Free-Radical chemistry of cloud
droplets and its impact upon the composition of rain, J. Geophs Res.-Oceans,
87, 4863–4877, https://doi.org/10.1029/JC087iC07p04863, 1982.
Chandrasekaran, K. and Thomas, J. K.: Photochemical reduction of carbonate
to formaldehyde on TiO2 powder, Chem. Phys. Lett., 99, 7–10, https://doi.org/10.1016/0009-2614(83)80259-0, 1983.
Chen, H. H., Nanayakkara, C. E., and Grassian, V. H.: Titanium Dioxide
Photocatalysis in Atmospheric Chemistry, Chem. Rev., 112, 5919–5948,
https://doi.org/10.1021/cr3002092, 2012.
Chen, Y., Tong, S. R., Li, W. R., Liu, Y. P., Tan, F., Ge, M. F., Xie, X.
F., and Sun, J.: Photocatalytic Oxidation of SO2 by TiO2: Aerosol
Formation and the Key Role of Gaseous Reactive Oxygen Species, Environ. Sci.
Technol., 55, 9784–9793, https://doi.org/10.1021/acs.est.1c01608, 2021.
Cheung, K., Daher, N., Kam, W., Shafer, M. M., Ning, Z., Schauer, J. J., and
Sioutas, C.: Spatial and temporal variation of chemical composition and mass
closure of ambient coarse particulate matter (PM10–2.5) in the Los Angeles area, Atmos. Environ., 45, 2651–2662, https://doi.org/10.1016/j.atmosenv.2011.02.066, 2011.
Cope, V. W., Chen, S.-N., and Hoffman, M. Z.: Intermediates in the
photochemistry of of carbonato-amine complexes of cobalt(III). carbonate(-)
radicals and the aquocarbonato complex, J. Am. Chem. Soc., 95, 3116–3121,
https://doi.org/10.1021/ja00791a005, 1973
Csavina, J., Field, J., Felix, O., Corral-Avitia, A. Y., Saez, A. E., and
Betterton, E. A.: Effect of wind speed and relative humidity on atmospheric
dust concentrations in semi-arid climates, Sci. Total Envrion., 487, 82–90, https://doi.org/10.1016/j.scitotenv.2014.03.138, 2014.
Cwiertny, D. M., Young, M. A., and Grassian, V. H.: Chemistry and
photochemistry of mineral dust aerosol, Annu. Rev. Phys. Chem., 59, 27–51,
https://doi.org/10.1146/annurev.physchem.59.032607.093630, 2008.
Das, T. N.: Reactivity and role of SO radical in aqueous medium chain oxidation of sulfite to sulfate and atmospheric sulfuric acid generation, J. Phys. Chem. A, 105, 9142–9155, https://doi.org/10.1021/jp011255h, 2001.
Deng, Y., Liu, Y., Wang, T., Cheng, H., Feng, Y., Yang, Y., and Zhang, L.:
Photochemical reaction of CO2 on atmospheric mineral dusts, Atmos.
Environ., 223, 117222, https://doi.org/10.1016/j.atmosenv.2019.117222, 2020.
Dong, X., Fu, J. S., Huang, K., Tong, D., and Zhuang, G.: Model development of dust emission and heterogeneous chemistry within the Community Multiscale Air Quality modeling system and its application over East Asia, Atmos. Chem. Phys., 16, 8157–8180, https://doi.org/10.5194/acp-16-8157-2016, 2016.
Dupart, Y., King, S. M., Nekat, B., Nowak, A., Wiedensohler, A., Herrmann,
H., David, G., Thomas, B., Miffre, A., Rairoux, P., D'Anna, B., and George,
C.: Mineral dust photochemistry induces nucleation events in the presence of
SO2, P. Natl. Acad. Sci. USA, 109, 20842–20847, https://doi.org/10.1073/pnas.1212297109, 2012.
Duran, A., Monteagudo, J. M., Martin, I. S., Merino, S., Chen, X., and Shi,
X.: Solar photo-degradation of aniline with rGO/TiO2 composites and
persulfate, Sci. Total Envrion., 697, 134086, https://doi.org/10.1016/j.scitotenv.2019.134086, 2019.
El Zein, A., Romanias, M. N., and Bedjanian, Y.: Kinetics and Products of
Heterogeneous Reaction of HONO with Fe2O3 and Arizona Test Dust,
Environ. Sci. Technol., 47, 6325–6331, https://doi.org/10.1021/es400794c, 2013.
Ervens, B., George, C., Williams, J. E., Buxton, G. V., Salmon, G. A.,
Bydder, M., Wilkinson, F., Dentener, F., Mirabel, P., Wolke, R., and
Herrmann, H.: CAPRAM 2.4 (MODAC mechanism): An extended and condensed
tropospheric aqueous phase mechanism and its application, J. Geophys. Res.,
108, 4426, https://doi.org/10.1029/2002jd002202, 2003.
Fang, T., Guo, H., Zeng, L., Verma, V., Nenes, A., and Weber, R. J.: Highly
Acidic Ambient Particles, Soluble Metals, and Oxidative Potential: A Link
between Sulfate and Aerosol Toxicity, Environ. Sci. Technol., 51, 2611–2620,
https://doi.org/10.1021/acs.est.6b06151, 2017.
Fang, X., Liu, Y., Kejian, Tao, W., Yue, D., Yiqing, F., Yang, Y., Cheng,
H., Chen, J., and liwu, Z.: Atmospheric Nitrate Formation through Oxidation
by carbonate radical, ACS Earth Space Chem., 5, 1801–1811, https://doi.org/10.1021/acsearthspacechem.1c00169, 2021.
Feng, T., Bei, N. F., Zhao, S. Y., Wu, J. R., Li, X., Zhang, T., Cao, J. J.,
Zhou, W. J., and Li, G. H.: Wintertime nitrate formation during haze days in
the Guanzhong basin, China: A case study, Environ. Pollut., 243, 1057–1067,
https://doi.org/10.1016/j.envpol.2018.09.069, 2018.
Ferrer-Sueta, G., Vitturi, D., Batinic-Haberle, I., Fridovich, I.,
Goldstein, S., Czapski, G., and Radi, R.: Reactions of manganese porphyrins
with peroxynitrite and carbonate radical anion, J. Biol. Chem., 278,
27432–27438, https://doi.org/10.1074/jbc.M213302200, 2003.
Gankanda, A., Coddens, E. M., Zhang, Y. P., Cwiertny, D. M., and Grassian,
V. H.: Sulfate formation catalyzed by coal fly ash, mineral dust and
iron(III) oxide: variable influence of temperature and light, Environ.
Sci.-Proc. Imp., 18, 1484–1491, https://doi.org/10.1039/c6em00430j, 2016.
Ge, W., Liu, J., Yi, K., Xu, J., Zhang, Y., Hu, X., Ma, J., Wang, X., Wan, Y., Hu, J., Zhang, Z., Wang, X., and Tao, S.: Influence of atmospheric in-cloud aqueous-phase chemistry on the global simulation of SO2 in CESM2, Atmos. Chem. Phys., 21, 16093–16120, https://doi.org/10.5194/acp-21-16093-2021, 2021.
Ghalei, M., Ma, J., Schmidhammer, U., Vandenborre, J., Fattahi, M., and
Mostafavi, M.: Picosecond pulse radiolysis of highly concentrated carbonate
solutions, J. Phys. Chem. B, 120, 2434–2439, https://doi.org/10.1021/acs.jpcb.5b12405, 2016.
Goldstein, S., Czapski, G., Lind, J., and Merényi, G.: Carbonate radical
ion is the only observable intermediate in the reaction of peroxynitrite
with CO2, Chem. Res. Toxicol., 14, 1273–1276, https://doi.org/10.1021/tx0100845, 2001.
Graedel, T. E. and Weschler, C. J.: Chemistry within Aqueous Atmospheric
Aerosols And Raindrops, J. Geophys. Res., 19, 505–539, https://doi.org/10.1029/RG019i004p00505, 1981.
Hanisch, F. and Crowley, J. N.: Ozone decomposition on Saharan dust: an experimental investigation, Atmos. Chem. Phys., 3, 119–130, https://doi.org/10.5194/acp-3-119-2003, 2003.
Hayon, E., Treinin, A., and Wilf, J.: Electronic spectra, photochemistry,
and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems.
SO , SO , SO , and SO radicals,
J. Am. Chem. Soc., 94, 47–57, https://doi.org/10.1021/ja00756a009, 1972.
He, J., Xu, H. H., Balasubramanian, R., Chan, C. Y., and Wang, C. J.:
Comparison of NO2 and SO2 Measurements Using Different Passive Samplers in Tropical Environment, Aerosol Air Qual. Res., 14, 355–363, https://doi.org/10.4209/aaqr.2013.02.0055, 2014.
Herrmann, H., Ervens, B., Jacobi, H. W., Wolke, R., Nowacki, P., and
Zellner, R.: CAPRAM2.3: A chemical aqueous phase radical mechanism for
tropospheric chemistry, J. Atmos. Chem., 36, 231–284, https://doi.org/10.1023/A:1006318622743, 2000.
Hossain, M. D., Huang, Y., Yu, T. H., Goddard Iii, W. A., and Luo, Z.:
Reaction mechanism and kinetics for CO2 reduction on nickel single atom
catalysts from quantum mechanics, Nat. Commun., 11, 2256, https://doi.org/10.1038/s41467-020-16119-6, 2020.
Huang, H. L., Chao, W., and Lin, J. J. M.: Kinetics of a Criegee
intermediate that would survive high humidity and may oxidize atmospheric
SO2, P. Natl. Acad. Sci. USA, 112, 10857–10862, https://doi.org/10.1073/pnas.1513149112, 2015.
Huang, J. P. and Mabury, S. A.: Steady-state concentrations of carbonate
radicals in field waters, Environ. Toxicol. Chem., 19, 2181–2188, https://doi.org/10.1002/etc.5620190906, 2000.
Huang, L., An, J., Koo, B., Yarwood, G., Yan, R., Wang, Y., Huang, C., and Li, L.: Sulfate formation during heavy winter haze events and the potential contribution from heterogeneous SO2 + NO2 reactions in the Yangtze River Delta region, China, Atmos. Chem. Phys., 19, 14311–14328, https://doi.org/10.5194/acp-19-14311-2019, 2019.
Huang, X., Song, Y., Zhao, C., Li, M. M., Zhu, T., Zhang, Q., and Zhang, X.
Y.: Pathways of sulfate enhancement by natural and anthropogenic mineral
aerosols in China, J. Geophys. Res., 119, 14165–14179, https://doi.org/10.1002/2014jd022301, 2014.
Hung, H. M. and Hoffmann, M. R.: Oxidation of Gas-Phase SO2 on the
Surfaces of Acidic Microdroplets: Implications for Sulfate and Sulfate
Radical Anion Formation in the Atmospheric Liquid Phase, Environ. Sci.
Technol., 49, 13768–13776, https://doi.org/10.1021/acs.est.5b01658, 2015.
Hung, H. M., Hsu, M. N., and Hoffmann, M. R.: Quantification of SO2
oxidation on interfacial surfaces of acidic micro-droplets: Implication for
ambient sulfate formation, Environ. Sci. Technol., 52, 9079–9086, https://doi.org/10.1021/acs.est.8b01391, 2018.
Itahashi, S., Yamaji, K., Chatani, S., and Hayami, H.: Refinement of Modeled
Aqueous-Phase Sulfate Production via the Fe- and Mn-Catalyzed Oxidation
Pathway, Atmosphere, 9, 132, https://doi.org/10.3390/atmos9040132, 2018.
Kerminen, V. M., Hillamo, R., Teinilä, K., Pakkanen, T., Allegrini, I.,
and Sparapani, R.: Ion balances of size-resolved tropospheric aerosol
samples: implications for the acidity and atmospheric processing of
aerosols, Atmos. Environ., 35, 5255–5265, https://doi.org/10.1016/S1352-2310(01)00345-4, 2001.
Kim, H., Zhang, Q., and Heo, J.: Influence of intense secondary aerosol formation and long-range transport on aerosol chemistry and properties in the Seoul Metropolitan Area during spring time: results from KORUS-AQ, Atmos. Chem. Phys., 18, 7149–7168, https://doi.org/10.5194/acp-18-7149-2018, 2018.
Koelemeijer, R., Homan, C. D., and Matthijsen, J.: Comparison of spatial and
temporal variations of aerosol optical thickness and particulate matter over
Europe, Atmos. Environ., 40, 5304–5315, https://doi.org/10.1016/j.atmosenv.2006.04.044, 2006.
Kong, L. D., Zhao, X., Sun, Z. Y., Yang, Y. W., Fu, H. B., Zhang, S. C., Cheng, T. T., Yang, X., Wang, L., and Chen, J. M.: The effects of nitrate on the heterogeneous uptake of sulfur dioxide on hematite, Atmos. Chem. Phys., 14, 9451–9467, https://doi.org/10.5194/acp-14-9451-2014, 2014.
Lehtipalo, K., Rondo, L., Kontkanen, J., Schobesberger, S., Jokinen, T.,
Sarnela, N., Kürten, A., Ehrhart, S., Franchin, A., Nieminen, T.,
Riccobono, F., Sipilä, M., Yli-Juuti, T., Duplissy, J., Adamov, A.,
Ahlm, L., Almeida, J., Amorim, A., Bianchi, F., Breitenlechner, M., Dommen,
J., Downard, A. J., Dunne, E. M., Flagan, R. C., Guida, R., Hakala, J.,
Hansel, A., Jud, W., Kangasluoma, J., Kerminen, V.-M., Keskinen, H., Kim,
J., Kirkby, J., Kupc, A., Kupiainen-Määttä, O., Laaksonen, A.,
Lawler, M. J., Leiminger, M., Mathot, S., Olenius, T., Ortega, I. K.,
Onnela, A., Petäjä, T., Praplan, A., Rissanen, M. P., Ruuskanen, T.,
Santos, F. D., Schallhart, S., Schnitzhofer, R., Simon, M., Smith, J. N.,
Tröstl, J., Tsagkogeorgas, G., Tomé, A., Vaattovaara, P.,
Vehkamäki, H., Vrtala, A. E., Wagner, P. E., Williamson, C., Wimmer, D.,
Winkler, P. M., Virtanen, A., Donahue, N. M., Carslaw, K. S., Baltensperger,
U., Riipinen, I., Curtius, J., Worsnop, D. R., and Kulmala, M.: The effect
of acid-base clustering and ions on the growth of atmospheric
nano-particles, Nat. Commun., 7, 11594, https://doi.org/10.1038/ncomms11594, 2016.
Li, B. Q., Ma, X. Y., Li, Q. S., Chen, W. Z., Deng, J., Li, G. X., Chen, G.
Y., and Liao, W. C.: Factor affecting the role of radicals contribution at
different wavelengths, degradation pathways and toxicity during
UV-LED/chlorine process, Chem. Eng. J., 392, 124552, https://doi.org/10.1016/j.cej.2020.124552, 2020.
Li, K. J., Kong, L. D., Zhanzakova, A., Tong, S. Y., Shen, J. D., Wang, T.,
Chen, L., Li, Q., Fu, H. B., and Zhang, L. W.: Heterogeneous conversion of
SO2 on nano alpha-Fe2O3: the effects of morphology, light
illumination and relative humidity, Environ. Sci. Nano., 6, 1838–1851,
https://doi.org/10.1039/c9en00097f, 2019.
Li, L., Chen, Z. M., Zhang, Y. H., Zhu, T., Li, S., Li, H. J., Zhu, L. H.,
and Xu, B. Y.: Heterogeneous oxidation of sulfur dioxide by ozone on the
surface of sodium chloride and its mixtures with other components, J.
Geophys. Res., 112, D18301, https://doi.org/10.1029/2006jd008207, 2007.
Li, W. J., Shao, L. Y., Shi, Z. B., Chen, J. M., Yang, L. X., Yuan, Q., Yan,
C., Zhang, X. Y., Wang, Y. Q., Sun, J. Y., Zhang, Y. M., Shen, X. J., Wang,
Z. F., and Wang, W. X.: Mixing state and hygroscopicity of dust and haze
particles before leaving Asian continent, J. Geophys. Res., 119, 1044–1059, https://doi.org/10.1002/2013jd021003, 2014.
Li, X., Yu, J., and Jaroniec, M.: Hierarchical photocatalysts, Chem. Soc.
Rev., 45, 2603–2636, https://doi.org/10.1039/c5cs00838g, 2016.
Li, X. R., Wang, L. L., Ji, D. S., Wen, T. X., Pan, Y. P., Sun, Y., and
Wang, Y. S.: Characterization of the size-segregated water-soluble inorganic
ions in the Jing-Jin-Ji urban agglomeration: Spatial/temporal variability,
size distribution and sources, Atmos. Environ., 77, 250–259,
https://doi.org/10.1016/j.atmosenv.2013.03.042, 2013.
Liao, L. F., Lien, C. F., Shieh, D. L., Chen, M. T., and Lin, J. L.: FTIR
study of adsorption and photoassisted oxygen isotopic exchange of carbon
monoxide, carbon dioxide, carbonate, and formate on TiO2, J. Phys.
Chem. B, 106, 11240–11245, https://doi.org/10.1021/jp0211988, 2002.
Liu, J. R., Ning, A., Liu, L., Wang, H. X., Kurten, T., and Zhang, X. H.: A
pH dependent sulfate formation mechanism caused by hypochlorous acid in the
marine atmosphere, Sci. Total Envrion., 787, 147551, https://doi.org/10.1016/j.scitotenv.2021.147551, 2021.
Liu, P., Ye, C., Xue, C., Zhang, C., Mu, Y., and Sun, X.: Formation mechanisms of atmospheric nitrate and sulfate during the winter haze pollution periods in Beijing: gas-phase, heterogeneous and aqueous-phase chemistry, Atmos. Chem. Phys., 20, 4153–4165, https://doi.org/10.5194/acp-20-4153-2020, 2020.
Liu, T., Hong, Y., Li, M., Xu, L., Chen, J., Bian, Y., Yang, C., Dan, Y., Zhang, Y., Xue, L., Zhao, M., Huang, Z., and Wang, H.: Atmospheric oxidation capacity and ozone pollution mechanism in a coastal city of southeastern China: analysis of a typical photochemical episode by an observation-based model, Atmos. Chem. Phys., 22, 2173–2190, https://doi.org/10.5194/acp-22-2173-2022, 2022.
Liu, T. Y. and Abbatt, J. P. D.: Oxidation of sulfur dioxide by nitrogen
dioxide accelerated at the interface of deliquesced aerosol particles, Nat.
Chem., 13, 1173–1177, https://doi.org/10.1038/s41557-021-00777-0, 2021.
Liu, T. Y., Clegg, S. L., and Abbatt, J. P. D.: Fast oxidation of sulfur
dioxide by hydrogen peroxide in deliquesced aerosol particles, P. Natl.
Acad. Sci. USA, 117, 1354–1359, https://doi.org/10.1073/pnas.1916401117, 2020.
Liu, X. C., Tang, W. J., Chen, H. N., Guo, J. M., Tripathee, L., and Huang,
J.: Observational Study of Ground-Level Ozone in the Desert Atmosphere, B.
Environ. Contam. Tox., 108, 219–224, https://doi.org/10.1007/s00128-021-03444-9, 2022.
Liu, Y., Wang, T., Fang, X., Deng, Y., Cheng, H., Fu, H., and Zhang, L.:
Impact of greenhouse gas CO2 on the heterogeneous reaction of SO2
on Alpha-Al2O3, Chinese Chem. Lett., 31, 2712–2716, https://doi.org/10.1016/j.cclet.2020.04.037, 2020.
Liu, Y. Q., He, X. X., Duan, X. D., Fu, Y. S., and Dionysiou, D. D.:
Photochemical degradation of oxytetracycline: Influence of pH and role of
carbonate radical, Chem. Eng. J., 276, 113–121, https://doi.org/10.1016/j.cej.2015.04.048, 2015.
Liu, Z. R., Xie, Y. Z., Hu, B., Wen, T. X., Xin, J. Y., Li, X. R., and Wang,
Y. S.: Size-resolved aerosol water-soluble ions during the summer and winter
seasons in Beijing: Formation mechanisms of secondary inorganic aerosols,
Chemosphere, 183, 119–131, https://doi.org/10.1016/j.chemosphere.2017.05.095, 2017.
Long, S. L., Zeng, J. R., Li, Y., Bao, L. M., Cao, L. L., Liu, K., Xu, L.,
Lin, J., Liu, W., Wang, G. H., Yao, J., Ma, C. Y., and Zhao, Y. D.:
Characteristics of secondary inorganic aerosol and sulfate species in
size-fractionated aerosol particles in Shanghai, J. Environ. Sci. China, 26,
1040–1051, https://doi.org/10.1016/S1001-0742(13)60521-5, 2014.
Mahajan, A. S., Li, Q., Inamdar, S., Ram, K., Badia, A., and Saiz-Lopez, A.: Modelling the impacts of iodine chemistry on the northern Indian Ocean marine boundary layer, Atmos. Chem. Phys., 21, 8437–8454, https://doi.org/10.5194/acp-21-8437-2021, 2021.
McNaughton, C. S., Clarke, A. D., Kapustin, V., Shinozuka, Y., Howell, S. G., Anderson, B. E., Winstead, E., Dibb, J., Scheuer, E., Cohen, R. C., Wooldridge, P., Perring, A., Huey, L. G., Kim, S., Jimenez, J. L., Dunlea, E. J., DeCarlo, P. F., Wennberg, P. O., Crounse, J. D., Weinheimer, A. J., and Flocke, F.: Observations of heterogeneous reactions between Asian pollution and mineral dust over the Eastern North Pacific during INTEX-B, Atmos. Chem. Phys., 9, 8283–8308, https://doi.org/10.5194/acp-9-8283-2009, 2009.
Merouani, S., Hamdaoui, O., Saoudi, F., Chiha, M., and Petrier, C.:
Influence of bicarbonate and carbonate ions on sonochemical degradation of
Rhodamine B in aqueous phase, J. Hazard Mater., 175, 593–599, https://doi.org/10.1016/j.jhazmat.2009.10.046, 2010.
Miller-Schulze, J. P., Shafer, M., Schauer, J. J., Heo, J., Solomon, P. A.,
Lantz, J., Artamonova, M., Chen, B., Imashev, S., and Sverdlik, L.: Seasonal
contribution of mineral dust and other major components to particulate
matter at two remote sites in Central Asia, Atmos. Environ., 119, 11–20,
https://doi.org/10.1016/j.atmosenv.2015.07.011, 2015.
Mogili, P. K., Kleiber, P. D., Young, M. A., and Grassian, V. H.:
Heterogeneous uptake of ozone on reactive components of mineral dust
aerosol: an environmental aerosol reaction chamber study, J. Phys. Chem. A,
110, 13799–13807, https://doi.org/10.1021/jp063620g, 2006.
Möller, F.: On the influence of changes in the CO2 concentration in
air on the radiation balance of the Earth's surface and on the climate, J.
Geophys. Res., 68, 3877–3886, https://doi.org/10.1029/JZ068i013p03877, 1964.
Najafpour, N., Afshin, H., and Firoozabadi, B.: Dust concentration over a
semi-arid region: Parametric study and establishment of new empirical
models, Atmos. Res., 243, 104995, https://doi.org/10.1016/j.atmosres.2020.104995, 2020.
Nanayakkara, C. E., Larish, W. A., and Grassian, V. H.: Titanium dioxide
nanoparticle surface reactivity with atmospheric gases, CO2, SO2,
and NO2: roles of surface hydroxyl groups and adsorbed water in the
formation and stability of adsorbed products, J. Phys. Chem. C, 118,
23011–23021, https://doi.org/10.1021/jp504402z, 2014.
Neta, P. and Huie, R. E.: Free-radical chemistry of sulfite, Environ. Health
Persp., 64, 209–217, https://doi.org/10.1289/ehp.8564209, 1985.
Nie, W., Wang, T., Xue, L. K., Ding, A. J., Wang, X. F., Gao, X. M., Xu, Z., Yu, Y. C., Yuan, C., Zhou, Z. S., Gao, R., Liu, X. H., Wang, Y., Fan, S. J., Poon, S., Zhang, Q. Z., and Wang, W. X.: Asian dust storm observed at a rural mountain site in southern China: chemical evolution and heterogeneous photochemistry, Atmos. Chem. Phys., 12, 11985–11995, https://doi.org/10.5194/acp-12-11985-2012, 2012.
Palmer, C. D. and Cherry, J. A.: Geochemical Evolution of Groundwater in
Sequences of Sedimentary-Rocks, J. Hydrol., 75, 27–65, https://doi.org/10.1016/0022-1694(84)90045-3, 1984.
Peters, S. J. and Ewing, G. E.: Water on Salt: An Infrared Study of Adsorbed
H2O on NaCl (100) under Ambient Conditions, J. Phys. Chem. B, 101,
10880–10886, https://doi.org/10.1021/jp972810b, 1997.
Rodriguez, J. A., Hanson, J., and Chupas, P.: In-Situ Characterization of Heterogeneous Catalysts, Focus on Catal. 8, Hoboken, New Jersey, John Wiley & Sons, Inc., https://doi.org/10.1002/9781118355923, 2013.
Rubasinghege, G., Elzey, S., Baltrusaitis, J., Jayaweera, P. M., and
Grassian, V. H.: Reactions on Atmospheric Dust Particles: Surface
Photochemistry and Size-Dependent Nanoscale Redox Chemistry, J. Phys. Chem.
Lett., 1, 1729–1737, https://doi.org/10.1021/jz100371d, 2010.
Salama, S. B., Natarajan, C., Nogami, G., and Kennedy, J. H.: The role of
reducing agent in oxidation reactions of water on illuminated TiO2
electrodes, J. Electrochem. Soc., 142, 806–810, https://doi.org/10.1149/1.2048539, 1995.
Samuni, A., Goldstein, S., Russo, A., Mitchell, J. B., Krishna, M. C., and
Neta, P.: Kinetics and mechanism of hydroxyl radical and OH-adduct radical
reactions with nitroxides and with their hydroxylamines, J. Am. Chem. Soc.,
124, 8719–8724, https://doi.org/10.1021/ja017587h, 2002.
Shafirovich, V., Dourandin, A., Huang, W., and Geacintov, N. E.: The
carbonate radical is a site-selective oxidizing agent of guanine in
double-stranded oligonucleotides, J. Biol. Chem., 276, 24621–24626,
https://doi.org/10.1074/jbc.M101131200, 2001.
Shang, J., Li, J., and Zhu, T.: Heterogeneous reaction of SO2 on
TiO2 particles, Sci. China Chem., 53, 2637–2643, https://doi.org/10.1007/s11426-010-4160-3, 2010.
Song, X., Li, J., Shao, L., Zheng, Q., and Zhang, D.: Inorganic ion
chemistry of local particulate matter in a populated city of North China at
light, medium, and severe pollution levels, Sci. Total Envrion., 650,
566–574, https://doi.org/10.1016/j.scitotenv.2018.09.033, 2018.
Stenman, D., Carlsson, M., Jonsson, M., and Reitberger, T.: Reactivity of
the carbonate radical anion towards carbohydrate and lignin model compounds,
J. Wood Chem. Technol., 23, 47–69, https://doi.org/10.1081/Wct-120018615, 2003.
Stevenson, D. S., Zhao, A., Naik, V., O'Connor, F. M., Tilmes, S., Zeng, G., Murray, L. T., Collins, W. J., Griffiths, P. T., Shim, S., Horowitz, L. W., Sentman, L. T., and Emmons, L.: Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP, Atmos. Chem. Phys., 20, 12905–12920, https://doi.org/10.5194/acp-20-12905-2020, 2020.
Stone, R.: Air pollution. Counting the cost of London's killer smog,
Science, 298, 2106–2107, https://doi.org/10.1126/science.298.5601.2106b, 2002.
Su, H., Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Zhang,
Q., He, K., and Carmichael, G.: Reactive nitrogen chemistry in aerosol water
as a source of sulfate during haze events in China, Sci. Adv., 2, e1601530,
https://doi.org/10.1126/sciadv.1601530, 2016.
Su, W. G., Zhang, J., Feng, Z. C., Chen, T., Ying, P. L., and Li, C.:
Surface phases of TiO2 nanoparticles studied by UV Raman spectroscopy
and FT-IR spectroscopy, J. Phys. Chem. C, 112, 7710–7716, https://doi.org/10.1021/jp7118422, 2008.
Sullivan, R. C., Guazzotti, S. A., Sodeman, D. A., and Prather, K. A.: Direct observations of the atmospheric processing of Asian mineral dust, Atmos. Chem. Phys., 7, 1213–1236, https://doi.org/10.5194/acp-7-1213-2007, 2007.
Sulzberger, B., Canonica, S., Egli, T., Giger, W., Klausen, J., and Gunten,
U. v.: Oxidative transformations of contaminants in natural and in technical
systems, Chimia, 51, 900–907, https://doi.org/10.1051/epjconf/20101105003, 1997.
Sun, P., Tyree, C., and Huang, C. H.: Inactivation of Escherichia coli,
Bacteriophage MS2, and Bacillus Spores under UV H2O2 and
UV/Peroxydisulfate Advanced Disinfection Conditions, Environ. Sci. Technol.,
50, 4448–4458, https://doi.org/10.1021/acs.est.5b06097, 2016.
Ta, W. Q., Xiao, Z., Qu, J. J., Yang, G. S., and Wang, T.: Characteristics
of dust particles from the desert/Gobi area of northwestern China during
dust-storm periods, Environ. Geol., 43, 667–679, https://doi.org/10.1007/s00254-002-0673-1, 2003.
Tang, M. J., Cziczo, D. J., and Grassian, V. H.: Interactions of Water with
Mineral Dust Aerosol: Water Adsorption, Hygroscopicity, Cloud Condensation,
and Ice Nucleation, Chem. Rev., 116, 4205–4259, https://doi.org/10.1021/acs.chemrev.5b00529, 2016.
Wang, X. M., Huang, X., Zuo, C. Y., and Hu, H. Y.: Kinetics of quinoline
degradation by O3/UV in aqueous phase, Chemosphere, 55, 733–741,
https://doi.org/10.1016/j.chemosphere.2003.11.019, 2004.
Wang, Y., Wan, Q., Meng, W., Liao, F., Tan, H., and Zhang, R.: Long-term impacts of aerosols on precipitation and lightning over the Pearl River Delta megacity area in China, Atmos. Chem. Phys., 11, 12421–12436, https://doi.org/10.5194/acp-11-12421-2011, 2011.
Wang, Y., Zhuang, G. S., Tang, A. H., Yuan, H., Sun, Y. L., Chen, S. A., and
Zheng, A. H.: The ion chemistry and the source of PM2.5 aerosol in Beijing, Atmos. Environ., 39, 3771–3784, https://doi.org/10.1016/j.atmosenv.2005.03.013, 2005.
Wang, Y. X., Zhang, Q. Q., Jiang, J. K., Zhou, W., Wang, B. Y., He, K. B.,
Duan, F. K., Zhang, Q., Philip, S., and Xie, Y. Y.: Enhanced sulfate
formation during China's severe winter haze episode in January 2013 missing
from current models, J. Geophys. Res., 119, 10425–10440, https://doi.org/10.1002/2013jd021426, 2014.
Watanabe, K., Yang, L., Nakamura, S., Otani, T., and Mori, K.: Volcanic
Impact of Nishinoshima Eruptions in Summer 2020 on the Atmosphere over
Central Japan: Results from Airborne Measurements of Aerosol and Trace
Gases, Sola, 17, 109–112, https://doi.org/10.2151/sola.2021-017, 2020.
Wei, J., Yu, H., Wang, Y., and Verma, V.: Complexation of Iron and Copper in
Ambient Particulate Matter and Its Effect on the Oxidative Potential
Measured in a Surrogate Lung Fluid, Environ. Sci. Technol., 53, 1661–1671,
https://doi.org/10.1021/acs.est.8b05731, 2019.
Witkowska, A., Lewandowska, A. U., Saniewska, D., and Falkowska, L. M.:
Effect of agriculture and vegetation on carbonaceous aerosol concentrations
(PM2.5 and PM10) in Puszcza Borecka National Nature Reserve (Poland), Air Qual. Atmos. Hlth., 9, 761–773, https://doi.org/10.1007/s11869-015-0378-8, 2016.
Wojnarovits, L., Toth, T., and Takacs, E.: Rate constants of carbonate
radical anion reactions with molecules of environmental interest in aqueous
solution: A review, Sci. Total Envrion., 717, 137219, https://doi.org/10.1016/j.scitotenv.2020.137219, 2020.
Wu, C., Zhang, S., Wang, G., Lv, S., Li, D., Liu, L., Li, J., Liu, S., Du,
W., Meng, J., Qiao, L., Zhou, M., Huang, C., and Wang, H.: Efficient
Heterogeneous Formation of Ammonium Nitrate on the Saline Mineral Particle
Surface in the Atmosphere of East Asia during Dust Storm Periods, Environ.
Sci. Technol., 54, 15622–15630, https://doi.org/10.1021/acs.est.0c04544, 2020.
Wu, D., Fan, Z., Ge, X., Meng, Y., Xia, J., Liu, G., and Li, F.: Chemical
and Light Extinction Characteristics of Atmospheric Aerosols in Suburban
Nanjing, China, Atmosphere-Basel, 8, 149, https://doi.org/10.3390/atmos8080149, 2017.
Wu, L. Y., Tong, S. R., Wang, W. G., and Ge, M. F.: Effects of temperature on the heterogeneous oxidation of sulfur dioxide by ozone on calcium carbonate, Atmos. Chem. Phys., 11, 6593–6605, https://doi.org/10.5194/acp-11-6593-2011, 2011.
Wu, Q., Tang, X., Kong, L., Dao, X., Lu, M. M., Liu, Z. R., Wang, W., Wang,
Q., Chen, D. H., Wu, L., Pan, X. L., Li, J., Zhu, J., and Wang, Z. F.:
Evaluation and Bias Correction of the Secondary Inorganic Aerosol Modeling
over North China Plain in Autumn and Winter, Atmosphere, 12, 578, https://doi.org/10.3390/atmos12050578, 2021.
Xia, D. M., Zhang, X. R., Chen, J. W., Tong, S. R., Xie, H. B., Wang, Z. Y.,
Xu, T., Ge, M. F., and Allen, D. T.: Heterogeneous Formation of HONO
Catalyzed by CO2, Environ. Sci. Technol., 55, 12215–12222, https://doi.org/10.1021/acs.est.1c02706, 2021.
Xiong, X. Q., Zhang, X., and Xu, Y. M.: Incorporative Effect of Pt and
Na2CO3 on TiO2-Photocatalyzed Degradation of Phenol in Water,
J. Phys. Chem. C, 120, 25689–25696, https://doi.org/10.1021/acs.jpcc.6b07951, 2016.
Yan, J. F., Peng, J. L., Lai, L. D., Ji, F. Z., Zhang, Y. H., Lai, B., Chen,
Q. X., Yao, G., Chen, X., and Song, L. P.: Activation CuFe2O4 by
Hydroxylamine for Oxidation of Antibiotic Sulfamethoxazole, Environ. Sci.
Technol., 52, 14302–14310, https://doi.org/10.1021/acs.est.8b03340, 2018.
Yan, S. W., Liu, Y. J., Lian, L. S., Li, R., Ma, J. Z., Zhou, H. X., and
Song, W. H.: Photochemical formation of carbonate radical and its reaction
with dissolved organic matters, Water Res., 161, 288–296, https://doi.org/10.1016/j.watres.2019.06.002, 2019.
Yermakov, A. N. and Purmal, A. P.: Iron-catalyzed oxidation of sulfite: From
established results to a new understanding, Prog. React. Kinet. Mec., 28,
189–255, https://doi.org/10.3184/007967403103165503, 2003.
Yu, T., Zhao, D., Song, X., and Zhu, T.: NO2-initiated multiphase oxidation of SO2 by O2 on CaCO3 particles, Atmos. Chem. Phys., 18, 6679–6689, https://doi.org/10.5194/acp-18-6679-2018, 2018.
Yu, Z. C., Jang, M. S., Kim, S., Bae, C., Koo, B. Y., Beardsley, R., Park,
J., Chang, L. S., Lee, H. C., Lim, Y. K., and Cho, J. H.: Simulating the
Impact of Long-Range-Transported Asian Mineral Dust on the Formation of
Sulfate and Nitrate during the KORUS-AQ Campaign, ACS Earth Space Chem., 4,
1039–1049, https://doi.org/10.1021/acsearthspacechem.0c00074, 2020.
Zhang, G. S., He, X. X., Nadagouda, M. N., O'Shea, K. E., and Dionysiou, D.
D.: The effect of basic pH and carbonate ion on the mechanism of
photocatalytic destruction of cylindrospermopsin, Water Res., 73, 353–361,
https://doi.org/10.1016/j.watres.2015.01.011, 2015.
Zhang, T., Cao, J. J., Tie, X. X., Shen, Z. X., Liu, S. X., Ding, H., Han,
Y. M., Wang, G. H., Ho, K. F., Qiang, J., and Li, W. T.: Water-soluble ions
in atmospheric aerosols measured in Xi'an, China: Seasonal variations and
sources, Atmos. Res., 102, 110–119, https://doi.org/10.1016/j.atmosres.2011.06.014, 2011.
Zhang, Y. and Carmichael, G. R.: The role of mineral aerosol in tropospheric
chemistry in East Asia – A model study, J Appl Meteorol, 38, 353–366, https://doi.org/10.1175/1520-0450(1999)038<0353:Tromai>2.0.Co;2, 1999.
Zheng, B., Zhang, Q., Zhang, Y., He, K. B., Wang, K., Zheng, G. J., Duan, F. K., Ma, Y. L., and Kimoto, T.: Heterogeneous chemistry: a mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China, Atmos. Chem. Phys., 15, 2031–2049, https://doi.org/10.5194/acp-15-2031-2015, 2015.
Short summary
Both CO2 and carbonate salt work as the precursor of carbonate radicals, which largely promotes sulfate formation during the daytime. This study provides the first indication that the carbonate radical not only plays a role as an intermediate in tropospheric anion chemistry but also as a strong oxidant for the surface processing of trace gas in the atmosphere. CO2, carbponate radicals, and sulfate receive attention from those looking at the environment, atmosphere, aerosol, and photochemistry.
Both CO2 and carbonate salt work as the precursor of carbonate radicals, which largely promotes...
Altmetrics
Final-revised paper
Preprint