Articles | Volume 22, issue 6
Atmos. Chem. Phys., 22, 3811–3825, 2022
https://doi.org/10.5194/acp-22-3811-2022

Special issue: Analysis of atmospheric water vapour observations and their...

Atmos. Chem. Phys., 22, 3811–3825, 2022
https://doi.org/10.5194/acp-22-3811-2022
Research article
22 Mar 2022
Research article | 22 Mar 2022

Novel assessment of numerical forecasting model relative humidity with satellite probabilistic estimates

Chloé Radice et al.

Related authors

Evaluation of tropical water vapour from CMIP6 global climate models using the ESA CCI Water Vapour climate data records
Jia He, Helene Brogniez, and Laurence Picon
Atmos. Chem. Phys., 22, 12591–12606, https://doi.org/10.5194/acp-22-12591-2022,https://doi.org/10.5194/acp-22-12591-2022, 2022
Short summary
Bulk hydrometeor optical properties for microwave and sub-millimetre radiative transfer in RTTOV-SCATT v13.0
Alan J. Geer, Peter Bauer, Katrin Lonitz, Vasileios Barlakas, Patrick Eriksson, Jana Mendrok, Amy Doherty, James Hocking, and Philippe Chambon
Geosci. Model Dev., 14, 7497–7526, https://doi.org/10.5194/gmd-14-7497-2021,https://doi.org/10.5194/gmd-14-7497-2021, 2021
Short summary
Global component analysis of errors in three satellite-only global precipitation estimates
Hanqing Chen, Bin Yong, Pierre-Emmanuel Kirstetter, Leyang Wang, and Yang Hong
Hydrol. Earth Syst. Sci., 25, 3087–3104, https://doi.org/10.5194/hess-25-3087-2021,https://doi.org/10.5194/hess-25-3087-2021, 2021
Statistical downscaling of water vapour satellite measurements from profiles of tropical ice clouds
Giulia Carella, Mathieu Vrac, Hélène Brogniez, Pascal Yiou, and Hélène Chepfer
Earth Syst. Sci. Data, 12, 1–20, https://doi.org/10.5194/essd-12-1-2020,https://doi.org/10.5194/essd-12-1-2020, 2020
Short summary
A review of sources of systematic errors and uncertainties in observations and simulations at 183 GHz
Hélène Brogniez, Stephen English, Jean-François Mahfouf, Andreas Behrendt, Wesley Berg, Sid Boukabara, Stefan Alexander Buehler, Philippe Chambon, Antonia Gambacorta, Alan Geer, William Ingram, E. Robert Kursinski, Marco Matricardi, Tatyana A. Odintsova, Vivienne H. Payne, Peter W. Thorne, Mikhail Yu. Tretyakov, and Junhong Wang
Atmos. Meas. Tech., 9, 2207–2221, https://doi.org/10.5194/amt-9-2207-2016,https://doi.org/10.5194/amt-9-2207-2016, 2016
Short summary

Related subject area

Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Multi-axis differential optical absorption spectroscopy (MAX-DOAS) observations of formaldehyde and nitrogen dioxide at three sites in Asia and comparison with the global chemistry transport model CHASER
Hossain Mohammed Syedul Hoque, Kengo Sudo, Hitoshi Irie, Alessandro Damiani, Manish Naja, and Al Mashroor Fatmi
Atmos. Chem. Phys., 22, 12559–12589, https://doi.org/10.5194/acp-22-12559-2022,https://doi.org/10.5194/acp-22-12559-2022, 2022
Short summary
Quantifying CH4 emissions in hard coal mines from TROPOMI and IASI observations using the wind-assigned anomaly method
Qiansi Tu, Matthias Schneider, Frank Hase, Farahnaz Khosrawi, Benjamin Ertl, Jaroslaw Necki, Darko Dubravica, Christopher J. Diekmann, Thomas Blumenstock, and Dianjun Fang
Atmos. Chem. Phys., 22, 9747–9765, https://doi.org/10.5194/acp-22-9747-2022,https://doi.org/10.5194/acp-22-9747-2022, 2022
Short summary
Estimation of surface ammonia concentrations and emissions in China from the polar-orbiting Infrared Atmospheric Sounding Interferometer and the FY-4A Geostationary Interferometric Infrared Sounder
Pu Liu, Jia Ding, Lei Liu, Wen Xu, and Xuejun Liu
Atmos. Chem. Phys., 22, 9099–9110, https://doi.org/10.5194/acp-22-9099-2022,https://doi.org/10.5194/acp-22-9099-2022, 2022
Short summary
Interannual variability in the Australian carbon cycle over 2015–2019, based on assimilation of Orbiting Carbon Observatory-2 (OCO-2) satellite data
Yohanna Villalobos, Peter J. Rayner, Jeremy D. Silver, Steven Thomas, Vanessa Haverd, Jürgen Knauer, Zoë M. Loh, Nicholas M. Deutscher, David W. T. Griffith, and David F. Pollard
Atmos. Chem. Phys., 22, 8897–8934, https://doi.org/10.5194/acp-22-8897-2022,https://doi.org/10.5194/acp-22-8897-2022, 2022
Short summary
NH3 spatio-temporal variability over Paris, Mexico and Toronto and its link to PM2.5 during pollution events
Camille Viatte, Rimal Abeed, Shoma Yamanouchi, William Porter, Sarah Safieddine, Martin Van Damme, Lieven Clarisse, Beatriz Herrera, Michel Grutter, Pierre-Francois Coheur, Kimberly Strong, and Cathy Clerbaux
EGUsphere, https://doi.org/10.5194/egusphere-2022-413,https://doi.org/10.5194/egusphere-2022-413, 2022
Short summary

Cited articles

Aires, F., Rossow, W. B., Scott, N. A., and Chedin, A.: Remote sensing from the infrared atmospheric sounding interferometer instrument, 2, Simultaneous retrieval of temperature, water vapor, and ozone atmospheric profiles, J. Geophys. Res., 107, 4620, https://doi.org/10.1029/2001JD001591, 2002. 
Allan, R. P.: The Role of Water Vapour in Earth's Energy Flows, Surv. Geophys., 33, 557–564, https://doi.org/10.1007/s10712-011-9157-8, 2012. 
Bodas-Salcedo, A., Webb, M. J., Bony, S., Chepfer, H., Dufresne, J.-L., Klein, S. A., Zhang, Y., Marchand, R., Haynes, J. M., Pincus, R., and John, V. O.: COSP: Satellite simulation software for model assessment, B. Am. Meteorol. Soc., 92, 1023–1043, https://doi.org/10.1175/2011BAMS2856.1, 2011. 
Bony, S., Stevens, B., Frierson, D. M. W., Jakob, C., Kageyama, M., Pincus, R., Shepherd, T. G., Sherwood, S. C., Siebesma, A. P., Sobel, A. H., Watanabe, M., and Webb, M. J.: Clouds, circulation and climate sensitivity, Nat. Geosci., 8, 261–268, https://doi.org/10.1038/ngeo2398, 2015. 
Bouyssel, F., Bazile, E., Piriou, J.-M., Janisková, M., and Bouteloup, Y.: L'évolution opérationnelle du modèle Arpège et de ses paramétrisations physiques, La Météorologie, 112, 47–54, 2021. 
Download
Short summary
A novel probabilistic approach is proposed to evaluate relative humidity (RH) profiles simulated by an atmospheric model with respect to satellite-based RH defined from probability distributions. It improves upon deterministic comparisons by enhancing the information content to enable a finer assessment of each model–observation discrepancy, highlighting significant departures within a deterministic confidence range. Geographical and vertical distributions of the model biases are discussed.
Altmetrics
Final-revised paper
Preprint