Articles | Volume 21, issue 8
https://doi.org/10.5194/acp-21-6155-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-6155-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: Firework impacts on air quality in Metro Manila, Philippines, during the 2019 New Year revelry
Genevieve Rose Lorenzo
Department of Hydrology and Atmospheric Sciences, University of
Arizona, Tucson, Arizona, 85721, USA
Manila Observatory, Quezon City, 1108, Philippines
Paola Angela Bañaga
Manila Observatory, Quezon City, 1108, Philippines
Department of Physics, School of Science and Engineering, Ateneo de
Manila University, Quezon City, 1108, Philippines
Maria Obiminda Cambaliza
Manila Observatory, Quezon City, 1108, Philippines
Department of Physics, School of Science and Engineering, Ateneo de
Manila University, Quezon City, 1108, Philippines
Melliza Templonuevo Cruz
Department of Physics, School of Science and Engineering, Ateneo de
Manila University, Quezon City, 1108, Philippines
Institute of Environmental Science and Meteorology, University of the
Philippines, Diliman, Quezon City, 1101, Philippines
Mojtaba AzadiAghdam
Department of Chemical and Environmental Engineering, University of
Arizona, Tucson, Arizona, 85721, USA
Avelino Arellano
Department of Hydrology and Atmospheric Sciences, University of
Arizona, Tucson, Arizona, 85721, USA
Grace Betito
Department of Physics, School of Science and Engineering, Ateneo de
Manila University, Quezon City, 1108, Philippines
Rachel Braun
Department of Chemical and Environmental Engineering, University of
Arizona, Tucson, Arizona, 85721, USA
Andrea F. Corral
Department of Chemical and Environmental Engineering, University of
Arizona, Tucson, Arizona, 85721, USA
Hossein Dadashazar
Department of Chemical and Environmental Engineering, University of
Arizona, Tucson, Arizona, 85721, USA
Eva-Lou Edwards
Department of Chemical and Environmental Engineering, University of
Arizona, Tucson, Arizona, 85721, USA
Edwin Eloranta
Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin, 53706, USA
Robert Holz
Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin, 53706, USA
Gabrielle Leung
Manila Observatory, Quezon City, 1108, Philippines
Lin Ma
Department of Chemical and Environmental Engineering, University of
Arizona, Tucson, Arizona, 85721, USA
Alexander B. MacDonald
Department of Chemical and Environmental Engineering, University of
Arizona, Tucson, Arizona, 85721, USA
Jeffrey S. Reid
Marine Meteorology Division, Naval Research Laboratory, Monterey, CA, USA
James Bernard Simpas
Manila Observatory, Quezon City, 1108, Philippines
Department of Physics, School of Science and Engineering, Ateneo de
Manila University, Quezon City, 1108, Philippines
Connor Stahl
Department of Chemical and Environmental Engineering, University of
Arizona, Tucson, Arizona, 85721, USA
Shane Marie Visaga
Manila Observatory, Quezon City, 1108, Philippines
Department of Physics, School of Science and Engineering, Ateneo de
Manila University, Quezon City, 1108, Philippines
Department of Hydrology and Atmospheric Sciences, University of
Arizona, Tucson, Arizona, 85721, USA
Department of Chemical and Environmental Engineering, University of
Arizona, Tucson, Arizona, 85721, USA
Related authors
Connor Stahl, Melliza Templonuevo Cruz, Paola Angela Bañaga, Grace Betito, Rachel A. Braun, Mojtaba Azadi Aghdam, Maria Obiminda Cambaliza, Genevieve Rose Lorenzo, Alexander B. MacDonald, Miguel Ricardo A. Hilario, Preciosa Corazon Pabroa, John Robin Yee, James Bernard Simpas, and Armin Sorooshian
Atmos. Chem. Phys., 20, 15907–15935, https://doi.org/10.5194/acp-20-15907-2020, https://doi.org/10.5194/acp-20-15907-2020, 2020
Short summary
Short summary
Long-term (16-month) high-frequency (weekly) measurements of size-resolved aerosol composition are reported. Important insights are discussed about factors (e.g., transport, fires, precipitation, photo-oxidation) impacting the mass size distributions of organic and sulfonic acids at a coastal megacity with diverse meteorology. The size-resolved nature of the data yielded one such finding that organic acids preferentially adsorb to dust rather than sea salt particles.
Ewan Crosbie, Johnathan Hair, Amin Nehrir, Richard Ferrare, Chris Hostetler, Taylor Shingler, David Harper, Marta Fenn, James Collins, Rory Barton-Grimley, Brian Collister, K. Lee Thornhill, Christiane Voigt, Simon Kirschler, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-3844, https://doi.org/10.5194/egusphere-2024-3844, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
A method was developed to extract information from airborne lidar observations about the distribution of ice and liquid water within clouds. The method specifically targets signatures of horizontal and vertical gradients in ice and water that appear in the polarization of the lidar signals. The method was tested against direct measurements of the cloud properties collected by a second aircraft.
Florian Tornow, Ann Fridlind, George Tselioudis, Brian Cairns, Andrew Ackerman, Seethala Chellappan, David Painemal, Paquita Zuidema, Christiane Voigt, Simon Kirschler, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-3462, https://doi.org/10.5194/egusphere-2024-3462, 2024
Short summary
Short summary
The recent NASA campaign ACTIVATE (Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment) performed 71 tandem flights in mid-latitude marine cold-air outbreaks off the US Eastern seaboard. We provide meteorological and cloud transition stage context, allowing us to identify days that are most suitable for Lagrangian modeling and analysis. Surveyed cloud properties show signatures of cloud microphysical processes, such as cloud-top entrainment and secondary ice formation.
Sanja Dmitrovic, Joseph S. Schlosser, Ryan Bennett, Brian Cairns, Gao Chen, Glenn S. Diskin, Richard A. Ferrare, Johnathan W. Hair, Michael A. Jones, Jeffrey S. Reid, Taylor J. Shingler, Michael A. Shook, Armin Sorooshian, Kenneth L. Thornhill, Luke D. Ziemba, and Snorre Stamnes
EGUsphere, https://doi.org/10.5194/egusphere-2024-3088, https://doi.org/10.5194/egusphere-2024-3088, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This study focuses on aerosol particles, which critically influence the atmosphere by scattering and absorbing light. To understand these interactions, airborne field campaigns deploy instruments that can measure these particles’ directly or indirectly via remote sensing. We introduce the In Situ Aerosol Retrieval Algorithm (ISARA) to ensure consistency between aerosol measurements and show that the two data sets generally align, with some deviation caused by the presence of larger particles.
Soodabeh Namdari, Sanja Dmitrovic, Gao Chen, Yonghoon Choi, Ewan Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Richard A. Ferrare, Johnathan W. Hair, Simon Kirschler, John B. Nowak, Kenneth L. Thornhill, Christiane Voigt, Holger Vömel, Xubin Zeng, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-3024, https://doi.org/10.5194/egusphere-2024-3024, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We conducted this study to assess the accuracy of airborne measurements of wind, temperature, and humidity, essential for understanding atmospheric processes. Using data from NASA's ACTIVATE campaign, we compared measurements from the TAMMS and DLH aboard a Falcon aircraft with dropsondes from a King Air, matching data points based on location and time using statistical methods. The study showed strong agreement, confirming the reliability of these methods for advancing climate models.
Genevieve Rose Lorenzo, Luke D. Ziemba, Avelino F. Arellano, Mary C. Barth, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Richard Ferrare, Miguel Ricardo A. Hilario, Michael A. Shook, Simone Tilmes, Jian Wang, Qian Xiao, Jun Zhang, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-2604, https://doi.org/10.5194/egusphere-2024-2604, 2024
Short summary
Short summary
Novel aerosol hygroscopicity analysis of CAMP2Ex field campaign data show low aerosol hygroscopicity values in Southeast Asia. Organic carbon from smoke decreases hygroscopicity to levels more like those in continental than in polluted marine regions. Hygroscopicity changes at cloud level demonstrate how surface particles impact clouds in the region affecting model representation of aerosol and cloud interactions in similar polluted marine regions with high organic carbon emissions.
Myungje Choi, Alexei Lyapustin, Gregory L. Schuster, Sujung Go, Yujie Wang, Sergey Korkin, Ralph Kahn, Jeffrey S. Reid, Edward J. Hyer, Thomas F. Eck, Mian Chin, David J. Diner, Olga Kalashnikova, Oleg Dubovik, Jhoon Kim, and Hans Moosmüller
Atmos. Chem. Phys., 24, 10543–10565, https://doi.org/10.5194/acp-24-10543-2024, https://doi.org/10.5194/acp-24-10543-2024, 2024
Short summary
Short summary
This paper introduces a retrieval algorithm to estimate two key absorbing components in smoke (black carbon and brown carbon) using DSCOVR EPIC measurements. Our analysis reveals distinct smoke properties, including spectral absorption, layer height, and black carbon and brown carbon, over North America and central Africa. The retrieved smoke properties offer valuable observational constraints for modeling radiative forcing and informing health-related studies.
Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 10385–10408, https://doi.org/10.5194/acp-24-10385-2024, https://doi.org/10.5194/acp-24-10385-2024, 2024
Short summary
Short summary
Using aircraft measurements over the northwestern Atlantic between the US East Coast and Bermuda and trajectory modeling of continental outflow, we identify trace gas and particle properties that exhibit gradients with offshore distance and quantify these changes with high-resolution measurements of concentrations and particle chemistry, size, and scattering properties. This work furthers our understanding of the complex interactions between continental and marine environments.
Yafang Guo, Mohammad Amin Mirrezaei, Armin Sorooshian, and Avelino F. Arellano
EGUsphere, https://doi.org/10.5194/egusphere-2024-2617, https://doi.org/10.5194/egusphere-2024-2617, 2024
Short summary
Short summary
We assess the contributions of fire and anthropogenic emissions to O3 levels in Phoenix Arizona during a period of intense heat and drought conditions. We find that fire exacerbates O3 pollution and that interactions between weather, climate, and air chemistry are important to consider. This has implications to activities related to formulating emission reduction strategies in areas that are currently under-studied yet becoming relevant due to reports of increasing global aridity.
Kira Zeider, Kayla McCauley, Sanja Dmitrovic, Leong Wai Siu, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Simon Kirschler, John B. Nowak, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, Paquita Zuidema, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-2743, https://doi.org/10.5194/egusphere-2024-2743, 2024
Short summary
Short summary
In-situ aircraft data collected over the northwest Atlantic Ocean are utilized to compare aerosol conditions and turbulence between near-surface and below cloud base altitudes for different regimes of coupling strength between those two levels, along with how cloud microphysical properties vary across those regimes. Stronger coupling yields more homogenous aerosol structure vertically along with higher cloud drop concentrations and sea salt influence in clouds.
Shuaiqi Tang, Hailong Wang, Xiang-Yu Li, Jingyi Chen, Armin Sorooshian, Xubin Zeng, Ewan Crosbie, Kenneth L. Thornhill, Luke D. Ziemba, and Christiane Voigt
Atmos. Chem. Phys., 24, 10073–10092, https://doi.org/10.5194/acp-24-10073-2024, https://doi.org/10.5194/acp-24-10073-2024, 2024
Short summary
Short summary
We examined marine boundary layer clouds and their interactions with aerosols in the E3SM single-column model (SCM) for a case study. The SCM shows good agreement when simulating the clouds with high-resolution models. It reproduces the relationship between cloud droplet and aerosol particle number concentrations as produced in global models. However, the relationship between cloud liquid water and droplet number concentration is different, warranting further investigation.
Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Miguel Ricardo A. Hilario, Chris A. Hostetler, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Cassidy Soloff, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9197–9218, https://doi.org/10.5194/acp-24-9197-2024, https://doi.org/10.5194/acp-24-9197-2024, 2024
Short summary
Short summary
This study uses airborne data to examine vertical profiles of trace gases, aerosol particles, and meteorological variables over a remote marine area (Bermuda). Results show distinct differences based on both air mass source region (North America, Ocean, Caribbean/North Africa) and altitude for a given air mass type. This work highlights the sensitivity of remote marine areas to long-range transport and the importance of considering the vertical dependence of trace gas and aerosol properties.
Kira Zeider, Grace Betito, Anthony Bucholtz, Peng Xian, Annette Walker, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9059–9083, https://doi.org/10.5194/acp-24-9059-2024, https://doi.org/10.5194/acp-24-9059-2024, 2024
Short summary
Short summary
The predominant wind direction along the California coast (northerly) reverses several times during the summer (to southerly). The effects of these wind reversals on aerosol and cloud characteristics are not well understood. Using data from multiple datasets we found that southerly flow periods had enhanced signatures of anthropogenic emissions due to shipping and continental sources, and clouds had more but smaller droplets.
Sanja Dmitrovic, Johnathan W. Hair, Brian L. Collister, Ewan Crosbie, Marta A. Fenn, Richard A. Ferrare, David B. Harper, Chris A. Hostetler, Yongxiang Hu, John A. Reagan, Claire E. Robinson, Shane T. Seaman, Taylor J. Shingler, Kenneth L. Thornhill, Holger Vömel, Xubin Zeng, and Armin Sorooshian
Atmos. Meas. Tech., 17, 3515–3532, https://doi.org/10.5194/amt-17-3515-2024, https://doi.org/10.5194/amt-17-3515-2024, 2024
Short summary
Short summary
This study introduces and evaluates a new ocean surface wind speed product from the NASA Langley Research Center (LARC) airborne High-Spectral-Resolution Lidar – Generation 2 (HSRL-2) during the NASA ACTIVATE mission. We show that HSRL-2 surface wind speed data are accurate when compared to ground-truth dropsonde measurements. Therefore, the HSRL-2 instrument is able obtain accurate, high-resolution surface wind speed data in airborne field campaigns.
Peng Xian, Jeffrey S. Reid, Melanie Ades, Angela Benedetti, Peter R. Colarco, Arlindo da Silva, Tom F. Eck, Johannes Flemming, Edward J. Hyer, Zak Kipling, Samuel Rémy, Tsuyoshi Thomas Sekiyama, Taichu Tanaka, Keiya Yumimoto, and Jianglong Zhang
Atmos. Chem. Phys., 24, 6385–6411, https://doi.org/10.5194/acp-24-6385-2024, https://doi.org/10.5194/acp-24-6385-2024, 2024
Short summary
Short summary
The study compares and evaluates monthly AOD of four reanalyses (RA) and their consensus (i.e., ensemble mean). The basic verification characteristics of these RA versus both AERONET and MODIS retrievals are presented. The study discusses the strength of each RA and identifies regions where divergence and challenges are prominent. The RA consensus usually performs very well on a global scale in terms of how well it matches the observational data, making it a good choice for various applications.
Ewan Crosbie, Luke D. Ziemba, Michael A. Shook, Taylor Shingler, Johnathan W. Hair, Armin Sorooshian, Richard A. Ferrare, Brian Cairns, Yonghoon Choi, Joshua DiGangi, Glenn S. Diskin, Chris Hostetler, Simon Kirschler, Richard H. Moore, David Painemal, Claire Robinson, Shane T. Seaman, K. Lee Thornhill, Christiane Voigt, and Edward Winstead
Atmos. Chem. Phys., 24, 6123–6152, https://doi.org/10.5194/acp-24-6123-2024, https://doi.org/10.5194/acp-24-6123-2024, 2024
Short summary
Short summary
Marine clouds are found to clump together in regions or lines, readily discernible from satellite images of the ocean. While clustering is also a feature of deep storm clouds, we focus on smaller cloud systems associated with fair weather and brief localized showers. Two aircraft sampled the region around these shallow systems: one incorporated measurements taken within, adjacent to, and below the clouds, while the other provided a survey from above using remote sensing techniques.
Yafang Guo, Chayan Roychoudhury, Mohammad Amin Mirrezaei, Rajesh Kumar, Armin Sorooshian, and Avelino F. Arellano
Geosci. Model Dev., 17, 4331–4353, https://doi.org/10.5194/gmd-17-4331-2024, https://doi.org/10.5194/gmd-17-4331-2024, 2024
Short summary
Short summary
This research focuses on surface ozone (O3) pollution in Arizona, a historically air-quality-challenged arid and semi-arid region in the US. The unique characteristics of this kind of region, e.g., intense heat, minimal moisture, and persistent desert shrubs, play a vital role in comprehending O3 exceedances. Using the WRF-Chem model, we analyzed O3 levels in the pre-monsoon month, revealing the model's skill in capturing diurnal and MDA8 O3 levels.
Leong Wai Siu, Joseph S. Schlosser, David Painemal, Brian Cairns, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Chris A. Hostetler, Longlei Li, Mary M. Kleb, Amy Jo Scarino, Taylor J. Shingler, Armin Sorooshian, Snorre A. Stamnes, and Xubin Zeng
Atmos. Meas. Tech., 17, 2739–2759, https://doi.org/10.5194/amt-17-2739-2024, https://doi.org/10.5194/amt-17-2739-2024, 2024
Short summary
Short summary
An unprecedented 3-year aerosol dataset was collected from a recent NASA field campaign over the western North Atlantic Ocean, which offers a special opportunity to evaluate two state-of-the-art remote sensing instruments, one lidar and the other polarimeter, on the same aircraft. Special attention has been paid to validate aerosol optical depth data and their uncertainties when no reference dataset is available. Physical reasons for the disagreement between two instruments are discussed.
Hongyu Liu, Bo Zhang, Richard H. Moore, Luke D. Ziemba, Richard A. Ferrare, Hyundeok Choi, Armin Sorooshian, David Painemal, Hailong Wang, Michael A. Shook, Amy Jo Scarino, Johnathan W. Hair, Ewan C. Crosbie, Marta A. Fenn, Taylor J. Shingler, Chris A. Hostetler, Gao Chen, Mary M. Kleb, Gan Luo, Fangqun Yu, Jason L. Tackett, Mark A. Vaughan, Yongxiang Hu, Glenn S. Diskin, John B. Nowak, Joshua P. DiGangi, Yonghoon Choi, Christoph A. Keller, and Matthew S. Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1127, https://doi.org/10.5194/egusphere-2024-1127, 2024
Short summary
Short summary
We use the GEOS-Chem model to simulate aerosols over the western North Atlantic Ocean (WNAO) during the winter and summer campaigns of ACTIVATE 2020. Model results are evaluated against in situ and remote sensing measurements from two aircraft as well as ground-based and satellite observations. The improved understanding of the aerosol life cycle, composition, transport pathways, and distribution has important implications for characterizing aerosol-cloud-meteorology interactions over the WNAO.
Eva-Lou Edwards, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Claire E. Robinson, Michael A. Shook, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 3349–3378, https://doi.org/10.5194/acp-24-3349-2024, https://doi.org/10.5194/acp-24-3349-2024, 2024
Short summary
Short summary
We investigate Cl− depletion in sea salt particles over the northwest Atlantic from December 2021 to June 2022 using an airborne dataset. Losses of Cl− are greatest in May and least in December–February and March. Inorganic acidic species can account for all depletion observed for December–February, March, and June near Bermuda but none in May. Quantifying Cl− depletion as a percentage captures seasonal trends in depletion but fails to convey the effects it may have on atmospheric oxidation.
Blake T. Sorenson, Jeffrey S. Reid, Jianglong Zhang, Robert E. Holz, William L. Smith Sr., and Amanda Gumber
Atmos. Chem. Phys., 24, 1231–1248, https://doi.org/10.5194/acp-24-1231-2024, https://doi.org/10.5194/acp-24-1231-2024, 2024
Short summary
Short summary
Smoke particles are typically submicron in size and assumed to have negligible impacts at the thermal infrared spectrum. However, we show that infrared signatures can be observed over dense smoke plumes from satellites. We found that giant particles are unlikely to be the dominant cause. Rather, co-transported water vapor injected to the middle to upper troposphere and surface cooling beneath the plume due to shadowing are significant, with the surface cooling effect being the most dominant.
Miguel Ricardo A. Hilario, Avelino F. Arellano, Ali Behrangi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Michael A. Shook, Luke D. Ziemba, and Armin Sorooshian
Atmos. Meas. Tech., 17, 37–55, https://doi.org/10.5194/amt-17-37-2024, https://doi.org/10.5194/amt-17-37-2024, 2024
Short summary
Short summary
Wet scavenging strongly influences aerosol lifetime and interactions but is a large uncertainty in global models. We present a method to identify meteorological variables relevant for estimating wet scavenging. During long-range transport over the tropical western Pacific, relative humidity and the frequency of humid conditions are better predictors of scavenging than precipitation. This method can be applied to other regions, and our findings can inform scavenging parameterizations in models.
Simon Kirschler, Christiane Voigt, Bruce E. Anderson, Gao Chen, Ewan C. Crosbie, Richard A. Ferrare, Valerian Hahn, Johnathan W. Hair, Stefan Kaufmann, Richard H. Moore, David Painemal, Claire E. Robinson, Kevin J. Sanchez, Amy J. Scarino, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 23, 10731–10750, https://doi.org/10.5194/acp-23-10731-2023, https://doi.org/10.5194/acp-23-10731-2023, 2023
Short summary
Short summary
In this study we present an overview of liquid and mixed-phase clouds and precipitation in the marine boundary layer over the western North Atlantic Ocean. We compare microphysical properties of pure liquid clouds to mixed-phase clouds and show that the initiation of the ice phase in mixed-phase clouds promotes precipitation. The observational data presented in this study are well suited for investigating the processes that give rise to liquid and mixed-phase clouds, ice, and precipitation.
Genevieve Rose Lorenzo, Avelino F. Arellano, Maria Obiminda Cambaliza, Christopher Castro, Melliza Templonuevo Cruz, Larry Di Girolamo, Glenn Franco Gacal, Miguel Ricardo A. Hilario, Nofel Lagrosas, Hans Jarett Ong, James Bernard Simpas, Sherdon Niño Uy, and Armin Sorooshian
Atmos. Chem. Phys., 23, 10579–10608, https://doi.org/10.5194/acp-23-10579-2023, https://doi.org/10.5194/acp-23-10579-2023, 2023
Short summary
Short summary
Aerosol and weather interactions in Southeast Asia are complex and understudied. An emerging aerosol climatology was established in Metro Manila, the Philippines, from aerosol particle physicochemical properties and meteorology, revealing five sources. Even with local traffic, transported smoke from biomass burning, aged dust, and cloud processing, background marine particles dominate and correspond to lower aerosol optical depth in Metro Manila compared to other Southeast Asian megacities.
Qian Xiao, Jiaoshi Zhang, Yang Wang, Luke D. Ziemba, Ewan Crosbie, Edward L. Winstead, Claire E. Robinson, Joshua P. DiGangi, Glenn S. Diskin, Jeffrey S. Reid, K. Sebastian Schmidt, Armin Sorooshian, Miguel Ricardo A. Hilario, Sarah Woods, Paul Lawson, Snorre A. Stamnes, and Jian Wang
Atmos. Chem. Phys., 23, 9853–9871, https://doi.org/10.5194/acp-23-9853-2023, https://doi.org/10.5194/acp-23-9853-2023, 2023
Short summary
Short summary
Using recent airborne measurements, we show that the influences of anthropogenic emissions, transport, convective clouds, and meteorology lead to new particle formation (NPF) under a variety of conditions and at different altitudes in tropical marine environments. NPF is enhanced by fresh urban emissions in convective outflow but is suppressed in air masses influenced by aged urban emissions where reactive precursors are mostly consumed while particle surface area remains relatively high.
Armin Sorooshian, Mikhail D. Alexandrov, Adam D. Bell, Ryan Bennett, Grace Betito, Sharon P. Burton, Megan E. Buzanowicz, Brian Cairns, Eduard V. Chemyakin, Gao Chen, Yonghoon Choi, Brian L. Collister, Anthony L. Cook, Andrea F. Corral, Ewan C. Crosbie, Bastiaan van Diedenhoven, Joshua P. DiGangi, Glenn S. Diskin, Sanja Dmitrovic, Eva-Lou Edwards, Marta A. Fenn, Richard A. Ferrare, David van Gilst, Johnathan W. Hair, David B. Harper, Miguel Ricardo A. Hilario, Chris A. Hostetler, Nathan Jester, Michael Jones, Simon Kirschler, Mary M. Kleb, John M. Kusterer, Sean Leavor, Joseph W. Lee, Hongyu Liu, Kayla McCauley, Richard H. Moore, Joseph Nied, Anthony Notari, John B. Nowak, David Painemal, Kasey E. Phillips, Claire E. Robinson, Amy Jo Scarino, Joseph S. Schlosser, Shane T. Seaman, Chellappan Seethala, Taylor J. Shingler, Michael A. Shook, Kenneth A. Sinclair, William L. Smith Jr., Douglas A. Spangenberg, Snorre A. Stamnes, Kenneth L. Thornhill, Christiane Voigt, Holger Vömel, Andrzej P. Wasilewski, Hailong Wang, Edward L. Winstead, Kira Zeider, Xubin Zeng, Bo Zhang, Luke D. Ziemba, and Paquita Zuidema
Earth Syst. Sci. Data, 15, 3419–3472, https://doi.org/10.5194/essd-15-3419-2023, https://doi.org/10.5194/essd-15-3419-2023, 2023
Short summary
Short summary
The NASA Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) produced a unique dataset for research into aerosol–cloud–meteorology interactions. HU-25 Falcon and King Air aircraft conducted systematic and spatially coordinated flights over the northwest Atlantic Ocean. This paper describes the ACTIVATE flight strategy, instrument and complementary dataset products, data access and usage details, and data application notes.
Blake T. Sorenson, Jianglong Zhang, Jeffrey S. Reid, Peng Xian, and Shawn L. Jaker
Atmos. Chem. Phys., 23, 7161–7175, https://doi.org/10.5194/acp-23-7161-2023, https://doi.org/10.5194/acp-23-7161-2023, 2023
Short summary
Short summary
We quality-control Ozone Monitoring Instrument (OMI) aerosol index data by identifying row anomalies and removing systematic biases, using the data to quantify trends in UV-absorbing aerosols over the Arctic region. We found decreasing trends in UV-absorbing aerosols in spring months and increasing trends in summer months. For the first time, observational evidence of increasing trends in UV-absorbing aerosols over the North Pole is found using the OMI data, especially over the last half decade.
Robert Pincus, Paul A. Hubanks, Steven Platnick, Kerry Meyer, Robert E. Holz, Denis Botambekov, and Casey J. Wall
Earth Syst. Sci. Data, 15, 2483–2497, https://doi.org/10.5194/essd-15-2483-2023, https://doi.org/10.5194/essd-15-2483-2023, 2023
Short summary
Short summary
This paper describes a new global dataset of cloud properties observed by a specific satellite program created to facilitate comparison with a matching observational proxy used in climate models. Statistics are accumulated over daily and monthly timescales on an equal-angle grid. Statistics include cloud detection, cloud-top pressure, and cloud optical properties. Joint histograms of several variable pairs are also available.
Jianglong Zhang, Jeffrey S. Reid, Steven D. Miller, Miguel Román, Zhuosen Wang, Robert J. D. Spurr, and Shawn Jaker
Atmos. Meas. Tech., 16, 2531–2546, https://doi.org/10.5194/amt-16-2531-2023, https://doi.org/10.5194/amt-16-2531-2023, 2023
Short summary
Short summary
We adapted the spherical harmonics discrete ordinate method 3-dimentional radiative transfer model (3-D RTM) and developed a nighttime 3-D RTM capability for simulating top-of-atmosphere radiances from artificial light sources for aerosol retrievals. Our study suggests that both aerosol optical depth and aerosol plume height can be effectively retrieved using nighttime observations over artificial light sources, through the newly developed radiative transfer modeling capability.
Amanda Gumber, Jeffrey S. Reid, Robert E. Holz, Thomas F. Eck, N. Christina Hsu, Robert C. Levy, Jianglong Zhang, and Paolo Veglio
Atmos. Meas. Tech., 16, 2547–2573, https://doi.org/10.5194/amt-16-2547-2023, https://doi.org/10.5194/amt-16-2547-2023, 2023
Short summary
Short summary
The purpose of this study is to create and evaluate a gridded dataset composed of multiple satellite instruments and algorithms to be used for data assimilation. An important part of aerosol data assimilation is having consistent measurements, especially for severe aerosol events. This study evaluates 4 years of data from MODIS, VIIRS, and AERONET with a focus on aerosol severe event detection from a regional and global perspective.
Hong Chen, K. Sebastian Schmidt, Steven T. Massie, Vikas Nataraja, Matthew S. Norgren, Jake J. Gristey, Graham Feingold, Robert E. Holz, and Hironobu Iwabuchi
Atmos. Meas. Tech., 16, 1971–2000, https://doi.org/10.5194/amt-16-1971-2023, https://doi.org/10.5194/amt-16-1971-2023, 2023
Short summary
Short summary
We introduce the Education and Research 3D Radiative Transfer Toolbox (EaR3T) and propose a radiance self-consistency approach for quantifying and mitigating 3D bias in legacy airborne and spaceborne imagery retrievals due to spatially inhomogeneous clouds and surfaces.
Juli I. Rubin, Jeffrey S. Reid, Peng Xian, Christopher M. Selman, and Thomas F. Eck
Atmos. Chem. Phys., 23, 4059–4090, https://doi.org/10.5194/acp-23-4059-2023, https://doi.org/10.5194/acp-23-4059-2023, 2023
Short summary
Short summary
This work aims to quantify the covariability between aerosol optical depth/extinction with water vapor (PW) globally, using NASA AERONET observations and NAAPS model data. Findings are important for data assimilation and radiative transfer. The study shows statistically significant and positive AOD–PW relationships are found across the globe, varying in strength with location and season and tied to large-scale aerosol events. Hygroscopic growth was also found to be an important factor.
Edward Gryspeerdt, Adam C. Povey, Roy G. Grainger, Otto Hasekamp, N. Christina Hsu, Jane P. Mulcahy, Andrew M. Sayer, and Armin Sorooshian
Atmos. Chem. Phys., 23, 4115–4122, https://doi.org/10.5194/acp-23-4115-2023, https://doi.org/10.5194/acp-23-4115-2023, 2023
Short summary
Short summary
The impact of aerosols on clouds is one of the largest uncertainties in the human forcing of the climate. Aerosol can increase the concentrations of droplets in clouds, but observational and model studies produce widely varying estimates of this effect. We show that these estimates can be reconciled if only polluted clouds are studied, but this is insufficient to constrain the climate impact of aerosol. The uncertainty in aerosol impact on clouds is currently driven by cases with little aerosol.
Norman T. O'Neill, Keyvan Ranjbar, Liviu Ivănescu, Thomas F. Eck, Jeffrey S. Reid, David M. Giles, Daniel Pérez-Ramírez, and Jai Prakash Chaubey
Atmos. Meas. Tech., 16, 1103–1120, https://doi.org/10.5194/amt-16-1103-2023, https://doi.org/10.5194/amt-16-1103-2023, 2023
Short summary
Short summary
Aerosols are atmospheric particles that vary in size (radius) from a fraction of a micrometer (µm) to around 20 µm. They tend to be either smaller than 1 µm (like smoke or pollution) or larger than 1 µm (like dust or sea salt). Their optical effect (scattering and absorbing sunlight) can be divided into FM (fine-mode) and CM (coarse-mode) parts using a cutoff radius around 1 µm or a spectral (color) technique. We present and validate a theoretical link between the types of FM and CM divisions.
Hyungwon John Park, Jeffrey S. Reid, Livia S. Freire, Christopher Jackson, and David H. Richter
Atmos. Meas. Tech., 15, 7171–7194, https://doi.org/10.5194/amt-15-7171-2022, https://doi.org/10.5194/amt-15-7171-2022, 2022
Short summary
Short summary
We use numerical models to study field measurements of sea spray aerosol particles and conclude that both the atmospheric state and the methods of instrument sampling are causes for the variation in the production rate of aerosol particles: a critical metric to learn the aerosol's effect on processes like cloud physics and radiation. This work helps field observers improve their experimental design and interpretation of measurements because of turbulence in the atmosphere.
Hossein Dadashazar, Andrea F. Corral, Ewan Crosbie, Sanja Dmitrovic, Simon Kirschler, Kayla McCauley, Richard Moore, Claire Robinson, Joseph S. Schlosser, Michael Shook, K. Lee Thornhill, Christiane Voigt, Edward Winstead, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 13897–13913, https://doi.org/10.5194/acp-22-13897-2022, https://doi.org/10.5194/acp-22-13897-2022, 2022
Short summary
Short summary
Multi-season airborne data over the northwestern Atlantic show that organic mass fraction and the relative amount of oxygenated organics within that fraction are enhanced in droplet residual particles as compared to particles below and above cloud. In-cloud aqueous processing is shown to be a potential driver of this compositional shift in cloud. This implies that aerosol–cloud interactions in the region reduce aerosol hygroscopicity due to the jump in the organic : sulfate ratio in cloud.
Ewan Crosbie, Luke D. Ziemba, Michael A. Shook, Claire E. Robinson, Edward L. Winstead, K. Lee Thornhill, Rachel A. Braun, Alexander B. MacDonald, Connor Stahl, Armin Sorooshian, Susan C. van den Heever, Joshua P. DiGangi, Glenn S. Diskin, Sarah Woods, Paola Bañaga, Matthew D. Brown, Francesca Gallo, Miguel Ricardo A. Hilario, Carolyn E. Jordan, Gabrielle R. Leung, Richard H. Moore, Kevin J. Sanchez, Taylor J. Shingler, and Elizabeth B. Wiggins
Atmos. Chem. Phys., 22, 13269–13302, https://doi.org/10.5194/acp-22-13269-2022, https://doi.org/10.5194/acp-22-13269-2022, 2022
Short summary
Short summary
The linkage between cloud droplet and aerosol particle chemical composition was analyzed using samples collected in a polluted tropical marine environment. Variations in the droplet composition were related to physical and dynamical processes in clouds to assess their relative significance across three cases that spanned a range of rainfall amounts. In spite of the pollution, sea salt still remained a major contributor to the droplet composition and was preferentially enhanced in rainwater.
Eva-Lou Edwards, Jeffrey S. Reid, Peng Xian, Sharon P. Burton, Anthony L. Cook, Ewan C. Crosbie, Marta A. Fenn, Richard A. Ferrare, Sean W. Freeman, John W. Hair, David B. Harper, Chris A. Hostetler, Claire E. Robinson, Amy Jo Scarino, Michael A. Shook, G. Alexander Sokolowsky, Susan C. van den Heever, Edward L. Winstead, Sarah Woods, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 12961–12983, https://doi.org/10.5194/acp-22-12961-2022, https://doi.org/10.5194/acp-22-12961-2022, 2022
Short summary
Short summary
This study compares NAAPS-RA model simulations of aerosol optical thickness (AOT) and extinction to those retrieved with a high spectral resolution lidar near the Philippines. Agreement for AOT was good, and extinction agreement was strongest below 1500 m. Substituting dropsonde relative humidities into NAAPS-RA did not drastically improve agreement, and we discuss potential reasons why. Accurately modeling future conditions in this region is crucial due to its susceptibility to climate change.
Albert Ansmann, Kevin Ohneiser, Alexandra Chudnovsky, Daniel A. Knopf, Edwin W. Eloranta, Diego Villanueva, Patric Seifert, Martin Radenz, Boris Barja, Félix Zamorano, Cristofer Jimenez, Ronny Engelmann, Holger Baars, Hannes Griesche, Julian Hofer, Dietrich Althausen, and Ulla Wandinger
Atmos. Chem. Phys., 22, 11701–11726, https://doi.org/10.5194/acp-22-11701-2022, https://doi.org/10.5194/acp-22-11701-2022, 2022
Short summary
Short summary
For the first time we present a systematic study on the impact of wildfire smoke on ozone depletion in the Arctic (2020) and Antarctic stratosphere (2020, 2021). Two major fire events in Siberia and Australia were responsible for the observed record-breaking stratospheric smoke pollution. Our analyses were based on lidar observations of smoke parameters (Polarstern, Punta Arenas) and NDACC Arctic and Antarctic ozone profiles as well as on Antarctic OMI satellite observations of column ozone.
Peng Xian, Jianglong Zhang, Norm T. O'Neill, Travis D. Toth, Blake Sorenson, Peter R. Colarco, Zak Kipling, Edward J. Hyer, James R. Campbell, Jeffrey S. Reid, and Keyvan Ranjbar
Atmos. Chem. Phys., 22, 9915–9947, https://doi.org/10.5194/acp-22-9915-2022, https://doi.org/10.5194/acp-22-9915-2022, 2022
Short summary
Short summary
The study provides baseline Arctic spring and summertime aerosol optical depth climatology, trend, and extreme event statistics from 2003 to 2019 using a combination of aerosol reanalyses, remote sensing, and ground observations. Biomass burning smoke has an overwhelming contribution to black carbon (an efficient climate forcer) compared to anthropogenic sources. Burning's large interannual variability and increasing summer trend have important implications for the Arctic climate.
Peng Xian, Jianglong Zhang, Norm T. O'Neill, Jeffrey S. Reid, Travis D. Toth, Blake Sorenson, Edward J. Hyer, James R. Campbell, and Keyvan Ranjbar
Atmos. Chem. Phys., 22, 9949–9967, https://doi.org/10.5194/acp-22-9949-2022, https://doi.org/10.5194/acp-22-9949-2022, 2022
Short summary
Short summary
The study provides a baseline Arctic spring and summertime aerosol optical depth climatology, trend, and extreme event statistics from 2003 to 2019 using a combination of aerosol reanalyses, remote sensing, and ground observations. Biomass burning smoke has an overwhelming contribution to black carbon (an efficient climate forcer) compared to anthropogenic sources. Burning's large interannual variability and increasing summer trend have important implications for the Arctic climate.
Edward Gryspeerdt, Daniel T. McCoy, Ewan Crosbie, Richard H. Moore, Graeme J. Nott, David Painemal, Jennifer Small-Griswold, Armin Sorooshian, and Luke Ziemba
Atmos. Meas. Tech., 15, 3875–3892, https://doi.org/10.5194/amt-15-3875-2022, https://doi.org/10.5194/amt-15-3875-2022, 2022
Short summary
Short summary
Droplet number concentration is a key property of clouds, influencing a variety of cloud processes. It is also used for estimating the cloud response to aerosols. The satellite retrieval depends on a number of assumptions – different sampling strategies are used to select cases where these assumptions are most likely to hold. Here we investigate the impact of these strategies on the agreement with in situ data, the droplet number climatology and estimates of the indirect radiative forcing.
Simon Kirschler, Christiane Voigt, Bruce Anderson, Ramon Campos Braga, Gao Chen, Andrea F. Corral, Ewan Crosbie, Hossein Dadashazar, Richard A. Ferrare, Valerian Hahn, Johannes Hendricks, Stefan Kaufmann, Richard Moore, Mira L. Pöhlker, Claire Robinson, Amy J. Scarino, Dominik Schollmayer, Michael A. Shook, K. Lee Thornhill, Edward Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 8299–8319, https://doi.org/10.5194/acp-22-8299-2022, https://doi.org/10.5194/acp-22-8299-2022, 2022
Short summary
Short summary
In this study we show that the vertical velocity dominantly impacts the cloud droplet number concentration (NC) of low-level clouds over the western North Atlantic in the winter and summer season, while the cloud condensation nuclei concentration, aerosol size distribution and chemical composition impact NC within a season. The observational data presented in this study can evaluate and improve the representation of aerosol–cloud interactions for a wide range of conditions.
Joseph S. Schlosser, Connor Stahl, Armin Sorooshian, Yen Thi-Hoang Le, Ki-Joon Jeon, Peng Xian, Carolyn E. Jordan, Katherine R. Travis, James H. Crawford, Sung Yong Gong, Hye-Jung Shin, In-Ho Song, and Jong-sang Youn
Atmos. Chem. Phys., 22, 7505–7522, https://doi.org/10.5194/acp-22-7505-2022, https://doi.org/10.5194/acp-22-7505-2022, 2022
Short summary
Short summary
During a major haze pollution episode in March 2019, anthropogenic emissions were dominant in the boundary layer over Incheon and Seoul, South Korea. Using supermicrometer and submicrometer size- and chemistry-resolved aerosol particle measurements taken during this haze pollution period, this work shows that local emissions and a shallow boundary layer, enhanced humidity, and low temperature promoted local heterogeneous formation of secondary inorganic and organic aerosol species.
Meloë S. F. Kacenelenbogen, Qian Tan, Sharon P. Burton, Otto P. Hasekamp, Karl D. Froyd, Yohei Shinozuka, Andreas J. Beyersdorf, Luke Ziemba, Kenneth L. Thornhill, Jack E. Dibb, Taylor Shingler, Armin Sorooshian, Reed W. Espinosa, Vanderlei Martins, Jose L. Jimenez, Pedro Campuzano-Jost, Joshua P. Schwarz, Matthew S. Johnson, Jens Redemann, and Gregory L. Schuster
Atmos. Chem. Phys., 22, 3713–3742, https://doi.org/10.5194/acp-22-3713-2022, https://doi.org/10.5194/acp-22-3713-2022, 2022
Short summary
Short summary
The impact of aerosols on Earth's radiation budget and human health is important and strongly depends on their composition. One desire of our scientific community is to derive the composition of the aerosol from satellite sensors. However, satellites observe aerosol optical properties (and not aerosol composition) based on remote sensing instrumentation. This study assesses how much aerosol optical properties can tell us about aerosol composition.
Matthew S. Norgren, John Wood, K. Sebastian Schmidt, Bastiaan van Diedenhoven, Snorre A. Stamnes, Luke D. Ziemba, Ewan C. Crosbie, Michael A. Shook, A. Scott Kittelman, Samuel E. LeBlanc, Stephen Broccardo, Steffen Freitag, and Jeffrey S. Reid
Atmos. Meas. Tech., 15, 1373–1394, https://doi.org/10.5194/amt-15-1373-2022, https://doi.org/10.5194/amt-15-1373-2022, 2022
Short summary
Short summary
A new spectral instrument (SPN-S), with the ability to partition solar radiation into direct and diffuse components, is used in airborne settings to study the optical properties of aerosols and cirrus. It is a low-cost and mechanically simple system but has higher measurement uncertainty than existing standards. This challenge is overcome by utilizing the unique measurement capabilities to develop new retrieval techniques. Validation is done with data from two NASA airborne research campaigns.
Sujung Go, Alexei Lyapustin, Gregory L. Schuster, Myungje Choi, Paul Ginoux, Mian Chin, Olga Kalashnikova, Oleg Dubovik, Jhoon Kim, Arlindo da Silva, Brent Holben, and Jeffrey S. Reid
Atmos. Chem. Phys., 22, 1395–1423, https://doi.org/10.5194/acp-22-1395-2022, https://doi.org/10.5194/acp-22-1395-2022, 2022
Short summary
Short summary
This paper presents a retrieval algorithm of iron-oxide species (hematite, goethite) content in the atmosphere from DSCOVR EPIC observations. Our results display variations within the published range of hematite and goethite over the main dust-source regions but show significant seasonal and spatial variability. This implies a single-viewing satellite instrument with UV–visible channels may provide essential information on shortwave dust direct radiative effects for climate modeling.
Matthew W. Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P. Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L. McCoy, Daniel T. McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys., 22, 641–674, https://doi.org/10.5194/acp-22-641-2022, https://doi.org/10.5194/acp-22-641-2022, 2022
Short summary
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Hossein Dadashazar, Majid Alipanah, Miguel Ricardo A. Hilario, Ewan Crosbie, Simon Kirschler, Hongyu Liu, Richard H. Moore, Andrew J. Peters, Amy Jo Scarino, Michael Shook, K. Lee Thornhill, Christiane Voigt, Hailong Wang, Edward Winstead, Bo Zhang, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 21, 16121–16141, https://doi.org/10.5194/acp-21-16121-2021, https://doi.org/10.5194/acp-21-16121-2021, 2021
Short summary
Short summary
This study investigates precipitation impacts on long-range transport of North American outflow over the western North Atlantic Ocean (WNAO). Results demonstrate that precipitation scavenging plays a significant role in modifying surface aerosol concentrations over the WNAO, especially in winter and spring due to large-scale scavenging processes. This study highlights how precipitation impacts surface aerosol properties with relevance for other marine regions vulnerable to continental outflow.
Connor Stahl, Ewan Crosbie, Paola Angela Bañaga, Grace Betito, Rachel A. Braun, Zenn Marie Cainglet, Maria Obiminda Cambaliza, Melliza Templonuevo Cruz, Julie Mae Dado, Miguel Ricardo A. Hilario, Gabrielle Frances Leung, Alexander B. MacDonald, Angela Monina Magnaye, Jeffrey Reid, Claire Robinson, Michael A. Shook, James Bernard Simpas, Shane Marie Visaga, Edward Winstead, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 21, 14109–14129, https://doi.org/10.5194/acp-21-14109-2021, https://doi.org/10.5194/acp-21-14109-2021, 2021
Short summary
Short summary
A total of 159 cloud water samples were collected and measured for total organic carbon (TOC) during CAMP2Ex. On average, 30 % of TOC was speciated based on carboxylic/sulfonic acids and dimethylamine. Results provide a critical constraint on cloud composition and vertical profiles of TOC and organic species ranging from ~250 m to ~ 7 km and representing a variety of cloud types and air mass source influences such as biomass burning, marine emissions, anthropogenic activity, and dust.
Hossein Dadashazar, David Painemal, Majid Alipanah, Michael Brunke, Seethala Chellappan, Andrea F. Corral, Ewan Crosbie, Simon Kirschler, Hongyu Liu, Richard H. Moore, Claire Robinson, Amy Jo Scarino, Michael Shook, Kenneth Sinclair, K. Lee Thornhill, Christiane Voigt, Hailong Wang, Edward Winstead, Xubin Zeng, Luke Ziemba, Paquita Zuidema, and Armin Sorooshian
Atmos. Chem. Phys., 21, 10499–10526, https://doi.org/10.5194/acp-21-10499-2021, https://doi.org/10.5194/acp-21-10499-2021, 2021
Short summary
Short summary
This study investigates the seasonal cycle of cloud drop number concentration (Nd) over the western North Atlantic Ocean (WNAO) using multiple datasets. Reasons for the puzzling discrepancy between the seasonal cycles of Nd and aerosol concentration were identified. Results indicate that Nd is highest in winter (when aerosol proxy values are often lowest) due to conditions both linked to cold-air outbreaks and that promote greater droplet activation.
Miguel Ricardo A. Hilario, Ewan Crosbie, Michael Shook, Jeffrey S. Reid, Maria Obiminda L. Cambaliza, James Bernard B. Simpas, Luke Ziemba, Joshua P. DiGangi, Glenn S. Diskin, Phu Nguyen, F. Joseph Turk, Edward Winstead, Claire E. Robinson, Jian Wang, Jiaoshi Zhang, Yang Wang, Subin Yoon, James Flynn, Sergio L. Alvarez, Ali Behrangi, and Armin Sorooshian
Atmos. Chem. Phys., 21, 3777–3802, https://doi.org/10.5194/acp-21-3777-2021, https://doi.org/10.5194/acp-21-3777-2021, 2021
Short summary
Short summary
This study characterizes long-range transport from major Asian pollution sources into the tropical northwest Pacific and the impact of scavenging on these air masses. We combined aircraft observations, HYSPLIT trajectories, reanalysis, and satellite retrievals to reveal distinct composition and size distribution profiles associated with specific emission sources and wet scavenging. The results of this work have implications for international policymaking related to climate and health.
Jianglong Zhang, Robert J. D. Spurr, Jeffrey S. Reid, Peng Xian, Peter R. Colarco, James R. Campbell, Edward J. Hyer, and Nancy L. Baker
Geosci. Model Dev., 14, 27–42, https://doi.org/10.5194/gmd-14-27-2021, https://doi.org/10.5194/gmd-14-27-2021, 2021
Short summary
Short summary
A first-of-its-kind scheme has been developed for assimilating Ozone Monitoring Instrument (OMI) aerosol index (AI) measurements into the Naval Aerosol Analysis and Predictive System. Improvements in model simulations demonstrate the utility of OMI AI data assimilation for improving the accuracy of aerosol model analysis over cloudy regions and bright surfaces. This study can be considered one of the first attempts at direct radiance assimilation in the UV spectrum for aerosol analyses.
Connor Stahl, Melliza Templonuevo Cruz, Paola Angela Bañaga, Grace Betito, Rachel A. Braun, Mojtaba Azadi Aghdam, Maria Obiminda Cambaliza, Genevieve Rose Lorenzo, Alexander B. MacDonald, Miguel Ricardo A. Hilario, Preciosa Corazon Pabroa, John Robin Yee, James Bernard Simpas, and Armin Sorooshian
Atmos. Chem. Phys., 20, 15907–15935, https://doi.org/10.5194/acp-20-15907-2020, https://doi.org/10.5194/acp-20-15907-2020, 2020
Short summary
Short summary
Long-term (16-month) high-frequency (weekly) measurements of size-resolved aerosol composition are reported. Important insights are discussed about factors (e.g., transport, fires, precipitation, photo-oxidation) impacting the mass size distributions of organic and sulfonic acids at a coastal megacity with diverse meteorology. The size-resolved nature of the data yielded one such finding that organic acids preferentially adsorb to dust rather than sea salt particles.
Peng Xian, Philip J. Klotzbach, Jason P. Dunion, Matthew A. Janiga, Jeffrey S. Reid, Peter R. Colarco, and Zak Kipling
Atmos. Chem. Phys., 20, 15357–15378, https://doi.org/10.5194/acp-20-15357-2020, https://doi.org/10.5194/acp-20-15357-2020, 2020
Short summary
Short summary
Using dust AOD (DAOD) data from three aerosol reanalyses, we explored the correlative relationships between DAOD and multiple indices representing seasonal Atlantic TC activities. A robust negative correlation with Caribbean DAOD and Atlantic TC activity was found. We documented for the first time the regional differences of this relationship for over the Caribbean and the tropical North Atlantic. We also evaluated the impacts of potential confounding climate factors in this relationship.
Benjamin Gaubert, Louisa K. Emmons, Kevin Raeder, Simone Tilmes, Kazuyuki Miyazaki, Avelino F. Arellano Jr., Nellie Elguindi, Claire Granier, Wenfu Tang, Jérôme Barré, Helen M. Worden, Rebecca R. Buchholz, David P. Edwards, Philipp Franke, Jeffrey L. Anderson, Marielle Saunois, Jason Schroeder, Jung-Hun Woo, Isobel J. Simpson, Donald R. Blake, Simone Meinardi, Paul O. Wennberg, John Crounse, Alex Teng, Michelle Kim, Russell R. Dickerson, Hao He, Xinrong Ren, Sally E. Pusede, and Glenn S. Diskin
Atmos. Chem. Phys., 20, 14617–14647, https://doi.org/10.5194/acp-20-14617-2020, https://doi.org/10.5194/acp-20-14617-2020, 2020
Short summary
Short summary
This study investigates carbon monoxide pollution in East Asia during spring using a numerical model, satellite remote sensing, and aircraft measurements. We found an underestimation of emission sources. Correcting the emission bias can improve air quality forecasting of carbon monoxide and other species including ozone. Results also suggest that controlling VOC and CO emissions, in addition to widespread NOx controls, can improve ozone pollution over East Asia.
Willem J. Marais, Robert E. Holz, Jeffrey S. Reid, and Rebecca M. Willett
Atmos. Meas. Tech., 13, 5459–5480, https://doi.org/10.5194/amt-13-5459-2020, https://doi.org/10.5194/amt-13-5459-2020, 2020
Short summary
Short summary
Space agencies use moderate-resolution satellite imagery to study how smoke, dust, pollution (aerosols) and cloud types impact the Earth's climate; these space agencies include NASA, ESA and the China Meteorological Administration. We demonstrate in this paper that an algorithm with convolutional neural networks can greatly enhance the automated detection of aerosols and cloud types from satellite imagery. Our algorithm is an improvement on current aerosol and cloud detection algorithms.
Wenfu Tang, Benjamin Gaubert, Louisa Emmons, Yonghoon Choi, Joshua P. DiGangi, Glenn S. Diskin, Xiaomei Xu, Cenlin He, Helen Worden, Simone Tilmes, Rebecca Buchholz, Hannah S. Halliday, and Avelino F. Arellano
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-864, https://doi.org/10.5194/acp-2020-864, 2020
Revised manuscript not accepted
Short summary
Short summary
A specific demonstration of the potential use of correlative information from carbon monoxide to refine estimates of regional carbon dioxide emissions from fossil fuel combustion.
Alexander B. MacDonald, Ali Hossein Mardi, Hossein Dadashazar, Mojtaba Azadi Aghdam, Ewan Crosbie, Haflidi H. Jonsson, Richard C. Flagan, John H. Seinfeld, and Armin Sorooshian
Atmos. Chem. Phys., 20, 7645–7665, https://doi.org/10.5194/acp-20-7645-2020, https://doi.org/10.5194/acp-20-7645-2020, 2020
Short summary
Short summary
Understanding how humans affect Earth's climate requires understanding of how particles in the air affect the number concentration of droplets in a cloud (Nd). We use the air-equivalent mass concentration of different chemical species contained in cloud water to predict Nd. In this study we found that the prediction of Nd is (1) best described by total sulfate; (2) improved when considering up to five species; and (3) dependent on factors like turbulence, smoke presence, and in-cloud height.
Hossein Dadashazar, Ewan Crosbie, Mohammad S. Majdi, Milad Panahi, Mohammad A. Moghaddam, Ali Behrangi, Michael Brunke, Xubin Zeng, Haflidi H. Jonsson, and Armin Sorooshian
Atmos. Chem. Phys., 20, 4637–4665, https://doi.org/10.5194/acp-20-4637-2020, https://doi.org/10.5194/acp-20-4637-2020, 2020
Short summary
Short summary
Clearings in the marine-boundary-layer (MBL) cloud deck of the Pacific Ocean were studied. Remote sensing, reanalysis, and airborne data were used along with machine-learning modeling to characterize the spatiotemporal nature of clearings and factors governing their growth. The most significant implications of our results are linked to modeling of fog and MBL clouds, with implications for societal and environmental issues like climate, military operations, transportation, and coastal ecology.
Rachel A. Braun, Mojtaba Azadi Aghdam, Paola Angela Bañaga, Grace Betito, Maria Obiminda Cambaliza, Melliza Templonuevo Cruz, Genevieve Rose Lorenzo, Alexander B. MacDonald, James Bernard Simpas, Connor Stahl, and Armin Sorooshian
Atmos. Chem. Phys., 20, 2387–2405, https://doi.org/10.5194/acp-20-2387-2020, https://doi.org/10.5194/acp-20-2387-2020, 2020
Miguel Ricardo A. Hilario, Melliza T. Cruz, Maria Obiminda L. Cambaliza, Jeffrey S. Reid, Peng Xian, James B. Simpas, Nofel D. Lagrosas, Sherdon Niño Y. Uy, Steve Cliff, and Yongjing Zhao
Atmos. Chem. Phys., 20, 1255–1276, https://doi.org/10.5194/acp-20-1255-2020, https://doi.org/10.5194/acp-20-1255-2020, 2020
Short summary
Short summary
The research apportions size-resolved aerosol contributions from the South China Sea during the Vasco research cruise in September 2011. As aerosols can affect precipitation rates and cloud formation, identifying sources is key to characterizing the region and developing our understanding of aerosol–cloud behavior. A strong biomass burning signal was identified using elemental particulate matter in the fine and ultrafine size ranges. Oil combustion, soil dust, and sea spray were also identified.
Pawan Gupta, Robert C. Levy, Shana Mattoo, Lorraine A. Remer, Robert E. Holz, and Andrew K. Heidinger
Atmos. Meas. Tech., 12, 6557–6577, https://doi.org/10.5194/amt-12-6557-2019, https://doi.org/10.5194/amt-12-6557-2019, 2019
Short summary
Short summary
Aerosol optical depth (AOD) from a geostationary satellite has been retrieved, and validated and diurnal cycles of aerosols are discussed over the eastern hemisphere and a 2-month period of May–June 2016. The new AOD product matches well with AERONET as well as with the standard MODIS product. Future work to make this algorithm operational will need to re-examine masking including snow masks, re-evaluate assumed aerosol models for geosynchronous geometry and address the surface characterization.
Logan Lee, Jianglong Zhang, Jeffrey S. Reid, and John E. Yorks
Atmos. Chem. Phys., 19, 12687–12707, https://doi.org/10.5194/acp-19-12687-2019, https://doi.org/10.5194/acp-19-12687-2019, 2019
Short summary
Short summary
The study of the diurnal variation of aerosol optical depth (AOD) and aerosol vertical distribution is necessary for the monitoring and modeling of aerosol particles for various air pollution, visibility and climate-related studies. Upon evaluating 1064 nm AOD and aerosol extinction profiles from the Cloud-Aerosol Transport System (CATS) level 2 aerosol product, we studied the diurnal variation of AOD and aerosol extinction profiles on both regional and global scales.
Steven D. Miller, Louie D. Grasso, Qijing Bian, Sonia M. Kreidenweis, Jack F. Dostalek, Jeremy E. Solbrig, Jennifer Bukowski, Susan C. van den Heever, Yi Wang, Xiaoguang Xu, Jun Wang, Annette L. Walker, Ting-Chi Wu, Milija Zupanski, Christine Chiu, and Jeffrey S. Reid
Atmos. Meas. Tech., 12, 5101–5118, https://doi.org/10.5194/amt-12-5101-2019, https://doi.org/10.5194/amt-12-5101-2019, 2019
Short summary
Short summary
Satellite–based detection of lofted mineral via infrared–window channels, well established in the literature, faces significant challenges in the presence of atmospheric moisture. Here, we consider a case featuring the juxtaposition of two dust plumes embedded within dry and moist air masses. The case is considered from the vantage points of numerical modeling, multi–sensor observations, and radiative transfer theory arriving at a new method for mitigating the water vapor masking effect.
Jeffrey S. Reid, Derek J. Posselt, Kathleen Kaku, Robert A. Holz, Gao Chen, Edwin W. Eloranta, Ralph E. Kuehn, Sarah Woods, Jianglong Zhang, Bruce Anderson, T. Paul Bui, Glenn S. Diskin, Patrick Minnis, Michael J. Newchurch, Simone Tanelli, Charles R. Trepte, K. Lee Thornhill, and Luke D. Ziemba
Atmos. Chem. Phys., 19, 11413–11442, https://doi.org/10.5194/acp-19-11413-2019, https://doi.org/10.5194/acp-19-11413-2019, 2019
Short summary
Short summary
The scientific community often focuses on the vertical transport of pollutants by clouds for those with bases at the planetary boundary layer (such as typical fair-weather cumulus) and the outflow from thunderstorms at their tops. We demonstrate complex aerosol and cloud features formed in mid-level thunderstorm outflow. These layers have strong relationships to mid-level tropospheric clouds, an important but difficult to model or monitor cloud regime for climate studies.
Melliza Templonuevo Cruz, Paola Angela Bañaga, Grace Betito, Rachel A. Braun, Connor Stahl, Mojtaba Azadi Aghdam, Maria Obiminda Cambaliza, Hossein Dadashazar, Miguel Ricardo Hilario, Genevieve Rose Lorenzo, Lin Ma, Alexander B. MacDonald, Preciosa Corazon Pabroa, John Robin Yee, James Bernard Simpas, and Armin Sorooshian
Atmos. Chem. Phys., 19, 10675–10696, https://doi.org/10.5194/acp-19-10675-2019, https://doi.org/10.5194/acp-19-10675-2019, 2019
Short summary
Short summary
This study is the first to report size-resolved PM mass and composition in metro Manila, Philippines. The results, which focus on the southwest monsoon season (SWM), are important with regard to understanding the competition between local sources and long-range transport, characterizing the properties of aerosol impacted by both aqueous processing and wet scavenging, and providing contextual data for comparison with other monsoonal regions and coastal megacities.
Xiaoguang Xu, Jun Wang, Yi Wang, Jing Zeng, Omar Torres, Jeffrey S. Reid, Steven D. Miller, J. Vanderlei Martins, and Lorraine A. Remer
Atmos. Meas. Tech., 12, 3269–3288, https://doi.org/10.5194/amt-12-3269-2019, https://doi.org/10.5194/amt-12-3269-2019, 2019
Short summary
Short summary
Detecting aerosol layer height from space is challenging. The traditional method relies on active sensors such as lidar that provide the detailed vertical structure of the aerosol profile but is costly with limited spatial coverage (more than 1 year is needed for global coverage). Here we developed a passive remote sensing technique that uses backscattered sunlight to retrieve smoke aerosol layer height over both water and vegetated surfaces from a sensor 1.5 million kilometers from the Earth.
Jianglong Zhang, Shawn L. Jaker, Jeffrey S. Reid, Steven D. Miller, Jeremy Solbrig, and Travis D. Toth
Atmos. Meas. Tech., 12, 3209–3222, https://doi.org/10.5194/amt-12-3209-2019, https://doi.org/10.5194/amt-12-3209-2019, 2019
Short summary
Short summary
Using nighttime observations from the Visible Infrared Imager Radiometer Suite (VIIRS) Day/Night band (DNB), the characteristics of artificial light sources are evaluated as functions of observation conditions, and incremental improvements are documented on nighttime aerosol retrievals on a regional scale. Results from the study indicate the potential of this method to begin filling critical gaps in diurnal aerosol optical thickness information at both regional and global scales.
Wenfu Tang, Avelino F. Arellano, Benjamin Gaubert, Kazuyuki Miyazaki, and Helen M. Worden
Atmos. Chem. Phys., 19, 4269–4288, https://doi.org/10.5194/acp-19-4269-2019, https://doi.org/10.5194/acp-19-4269-2019, 2019
Travis D. Toth, Jianglong Zhang, Jeffrey S. Reid, and Mark A. Vaughan
Atmos. Meas. Tech., 12, 1739–1754, https://doi.org/10.5194/amt-12-1739-2019, https://doi.org/10.5194/amt-12-1739-2019, 2019
Short summary
Short summary
An innovative method is presented for deriving particulate matter (PM) concentrations using CALIOP measurements. Deviating from conventional approaches of relying on passive satellite column-integrated aerosol measurements, PM concentrations are derived from near-surface CALIOP measurements through a bulk-mass-modeling method. This proof-of-concept study shows that, while limited in spatial and temporal coverage, CALIOP exhibits reasonable skill for PM applications.
Barbara Ervens, Armin Sorooshian, Abdulmonam M. Aldhaif, Taylor Shingler, Ewan Crosbie, Luke Ziemba, Pedro Campuzano-Jost, Jose L. Jimenez, and Armin Wisthaler
Atmos. Chem. Phys., 18, 16099–16119, https://doi.org/10.5194/acp-18-16099-2018, https://doi.org/10.5194/acp-18-16099-2018, 2018
Short summary
Short summary
The paper presents a new framework that can be used to identify emission scenarios in which aerosol populations are most likely modified by chemical processes in clouds. We show that in neither very polluted nor in very clean air masses is this the case. Only if the ratio of possible aerosol mass precursors (sulfur dioxide, some organics) and preexisting aerosol mass is sufficiently high will aerosol particles show substantially modified physicochemical properties upon cloud processing.
William H. Brune, Xinrong Ren, Li Zhang, Jingqiu Mao, David O. Miller, Bruce E. Anderson, Donald R. Blake, Ronald C. Cohen, Glenn S. Diskin, Samuel R. Hall, Thomas F. Hanisco, L. Gregory Huey, Benjamin A. Nault, Jeff Peischl, Ilana Pollack, Thomas B. Ryerson, Taylor Shingler, Armin Sorooshian, Kirk Ullmann, Armin Wisthaler, and Paul J. Wooldridge
Atmos. Chem. Phys., 18, 14493–14510, https://doi.org/10.5194/acp-18-14493-2018, https://doi.org/10.5194/acp-18-14493-2018, 2018
Short summary
Short summary
Thunderstorms pull in polluted air from near the ground, transport it up through clouds containing lightning, and deposit it at altitudes where airplanes fly. The resulting chemical mixture in this air reacts to form ozone and particles, which affect climate. In this study, aircraft observations of the reactive gases responsible for this chemistry generally agree with modeled values, even in ice clouds. Thus, atmospheric oxidation chemistry appears to be mostly understood for this environment.
Ewan Crosbie, Matthew D. Brown, Michael Shook, Luke Ziemba, Richard H. Moore, Taylor Shingler, Edward Winstead, K. Lee Thornhill, Claire Robinson, Alexander B. MacDonald, Hossein Dadashazar, Armin Sorooshian, Andreas Beyersdorf, Alexis Eugene, Jeffrey Collett Jr., Derek Straub, and Bruce Anderson
Atmos. Meas. Tech., 11, 5025–5048, https://doi.org/10.5194/amt-11-5025-2018, https://doi.org/10.5194/amt-11-5025-2018, 2018
Short summary
Short summary
A new aircraft-mounted probe for collecting samples of cloud water has been designed, fabricated, and extensively tested. Cloud drop composition provides valuable insight into atmospheric processes, but separating liquid samples from the airstream in a controlled way at flight speeds has proven difficult. The features of the design have been analysed with detailed numerical flow simulations and the new probe has demonstrated improved efficiency and performance through extensive flight testing.
Alexa D. Ross, Robert E. Holz, Gregory Quinn, Jeffrey S. Reid, Peng Xian, F. Joseph Turk, and Derek J. Posselt
Atmos. Chem. Phys., 18, 12747–12764, https://doi.org/10.5194/acp-18-12747-2018, https://doi.org/10.5194/acp-18-12747-2018, 2018
Short summary
Short summary
This paper explores how clouds and aerosols interact over Southeast Asia. We introduce a new collocated dataset called the Curtain Cloud-Aerosol Regional A-Train (CCARA) product. CCARA is special because it combines satellite observations with model reanalysis. We find that increased aerosol corresponds to smaller observed liquid cloud droplets in some areas. Other areas experienced little to no change in effective radius (droplet size) when aerosol amount increased.
Wenfu Tang, Avelino F. Arellano, Joshua P. DiGangi, Yonghoon Choi, Glenn S. Diskin, Anna Agustí-Panareda, Mark Parrington, Sebastien Massart, Benjamin Gaubert, Youngjae Lee, Danbi Kim, Jinsang Jung, Jinkyu Hong, Je-Woo Hong, Yugo Kanaya, Mindo Lee, Ryan M. Stauffer, Anne M. Thompson, James H. Flynn, and Jung-Hun Woo
Atmos. Chem. Phys., 18, 11007–11030, https://doi.org/10.5194/acp-18-11007-2018, https://doi.org/10.5194/acp-18-11007-2018, 2018
Angela Benedetti, Jeffrey S. Reid, Peter Knippertz, John H. Marsham, Francesca Di Giuseppe, Samuel Rémy, Sara Basart, Olivier Boucher, Ian M. Brooks, Laurent Menut, Lucia Mona, Paolo Laj, Gelsomina Pappalardo, Alfred Wiedensohler, Alexander Baklanov, Malcolm Brooks, Peter R. Colarco, Emilio Cuevas, Arlindo da Silva, Jeronimo Escribano, Johannes Flemming, Nicolas Huneeus, Oriol Jorba, Stelios Kazadzis, Stefan Kinne, Thomas Popp, Patricia K. Quinn, Thomas T. Sekiyama, Taichu Tanaka, and Enric Terradellas
Atmos. Chem. Phys., 18, 10615–10643, https://doi.org/10.5194/acp-18-10615-2018, https://doi.org/10.5194/acp-18-10615-2018, 2018
Short summary
Short summary
Numerical prediction of aerosol particle properties has become an important activity at many research and operational weather centers. This development is due to growing interest from a diverse set of stakeholders, such as air quality regulatory bodies, aviation authorities, solar energy plant managers, climate service providers, and health professionals. This paper describes the advances in the field and sets out requirements for observations for the sustainability of these activities.
David P. Edwards, Helen M. Worden, Doreen Neil, Gene Francis, Tim Valle, and Avelino F. Arellano Jr.
Atmos. Meas. Tech., 11, 1061–1085, https://doi.org/10.5194/amt-11-1061-2018, https://doi.org/10.5194/amt-11-1061-2018, 2018
Short summary
Short summary
The CHRONOS space mission would provide observations for emissions and transport studies of the highly uncertain air pollutants carbon monoxide and methane, with sub-hourly revisit at fine horizontal spatial resolution across North America. CHRONOS uses an imaging gas filter correlation radiometer hosted in geostationary orbit. CHRONOS' capability for monitoring evolving, or unanticipated, air pollution sources would find societal applications for air quality management and forecasting.
Hossein Dadashazar, Rachel A. Braun, Ewan Crosbie, Patrick Y. Chuang, Roy K. Woods, Haflidi H. Jonsson, and Armin Sorooshian
Atmos. Chem. Phys., 18, 1495–1506, https://doi.org/10.5194/acp-18-1495-2018, https://doi.org/10.5194/acp-18-1495-2018, 2018
Short summary
Short summary
This study shows with airborne data that in the thin layer above stratocumulus clouds, the entrainment interface layer (EIL), aerosol size distributions are influenced both by new particle formation and by pollutants above and below the EIL. These results are important with regard to understanding aerosol–cloud–climate interactions as the aerosol in this layer can influence the characteristics of stratocumulus clouds, which are the dominant cloud type by global area.
Travis D. Toth, James R. Campbell, Jeffrey S. Reid, Jason L. Tackett, Mark A. Vaughan, Jianglong Zhang, and Jared W. Marquis
Atmos. Meas. Tech., 11, 499–514, https://doi.org/10.5194/amt-11-499-2018, https://doi.org/10.5194/amt-11-499-2018, 2018
Brent N. Holben, Jhoon Kim, Itaru Sano, Sonoyo Mukai, Thomas F. Eck, David M. Giles, Joel S. Schafer, Aliaksandr Sinyuk, Ilya Slutsker, Alexander Smirnov, Mikhail Sorokin, Bruce E. Anderson, Huizheng Che, Myungje Choi, James H. Crawford, Richard A. Ferrare, Michael J. Garay, Ukkyo Jeong, Mijin Kim, Woogyung Kim, Nichola Knox, Zhengqiang Li, Hwee S. Lim, Yang Liu, Hal Maring, Makiko Nakata, Kenneth E. Pickering, Stuart Piketh, Jens Redemann, Jeffrey S. Reid, Santo Salinas, Sora Seo, Fuyi Tan, Sachchida N. Tripathi, Owen B. Toon, and Qingyang Xiao
Atmos. Chem. Phys., 18, 655–671, https://doi.org/10.5194/acp-18-655-2018, https://doi.org/10.5194/acp-18-655-2018, 2018
Short summary
Short summary
Aerosol particles, such as smoke, vary over space and time. This paper describes a series of very high-resolution ground-based aerosol measurement networks and associated studies that contributed new understanding of aerosol processes and detailed comparisons to satellite aerosol validation. Significantly, these networks also provide an opportunity to statistically relate grab samples of an aerosol parameter to companion satellite observations, a step toward air quality assessment from space.
Ricardo Alfaro-Contreras, Jianglong Zhang, Jeffrey S. Reid, and Sundar Christopher
Atmos. Chem. Phys., 17, 13849–13868, https://doi.org/10.5194/acp-17-13849-2017, https://doi.org/10.5194/acp-17-13849-2017, 2017
Short summary
Short summary
Using near-full data records of Terra and Aqua MODIS and MISR data, we have evaluated aerosol optical depth trends over global oceans (MODIS and MISR) and land (MISR). Also, for the first time, shortwave aerosol radiative effect (SWARE) trends are estimated over global oceans with the combined use of observations from MODIS and CERES.
Francesc Montané, Andrew M. Fox, Avelino F. Arellano, Natasha MacBean, M. Ross Alexander, Alex Dye, Daniel A. Bishop, Valerie Trouet, Flurin Babst, Amy E. Hessl, Neil Pederson, Peter D. Blanken, Gil Bohrer, Christopher M. Gough, Marcy E. Litvak, Kimberly A. Novick, Richard P. Phillips, Jeffrey D. Wood, and David J. P. Moore
Geosci. Model Dev., 10, 3499–3517, https://doi.org/10.5194/gmd-10-3499-2017, https://doi.org/10.5194/gmd-10-3499-2017, 2017
Short summary
Short summary
How carbon is allocated to different plant tissues (leaves, stem, and roots) determines carbon residence time and thus remains a central challenge for understanding the global carbon cycle. In this paper, we compared standard and novel carbon allocation schemes in CLM4.5 and evaluated them using eddy covariance wood and leaf biomass. The dynamic scheme based on work by Litton improved model performance, but this was dependent on model assumptions about woody turnover.
Zhe Jiang, Helen Worden, John R. Worden, Daven K. Henze, Dylan B. A. Jones, Avelino F. Arellano, Emily V. Fischer, Liye Zhu, Kazuyuki Miyazaki, K. Folkert Boersma, and Vivienne H. Payne
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-382, https://doi.org/10.5194/acp-2017-382, 2017
Preprint withdrawn
Short summary
Short summary
We investigated the variation of US tropospheric NO2 in the past decade. We demonstrated significant divergence between the time variation in tropospheric NO2 columns from OMI retrievals and surface measurements. Our analysis suggests limited contributions from local effects such as fossil fuel emissions, lightning, or instrument artifacts, and indicates possible important contributions from long-range transport of Asian emissions that are modulated by ENSO.
Andrew M. Sayer, N. Christina Hsu, Corey Bettenhausen, Robert E. Holz, Jaehwa Lee, Greg Quinn, and Paolo Veglio
Atmos. Meas. Tech., 10, 1425–1444, https://doi.org/10.5194/amt-10-1425-2017, https://doi.org/10.5194/amt-10-1425-2017, 2017
Short summary
Short summary
The satellite instrument VIIRS is being used to carry on observations of the Earth made by older satellites like MODIS. Data sets created from these satellite observations depend on the quality of the satellite instruments' calibration. This paper describes a comparison between the calibration of these two sensors. MODIS is believed to be more reliable and so VIIRS is corrected to bring it in line with MODIS. These corrections are shown to improve the quality of VIIRS aerosol data.
Jennie Bukowski, Derek J. Posselt, Jeffrey S. Reid, and Samuel A. Atwood
Atmos. Chem. Phys., 17, 4611–4626, https://doi.org/10.5194/acp-17-4611-2017, https://doi.org/10.5194/acp-17-4611-2017, 2017
Short summary
Short summary
The Maritime Continent (MC) exhibits tremendous meteorological variability. In this study, multiple years of atmospheric soundings over the MC are analyzed to identify key sources of variability in the region's temperature, water vapor, and wind structure. Coherent vertical structures are found among profiles sampled from different geographic locations. The results indicate that the complex meteorology of the region can be described using a few simple structure functions.
Zhe Jiang, John R. Worden, Helen Worden, Merritt Deeter, Dylan B. A. Jones, Avelino F. Arellano, and Daven K. Henze
Atmos. Chem. Phys., 17, 4565–4583, https://doi.org/10.5194/acp-17-4565-2017, https://doi.org/10.5194/acp-17-4565-2017, 2017
Short summary
Short summary
We constrain the long-term variation in global CO emissions for 2001–2015. Our results confirm that the decreasing trend of tropospheric CO in the Northern Hemisphere is due to decreasing CO emissions from anthropogenic and biomass burning sources. In particular, we find decreasing CO emissions from the United States and China in the past 15 years, unchanged anthropogenic CO emissions from Europe since 2008, and likely a positive trend from India and southeast Asia.
Samuel A. Atwood, Jeffrey S. Reid, Sonia M. Kreidenweis, Donald R. Blake, Haflidi H. Jonsson, Nofel D. Lagrosas, Peng Xian, Elizabeth A. Reid, Walter R. Sessions, and James B. Simpas
Atmos. Chem. Phys., 17, 1105–1123, https://doi.org/10.5194/acp-17-1105-2017, https://doi.org/10.5194/acp-17-1105-2017, 2017
Short summary
Short summary
Aerosol particles were measured by ship in remote marine regions of the South China Sea as part of the 2012 7 Southeast Asian Studies (7SEAS) experiments. As the particle populations changed throughout the experiment, the distribution of particle sizes and the amount of water that collected on them changed as well. These changes were associated with various impacts from smoke, sea salt, and pollution sources, and impact how clouds form and precipitation occurs in the region.
Jeffrey S. Reid, Peng Xian, Brent N. Holben, Edward J. Hyer, Elizabeth A. Reid, Santo V. Salinas, Jianglong Zhang, James R. Campbell, Boon Ning Chew, Robert E. Holz, Arunas P. Kuciauskas, Nofel Lagrosas, Derek J. Posselt, Charles R. Sampson, Annette L. Walker, E. Judd Welton, and Chidong Zhang
Atmos. Chem. Phys., 16, 14041–14056, https://doi.org/10.5194/acp-16-14041-2016, https://doi.org/10.5194/acp-16-14041-2016, 2016
Short summary
Short summary
This paper describes aspects of the 2012 7 Southeast Asian Studies (7SEAS) operations period, the largest within the Maritime Continent. Included were an enhanced deployment of Aerosol Robotic Network (AERONET) sun photometers, multiple lidars, and a Singapore supersite. Simultaneously, a ship was dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012 to observe transported smoke and pollution as it entered the southwest monsoon trough.
Jeffrey S. Reid, Nofel D. Lagrosas, Haflidi H. Jonsson, Elizabeth A. Reid, Samuel A. Atwood, Thomas J. Boyd, Virendra P. Ghate, Peng Xian, Derek J. Posselt, James B. Simpas, Sherdon N. Uy, Kimo Zaiger, Donald R. Blake, Anthony Bucholtz, James R. Campbell, Boon Ning Chew, Steven S. Cliff, Brent N. Holben, Robert E. Holz, Edward J. Hyer, Sonia M. Kreidenweis, Arunas P. Kuciauskas, Simone Lolli, Min Oo, Kevin D. Perry, Santo V. Salinas, Walter R. Sessions, Alexander Smirnov, Annette L. Walker, Qing Wang, Liya Yu, Jianglong Zhang, and Yongjing Zhao
Atmos. Chem. Phys., 16, 14057–14078, https://doi.org/10.5194/acp-16-14057-2016, https://doi.org/10.5194/acp-16-14057-2016, 2016
Short summary
Short summary
This paper describes aspects of the 2012 7 Southeast Asian Studies (7SEAS) operations period, the largest within the Maritime Continent. Included were an enhanced deployment of Aerosol Robotic Network (AERONET) sun photometers, multiple lidars, and a Singapore supersite. Simultaneously, a ship was dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012 to observe transported smoke and pollution as it entered the southwest monsoon trough.
Eunsil Jung, Bruce A. Albrecht, Armin Sorooshian, Paquita Zuidema, and Haflidi H. Jonsson
Atmos. Chem. Phys., 16, 11395–11413, https://doi.org/10.5194/acp-16-11395-2016, https://doi.org/10.5194/acp-16-11395-2016, 2016
Short summary
Short summary
We calculate the qualitative behavior of precipitation response to aerosol loadings with cloud depths for warm boundary layer clouds (stratocumulus and shallow marine cumulus), using aircraft measurements across four field campaigns. The finding shows that precipitation responds similarly to aerosol loadings for both stratocumulus and cumulus clouds, regardless of cloud type. Precipitation is most susceptible to aerosol perturbations in the medium–deep depth of clouds.
Robert E. Holz, Steven Platnick, Kerry Meyer, Mark Vaughan, Andrew Heidinger, Ping Yang, Gala Wind, Steven Dutcher, Steven Ackerman, Nandana Amarasinghe, Fredrick Nagle, and Chenxi Wang
Atmos. Chem. Phys., 16, 5075–5090, https://doi.org/10.5194/acp-16-5075-2016, https://doi.org/10.5194/acp-16-5075-2016, 2016
Peng Lynch, Jeffrey S. Reid, Douglas L. Westphal, Jianglong Zhang, Timothy F. Hogan, Edward J. Hyer, Cynthia A. Curtis, Dean A. Hegg, Yingxi Shi, James R. Campbell, Juli I. Rubin, Walter R. Sessions, F. Joseph Turk, and Annette L. Walker
Geosci. Model Dev., 9, 1489–1522, https://doi.org/10.5194/gmd-9-1489-2016, https://doi.org/10.5194/gmd-9-1489-2016, 2016
Short summary
Short summary
An 11-year, 1-degree aerosol reanalysis is presented for use in studies of aerosol effects on climate and atmospheric processes. The reanalysis uses the Navy Aerosol Analysis and Prediction System, constrained by aerosol optical thickness (AOT) data from NASA sensors. Fine and coarse mode AOT at 550 nm agrees well with ground-based measurements, and reproduces the decadal AOT trends found using standalone satellite products. This dataset is a resource for basic and applied science research.
Kerry Meyer, Steven Platnick, G. Thomas Arnold, Robert E. Holz, Paolo Veglio, John Yorks, and Chenxi Wang
Atmos. Meas. Tech., 9, 1743–1753, https://doi.org/10.5194/amt-9-1743-2016, https://doi.org/10.5194/amt-9-1743-2016, 2016
Short summary
Short summary
Cirrus cloud optical and microphysical properties are retrieved from remote sensing solar reflectance measurements at two narrow wavelength channels within the broader water vapor absorption band at 1.88 µm. Results from this technique compare well with other solar reflectance, IR, and lidar-based retrievals. This approach is complementary to traditional remote sensing techniques and can extend cloud retrieval capabilities for thin cirrus clouds.
Juli I. Rubin, Jeffrey S. Reid, James A. Hansen, Jeffrey L. Anderson, Nancy Collins, Timothy J. Hoar, Timothy Hogan, Peng Lynch, Justin McLay, Carolyn A. Reynolds, Walter R. Sessions, Douglas L. Westphal, and Jianglong Zhang
Atmos. Chem. Phys., 16, 3927–3951, https://doi.org/10.5194/acp-16-3927-2016, https://doi.org/10.5194/acp-16-3927-2016, 2016
Short summary
Short summary
This work tests the use of an ensemble prediction system for aerosol forecasting, including an ensemble adjustment Kalman filter for MODIS AOT assimilation. Key findings include (1) meteorology and source-perturbed ensembles are needed to capture long-range transport and near-source aerosol events, (2) adaptive covariance inflation is recommended for assimilating spatially heterogeneous observations and (3) the ensemble system captures sharp gradients relative to a deterministic/variational system.
R. C. Levy, L. A. Munchak, S. Mattoo, F. Patadia, L. A. Remer, and R. E. Holz
Atmos. Meas. Tech., 8, 4083–4110, https://doi.org/10.5194/amt-8-4083-2015, https://doi.org/10.5194/amt-8-4083-2015, 2015
Short summary
Short summary
Aerosol optical depth (AOD) is an essential climate variable, so we seek to create a long-term AOD record. From MODIS, we have 15+ years, which we want to continue with VIIRS. Accounting for instrumental difference, we have developed a MODIS-like algorithm for VIIRS, and applied it to overlapping 2-year time period. In general, the two data sets are similar, except for VIIRS being high-biased over ocean. We discuss the impacts of calibration, resolution, and sampling on the results.
E. Crosbie, J.-S. Youn, B. Balch, A. Wonaschütz, T. Shingler, Z. Wang, W. C. Conant, E. A. Betterton, and A. Sorooshian
Atmos. Chem. Phys., 15, 6943–6958, https://doi.org/10.5194/acp-15-6943-2015, https://doi.org/10.5194/acp-15-6943-2015, 2015
E. Jung, B. A. Albrecht, H. H. Jonsson, Y.-C. Chen, J. H. Seinfeld, A. Sorooshian, A. R. Metcalf, S. Song, M. Fang, and L. M. Russell
Atmos. Chem. Phys., 15, 5645–5658, https://doi.org/10.5194/acp-15-5645-2015, https://doi.org/10.5194/acp-15-5645-2015, 2015
Short summary
Short summary
To study the effect of giant cloud condensation nuclei (GCCN) on precipitation processes in stratocumulus clouds, 1-10 µm diameter salt particles were released from an aircraft while flying near the cloud top off the central coast of California. The analyses suggest that GCCN result in a four-fold increase in the cloud base rainfall rate and depletion of the cloud water due to rainout.
S. P. Hersey, R. M. Garland, E. Crosbie, T. Shingler, A. Sorooshian, S. Piketh, and R. Burger
Atmos. Chem. Phys., 15, 4259–4278, https://doi.org/10.5194/acp-15-4259-2015, https://doi.org/10.5194/acp-15-4259-2015, 2015
Short summary
Short summary
A decadal aerosol climatology of South Africa's major metropolitan areas is presented, utilizing data from multiple satellite platforms and 19 ground-monitoring sites. Remotely sensed data are dominated by a seasonal signal corresponding to transported biomass burning during austral spring, while ground data are dominated by domestic burning in low-income areas during austral winter. We report poor agreement between satellite- and ground-based aerosol measurements.
J. S. Reid, N. D. Lagrosas, H. H. Jonsson, E. A. Reid, W. R. Sessions, J. B. Simpas, S. N. Uy, T. J. Boyd, S. A. Atwood, D. R. Blake, J. R. Campbell, S. S. Cliff, B. N. Holben, R. E. Holz, E. J. Hyer, P. Lynch, S. Meinardi, D. J. Posselt, K. A. Richardson, S. V. Salinas, A. Smirnov, Q. Wang, L. Yu, and J. Zhang
Atmos. Chem. Phys., 15, 1745–1768, https://doi.org/10.5194/acp-15-1745-2015, https://doi.org/10.5194/acp-15-1745-2015, 2015
Short summary
Short summary
This paper reports on the first measurements of aerosol particles embedded in the convectively active southwest monsoonal flow of the South China Sea. The paper describes the research cruise and discusses how variability in aerosol characteristics relates to regional meteorological phenomena such as and the Madden Julian Oscillation, tropical cyclones, squall lines and the monsoonal flow itself. Of special interest is how aerosol transport relates to meteorological drivers of convective activity.
J. R. Campbell, M. A. Vaughan, M. Oo, R. E. Holz, J. R. Lewis, and E. J. Welton
Atmos. Meas. Tech., 8, 435–449, https://doi.org/10.5194/amt-8-435-2015, https://doi.org/10.5194/amt-8-435-2015, 2015
Short summary
Short summary
Digital thresholds based on 2012 CALIOP satellite lidar measurements are investigated for distinguishing cirrus cloud presence, including cloud top temperatures and heights combined with layer depolarization and phase and optical depths. A cloud top temperature of -37 C is found to exhibit the most stable performance, owing to it being the point of homogeneous liquid-water freezing. Depolarization and phase help but are mostly ambiguous at warmer temperatures where mixed-phase clouds propagate.
C. Ge, J. Wang, and J. S. Reid
Atmos. Chem. Phys., 14, 159–174, https://doi.org/10.5194/acp-14-159-2014, https://doi.org/10.5194/acp-14-159-2014, 2014
A. Wonaschütz, M. Coggon, A. Sorooshian, R. Modini, A. A. Frossard, L. Ahlm, J. Mülmenstädt, G. C. Roberts, L. M. Russell, S. Dey, F. J. Brechtel, and J. H. Seinfeld
Atmos. Chem. Phys., 13, 9819–9835, https://doi.org/10.5194/acp-13-9819-2013, https://doi.org/10.5194/acp-13-9819-2013, 2013
A. Sorooshian, T. Shingler, A. Harpold, C. W. Feagles, T. Meixner, and P. D. Brooks
Atmos. Chem. Phys., 13, 7361–7379, https://doi.org/10.5194/acp-13-7361-2013, https://doi.org/10.5194/acp-13-7361-2013, 2013
R. S. Johnson, J. Zhang, E. J. Hyer, S. D. Miller, and J. S. Reid
Atmos. Meas. Tech., 6, 1245–1255, https://doi.org/10.5194/amt-6-1245-2013, https://doi.org/10.5194/amt-6-1245-2013, 2013
Y. Shi, J. Zhang, J. S. Reid, E. J. Hyer, and N. C. Hsu
Atmos. Meas. Tech., 6, 949–969, https://doi.org/10.5194/amt-6-949-2013, https://doi.org/10.5194/amt-6-949-2013, 2013
V. M. Khade, J. A. Hansen, J. S. Reid, and D. L. Westphal
Atmos. Chem. Phys., 13, 3481–3500, https://doi.org/10.5194/acp-13-3481-2013, https://doi.org/10.5194/acp-13-3481-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Formation and chemical evolution of secondary organic aerosol in two different environments: a dual-chamber study
Technical note: Quantified organic aerosol subsaturated hygroscopicity by a simple optical scatter monitor system through field measurements
Measurement report: Oxidation potential of water-soluble aerosol components in the south and north of Beijing
Enhanced daytime secondary aerosol formation driven by gas–particle partitioning in downwind urban plumes
Understanding the mechanism and importance of brown carbon bleaching across the visible spectrum in biomass burning plumes from the WE-CAN campaign
Influence of terrestrial and marine air mass on the constituents and intermixing of bioaerosols over a coastal atmosphere
A multi-site passive approach to studying the emissions and evolution of smoke from prescribed fires
The annual cycle and sources of relevant aerosol precursor vapors in the central Arctic during the MOSAiC expedition
Opinion: How will advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution?
Measurement report: Intra-annual variability of black carbon and brown carbon and their interrelation with meteorological conditions over Gangtok, Sikkim
Long-range transport of air pollutants increases the concentration of hazardous components of PM2.5 in northern South America
Dominant influence of biomass combustion and cross-border transport on nitrogen-containing organic compound levels in the southeastern Tibetan Plateau
Impacts of elevated anthropogenic emissions on physicochemical characteristics of black-carbon-containing particles over the Tibetan Plateau
Online characterization of primary and secondary emissions of particulate matter and acidic molecules from a modern fleet of city buses
Atmospheric evolution of environmentally persistent free radicals in the rural North China Plain: effects on water solubility and PM2.5 oxidative potential
Two distinct ship emission profiles for organic-sulfate source apportionment of PM in sulfur emission control areas
Automated compound speciation, cluster analysis, and quantification of organic vapors and aerosols using comprehensive two-dimensional gas chromatography and mass spectrometry
Measurement report: Occurrence of aminiums in PM2.5 during winter in China – aminium outbreak during polluted episodes and potential constraints
Bridging gas and aerosol properties between the northeastern US and Bermuda: analysis of eight transit flights
The behaviour of charged particles (ions) during new particle formation events in urban Leipzig, Germany
Sensitivity of aerosol and cloud properties to coupling strength of marine boundary layer clouds over the northwest Atlantic
Exploring the sources of light-absorbing carbonaceous aerosols by integrating observational and modeling results: insights from Northeast China
Characterization of atmospheric water-soluble brown carbon in the Athabasca Oil Sands Region, Canada
Measurement report: Characteristics of airborne black-carbon-containing particles during the 2021 summer COVID-19 lockdown in a typical Yangtze River Delta city, China
Aerosol optical properties within the atmospheric boundary layer predicted from ground-based observations compared to Raman lidar retrievals during RITA-2021
Hygroscopic growth and activation changed submicron aerosol composition and properties in the North China Plain
Measurement report: Formation of tropospheric brown carbon in a lifting air mass
Vertical variability of aerosol properties and trace gases over a remote marine region: a case study over Bermuda
Differences in aerosol and cloud properties along the central California coast when winds change from northerly to southerly
International airport emissions and their impact on local air quality: chemical speciation of ambient aerosols at Madrid–Barajas Airport during the AVIATOR campaign
Significant role of biomass burning in heavy haze formation in a megacity: Molecular-level insights from intensive PM2.5 sampling on winter hazy days
The local ship speed reduction effect on black carbon emissions measured at a remote marine station
High-altitude aerosol chemical characterization and source identification: insights from the CALISHTO campaign
Measurement report: Impact of emission control measures on environmental persistent free radicals and reactive oxygen species – a short-term case study in Beijing
Characterizing water solubility of fresh and aged secondary organic aerosol in PM2.5 with the stable carbon isotope technique
Measurement report: Impact of cloud processes on secondary organic aerosols at a forested mountain site in southeastern China
Critical contribution of chemically diverse carbonyl molecules to the oxidative potential of atmospheric aerosols
Seasonal Investigation of Ultrafine Particle Composition in an Eastern Amazonian Rainforest
Measurement report: Vanadium-containing ship exhaust particles detected in and above the marine boundary layer in the remote atmosphere
Diverging trends in aerosol sulfate and nitrate measured in the remote North Atlantic in Barbados are attributed to clean air policies, African smoke, and anthropogenic emissions
Diverse sources and aging change the mixing state and ice nucleation properties of aerosol particles over the western Pacific and Southern Ocean
The water-insoluble organic carbon in PM2.5 of typical Chinese urban areas: light-absorbing properties, potential sources, radiative forcing effects, and a possible light-absorbing continuum
Measurement report: Size-resolved secondary organic aerosol formation modulated by aerosol water uptake in wintertime haze
Observations of high time-resolution and size-resolved aerosol chemical composition and microphyscis in the central Arctic: implications for climate-relevant particle properties
Brown carbon aerosol in rural Germany: sources, chemistry, and diurnal variations
In situ measurement of organic aerosol molecular markers in urban Hong Kong during a summer period: temporal variations and source apportionment
Technical note: Determining chemical composition of atmospheric single particles by a standard-free mass calibration algorithm
Different formation pathways of nitrogen-containing organic compounds in aerosols and fog water in northern China
Burning conditions and transportation pathways determine biomass-burning aerosol properties in the Ascension Island marine boundary layer
Impact of weather patterns and meteorological factors on PM2.5 and O3 responses to the COVID-19 lockdown in China
Andreas Aktypis, Dontavious J. Sippial, Christina N. Vasilakopoulou, Angeliki Matrali, Christos Kaltsonoudis, Andrea Simonati, Marco Paglione, Matteo Rinaldi, Stefano Decesari, and Spyros N. Pandis
Atmos. Chem. Phys., 24, 13769–13791, https://doi.org/10.5194/acp-24-13769-2024, https://doi.org/10.5194/acp-24-13769-2024, 2024
Short summary
Short summary
A dual-chamber system was deployed in two different environments (Po Valley, Italy, and Pertouli forest, Greece) to study the potential of ambient air directly injected into the chambers, to form secondary organic aerosol (SOA). In the Po Valley, the system reacts rapidly, forming large amounts of SOA, while in Pertouli the SOA formation chemistry appears to have been practically terminated before the beginning of most experiments, so there is little additional SOA formation potential left.
Jie Zhang, Tianyu Zhu, Alexandra Catena, Yaowei Li, Margaret J. Schwab, Pengfei Liu, Akua Asa-Awuku, and James Schwab
Atmos. Chem. Phys., 24, 13445–13456, https://doi.org/10.5194/acp-24-13445-2024, https://doi.org/10.5194/acp-24-13445-2024, 2024
Short summary
Short summary
This study shows the derived organic aerosol hygroscopicity under high-humidity conditions based on a simple optical scatter monitor system, including two nephelometric monitors (pDR-1500), when the aerosol chemical composition is already known.
Wei Yuan, Ru-Jin Huang, Chao Luo, Lu Yang, Wenjuan Cao, Jie Guo, and Huinan Yang
Atmos. Chem. Phys., 24, 13219–13230, https://doi.org/10.5194/acp-24-13219-2024, https://doi.org/10.5194/acp-24-13219-2024, 2024
Short summary
Short summary
We characterized water-soluble oxidative potential (OP) levels in wintertime PM2.5 in the south and north of Beijing. Our results show that the volume-normalized dithiothreitol (DTTv) in the north was comparable to that in the south, while the mass-normalized dithiothreitol (DTTm) in the north was almost twice that in the south. Traffic-related emissions and biomass burning were the main sources of DTTv in the south, and traffic-related emissions contributed the most to DTTv in the north.
Mingfu Cai, Chenshuo Ye, Bin Yuan, Shan Huang, E Zheng, Suxia Yang, Zelong Wang, Yi Lin, Tiange Li, Weiwei Hu, Wei Chen, Qicong Song, Wei Li, Yuwen Peng, Baoling Liang, Qibin Sun, Jun Zhao, Duohong Chen, Jiaren Sun, Zhiyong Yang, and Min Shao
Atmos. Chem. Phys., 24, 13065–13079, https://doi.org/10.5194/acp-24-13065-2024, https://doi.org/10.5194/acp-24-13065-2024, 2024
Short summary
Short summary
This study investigated the daytime secondary organic aerosol (SOA) formation in urban plumes. We observed a significant daytime SOA formation through gas–particle partitioning when the site was affected by urban plumes. A box model simulation indicated that urban pollutants (nitrogen oxide and volatile organic compounds) could enhance the oxidizing capacity, while the elevated volatile organic compounds were mainly responsible for promoting daytime SOA formation.
Yingjie Shen, Rudra P. Pokhrel, Amy P. Sullivan, Ezra J. T. Levin, Lauren A. Garofalo, Delphine K. Farmer, Wade Permar, Lu Hu, Darin W. Toohey, Teresa Campos, Emily V. Fischer, and Shane M. Murphy
Atmos. Chem. Phys., 24, 12881–12901, https://doi.org/10.5194/acp-24-12881-2024, https://doi.org/10.5194/acp-24-12881-2024, 2024
Short summary
Short summary
The magnitude and evolution of brown carbon (BrC) absorption remain unclear, with uncertainty in climate models. Data from the WE-CAN airborne experiment show that model parameterizations overestimate the mass absorption cross section (MAC) of BrC. Observed decreases in BrC absorption with chemical markers are due to decreasing organic aerosol (OA) mass rather than a decreasing BrC MAC, which is currently implemented in models. Water-soluble BrC contributes 23 % of total absorption at 660 nm.
Qun He, Zhaowen Wang, Houfeng Liu, Pengju Xu, Rongbao Duan, Caihong Xu, Jianmin Chen, and Min Wei
Atmos. Chem. Phys., 24, 12775–12792, https://doi.org/10.5194/acp-24-12775-2024, https://doi.org/10.5194/acp-24-12775-2024, 2024
Short summary
Short summary
Coastal environments provide an ideal setting for investigating the intermixing of terrestrial and marine aerosols. Terrestrial air mass constituted a larger number of microbes from anthropogenic and soil emissions, whereas saprophytic and gut microbes were predominant in marine samples. Mixed air masses indicated a fusion of marine and terrestrial aerosols, characterized by alterations in the ratio of pathogenic and saprophytic microbes when compared to either terrestrial or marine samples.
Rime El Asmar, Zongrun Li, David J. Tanner, Yongtao Hu, Susan O'Neill, L. Gregory Huey, M. Talat Odman, and Rodney J. Weber
Atmos. Chem. Phys., 24, 12749–12773, https://doi.org/10.5194/acp-24-12749-2024, https://doi.org/10.5194/acp-24-12749-2024, 2024
Short summary
Short summary
Prescribed burning is an important method for managing ecosystems and preventing wildfires. However, smoke from prescribed fires can have a significant impact on air quality. Here, using a network of fixed sites and sampling throughout an extended prescribed burning period in 2 different years, we characterize emissions and evolutions of up to 8 h of PM2.5 mass, black carbon (BC), and brown carbon (BrC) in smoke from burning of forested lands in the southeastern USA.
Matthew Boyer, Diego Aliaga, Lauriane L. J. Quéléver, Silvia Bucci, Hélène Angot, Lubna Dada, Benjamin Heutte, Lisa Beck, Marina Duetsch, Andreas Stohl, Ivo Beck, Tiia Laurila, Nina Sarnela, Roseline C. Thakur, Branka Miljevic, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 24, 12595–12621, https://doi.org/10.5194/acp-24-12595-2024, https://doi.org/10.5194/acp-24-12595-2024, 2024
Short summary
Short summary
We analyze the seasonal cycle and sources of gases that are relevant for the formation of aerosol particles in the central Arctic. Since theses gases can form new particles, they can influence Arctic climate. We show that the sources of these gases are associated with changes in the Arctic environment during the year, especially with respect to sea ice. Therefore, the concentration of these gases will likely change in the future as the Arctic continues to warm.
Imad El Haddad, Danielle Vienneau, Kaspar R. Daellenbach, Robin Modini, Jay G. Slowik, Abhishek Upadhyay, Petros N. Vasilakos, David Bell, Kees de Hoogh, and Andre S. H. Prevot
Atmos. Chem. Phys., 24, 11981–12011, https://doi.org/10.5194/acp-24-11981-2024, https://doi.org/10.5194/acp-24-11981-2024, 2024
Short summary
Short summary
This opinion paper explores how advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution. We advocate for a shift in the way we target PM pollution, focusing on the most harmful anthropogenic emissions. We highlight key observations, modelling developments, and emission measurements needed to achieve this shift.
Pramod Kumar, Khushboo Sharma, Ankita Malu, Rajeev Rajak, Aparna Gupta, Bidyutjyoti Baruah, Shailesh Yadav, Thupstan Angchuk, Jayant Sharma, Rakesh Kumar Ranjan, Anil Kumar Misra, and Nishchal Wanjari
Atmos. Chem. Phys., 24, 11585–11601, https://doi.org/10.5194/acp-24-11585-2024, https://doi.org/10.5194/acp-24-11585-2024, 2024
Short summary
Short summary
This work monitors and assesses air pollution, especially black and brown carbon, its controlling factor, and its effect on the environment of Sikkim Himalayan region. The huge urban sprawl in recent decades has led to regional human-induced air pollution in the region. Black carbon was highest in April 2021 and March 2022, exceeding the WHO limit. The monsoon season causes huge rainfall over the region, which reduces the pollutants by scavenging (rainout and washout).
Maria P. Velásquez-García, K. Santiago Hernández, James A. Vergara-Correa, Richard J. Pope, Miriam Gómez-Marín, and Angela M. Rendón
Atmos. Chem. Phys., 24, 11497–11520, https://doi.org/10.5194/acp-24-11497-2024, https://doi.org/10.5194/acp-24-11497-2024, 2024
Short summary
Short summary
In the Aburrá Valley, northern South America, local emissions determine air quality conditions. However, we found that external sources, such as regional fires, Saharan dust, and volcanic emissions, increase particulate concentrations and worsen chemical composition by introducing elements like heavy metals. Dry winds and source variability contribute to seasonal influences on these events. This study assesses the air quality risks posed by such events, which can affect broad regions worldwide.
Meng Wang, Qiyuan Wang, Steven Sai Hang Ho, Jie Tian, Yong Zhang, Shun-cheng Lee, and Junji Cao
Atmos. Chem. Phys., 24, 11175–11189, https://doi.org/10.5194/acp-24-11175-2024, https://doi.org/10.5194/acp-24-11175-2024, 2024
Short summary
Short summary
We studied nitrogen-containing organic compounds (NOCs) in particulate matter <2.5 µm particles on the southeastern Tibetan Plateau. We found that biomass burning and transboundary transport are the main sources of NOCs in the high-altitude area. Understanding these aerosol sources informs how they add to regional and potentially global climate changes. Our findings could help shape effective environmental policies to enhance air quality and address climate impacts in this sensitive region.
Jinbo Wang, Jiaping Wang, Yuxuan Zhang, Tengyu Liu, Xuguang Chi, Xin Huang, Dafeng Ge, Shiyi Lai, Caijun Zhu, Lei Wang, Qiaozhi Zha, Ximeng Qi, Wei Nie, Congbin Fu, and Aijun Ding
Atmos. Chem. Phys., 24, 11063–11080, https://doi.org/10.5194/acp-24-11063-2024, https://doi.org/10.5194/acp-24-11063-2024, 2024
Short summary
Short summary
In this study, we found large spatial discrepancies in the physical and chemical properties of black carbon over the Tibetan Plateau (TP). Elevated anthropogenic emissions from low-altitude regions can significantly change the mass concentration, mixing state and chemical composition of black-carbon-containing aerosol in the TP region, further altering its light absorption ability. Our study emphasizes the vulnerability of remote plateau regions to intense anthropogenic influences.
Liyuan Zhou, Qianyun Liu, Christian M. Salvador, Michael Le Breton, Mattias Hallquist, Jian Zhen Yu, Chak K. Chan, and Åsa M. Hallquist
Atmos. Chem. Phys., 24, 11045–11061, https://doi.org/10.5194/acp-24-11045-2024, https://doi.org/10.5194/acp-24-11045-2024, 2024
Short summary
Short summary
Our research on city bus emissions reveals that alternative fuels (compressed natural gas and biofuels) reduce fresh particle emissions compared to diesel. However, all fuels lead to secondary air pollution. Aiming at guiding better environmental policies, we studied 76 buses using advanced emission measurement techniques. This work sheds light on the complex effects of bus fuels on urban air quality, emphasizing the need for comprehensive evaluations of future transportation technologies.
Xu Yang, Fobang Liu, Shuqi Yang, Yuling Yang, Yanan Wang, Jingjing Li, Mingyu Zhao, Zhao Wang, Kai Wang, Chi He, and Haijie Tong
Atmos. Chem. Phys., 24, 11029–11043, https://doi.org/10.5194/acp-24-11029-2024, https://doi.org/10.5194/acp-24-11029-2024, 2024
Short summary
Short summary
A study in the rural North China Plain showed environmentally persistent free radicals (EPFRs) in atmospheric particulate matter (PM), with a notable water-soluble fraction likely from atmospheric oxidation during transport. Significant positive correlations between EPFRs and the water-soluble oxidative potential of PM2.5 were found, primarily attributable to the water-soluble fractions of EPFRs. These findings emphasize understanding EPFRs' atmospheric evolution for climate and health impacts.
Kirsten N. Fossum, Chunshui Lin, Niall O'Sullivan, Lu Lei, Stig Hellebust, Darius Ceburnis, Aqeel Afzal, Anja Tremper, David Green, Srishti Jain, Steigvilė Byčenkienė, Colin O'Dowd, John Wenger, and Jurgita Ovadnevaite
Atmos. Chem. Phys., 24, 10815–10831, https://doi.org/10.5194/acp-24-10815-2024, https://doi.org/10.5194/acp-24-10815-2024, 2024
Short summary
Short summary
The chemical composition and sources of submicron aerosol in the Dublin Port area were investigated over a month-long campaign. Two distinct types of ship emissions were identified and characterised: sulfate-rich plumes from the use of heavy fuel oil with scrubbers and organic-rich plumes from the use of low-sulfur fuels. The latter were more frequent, emitting double the particle number and having a typical V / Ni ratio for ship emission.
Xiao He, Xuan Zheng, Shuwen Guo, Lewei Zeng, Ting Chen, Bohan Yang, Shupei Xiao, Qiongqiong Wang, Zhiyuan Li, Yan You, Shaojun Zhang, and Ye Wu
Atmos. Chem. Phys., 24, 10655–10666, https://doi.org/10.5194/acp-24-10655-2024, https://doi.org/10.5194/acp-24-10655-2024, 2024
Short summary
Short summary
This study introduces an innovative method for identifying and quantifying complex organic vapors and aerosols. By combining advanced analytical techniques and new algorithms, we categorized thousands of compounds from heavy-duty diesel vehicles and ambient air and highlighted specific tracers for emission sources. The innovative approach enhances peak identification, reduces quantification uncertainties, and offers new insights for air quality management and atmospheric chemistry.
Yu Xu, Tang Liu, Yi-Jia Ma, Qi-Bin Sun, Hong-Wei Xiao, Hao Xiao, Hua-Yun Xiao, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 10531–10542, https://doi.org/10.5194/acp-24-10531-2024, https://doi.org/10.5194/acp-24-10531-2024, 2024
Short summary
Short summary
This study investigates the characteristics of aminiums and ammonium in PM2.5 on clean and polluted winter days in 11 Chinese cities, highlighting the possibility of the competitive uptake of ammonia versus amines on acidic aerosols or the displacement of aminiums by ammonia under high-ammonia conditions. The overall results deepen the understanding of the spatiotemporal differences in aminium characteristics and formation in China.
Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 10385–10408, https://doi.org/10.5194/acp-24-10385-2024, https://doi.org/10.5194/acp-24-10385-2024, 2024
Short summary
Short summary
Using aircraft measurements over the northwestern Atlantic between the US East Coast and Bermuda and trajectory modeling of continental outflow, we identify trace gas and particle properties that exhibit gradients with offshore distance and quantify these changes with high-resolution measurements of concentrations and particle chemistry, size, and scattering properties. This work furthers our understanding of the complex interactions between continental and marine environments.
Alex Rowell, James Brean, David C. S. Beddows, Zongbo Shi, Avinash Kumar, Matti Rissanen, Miikka Dal Maso, Peter Mettke, Kay Weinhold, Maik Merkel, and Roy M. Harrison
Atmos. Chem. Phys., 24, 10349–10361, https://doi.org/10.5194/acp-24-10349-2024, https://doi.org/10.5194/acp-24-10349-2024, 2024
Short summary
Short summary
Ions enhance the formation and growth rates of new particles, affecting the Earth's radiation budget. Despite these effects, there is little published data exploring the sources of ions in the urban environment and their role in new particle formation (NPF). Here we show that natural ion sources dominate in urban environments, while traffic is a secondary source. Ions contribute up to 12.7 % of the formation rate of particles, indicating that they are important for forming urban PM.
Kira Zeider, Kayla McCauley, Sanja Dmitrovic, Leong Wai Siu, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Simon Kirschler, John B. Nowak, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, Paquita Zuidema, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-2743, https://doi.org/10.5194/egusphere-2024-2743, 2024
Short summary
Short summary
In-situ aircraft data collected over the northwest Atlantic Ocean are utilized to compare aerosol conditions and turbulence between near-surface and below cloud base altitudes for different regimes of coupling strength between those two levels, along with how cloud microphysical properties vary across those regimes. Stronger coupling yields more homogenous aerosol structure vertically along with higher cloud drop concentrations and sea salt influence in clouds.
Yuan Cheng, Xu-bing Cao, Sheng-qiang Zhu, Zhi-qing Zhang, Jiu-meng Liu, Hong-liang Zhang, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 24, 9869–9883, https://doi.org/10.5194/acp-24-9869-2024, https://doi.org/10.5194/acp-24-9869-2024, 2024
Short summary
Short summary
The agreement between observational and modeling results is essential for the development of efficient air pollution control strategies. Here we constrained the modeling results of carbonaceous aerosols by field observation in Northeast China, a historically overlooked but recently targeted region of national clean-air actions. Our study suggested that the simulation of agricultural fire emissions and secondary organic aerosols remains challenging.
Dane Blanchard, Mark Gordon, Duc Huy Dang, Paul Andrew Makar, and Julian Aherne
EGUsphere, https://doi.org/10.5194/egusphere-2024-2584, https://doi.org/10.5194/egusphere-2024-2584, 2024
Short summary
Short summary
This study offers the first known evaluation of water-soluble brown carbon aerosols in the Athabasca Oil Sands Region (AOSR), Canada. Fluorescence spectroscopy analysis of aerosol samples from five regional sites (summer 2021) found that oil sands operations were a measurable source of brown carbon. Industrial aerosol emissions may impact atmospheric reaction chemistry and albedo. These findings demonstrate that fluorescence spectroscopy can be applied to monitor brown carbon in the ASOR.
Yuan Dai, Junfeng Wang, Houjun Wang, Shijie Cui, Yunjiang Zhang, Haiwei Li, Yun Wu, Ming Wang, Eleonora Aruffo, and Xinlei Ge
Atmos. Chem. Phys., 24, 9733–9748, https://doi.org/10.5194/acp-24-9733-2024, https://doi.org/10.5194/acp-24-9733-2024, 2024
Short summary
Short summary
Short-term strict emission control can improve air quality, but its effectiveness needs assessment. During the 2021 summer COVID-19 lockdown in Yangzhou, we found that PM2.5 levels did not decrease despite reduced primary emissions. Aged black-carbon particles increased substantially due to higher O3 levels and transported pollutants. High humidity and low wind also played key roles. The results highlight the importance of a regionally balanced control strategy for future air quality management.
Xinya Liu, Diego Alves Gouveia, Bas Henzing, Arnoud Apituley, Arjan Hensen, Danielle van Dinther, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 9597–9614, https://doi.org/10.5194/acp-24-9597-2024, https://doi.org/10.5194/acp-24-9597-2024, 2024
Short summary
Short summary
The vertical distribution of aerosol optical properties is important for their effect on climate. This is usually measured by lidar, which has limitations, most notably the assumption of a lidar ratio. Our study shows that routine surface-level aerosol measurements are able to predict this lidar ratio reasonably well within the lower layers of the atmosphere and thus provide a relatively simple and cost-effective method to improve lidar measurements.
Weiqi Xu, Ye Kuang, Wanyun Xu, Zhiqiang Zhang, Biao Luo, Xiaoyi Zhang, Jiangchuang Tao, Hongqin Qiao, Li Liu, and Yele Sun
Atmos. Chem. Phys., 24, 9387–9399, https://doi.org/10.5194/acp-24-9387-2024, https://doi.org/10.5194/acp-24-9387-2024, 2024
Short summary
Short summary
We deployed an advanced aerosol–fog sampling system at a rural site in the North China Plain to investigate impacts of aerosol hygroscopic growth and activation on the physicochemical properties of submicron aerosols. Observed results highlighted remarkably different aqueous processing of primary and secondary submicron aerosol components under distinct ambient relative humidity (RH) conditions and that RH levels significantly impact aerosol sampling through the aerosol swelling effect.
Can Wu, Xiaodi Liu, Ke Zhang, Si Zhang, Cong Cao, Jianjun Li, Rui Li, Fan Zhang, and Gehui Wang
Atmos. Chem. Phys., 24, 9263–9275, https://doi.org/10.5194/acp-24-9263-2024, https://doi.org/10.5194/acp-24-9263-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is prevalent in the troposphere and can efficiently absorb solar and terrestrial radiation. Our observations show that the enhanced light absorption of BrC relative to black carbon at the tropopause can be attributed to the formation of nitrogen-containing organic compounds through the aqueous-phase reactions of carbonyls with ammonium.
Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Miguel Ricardo A. Hilario, Chris A. Hostetler, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Cassidy Soloff, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9197–9218, https://doi.org/10.5194/acp-24-9197-2024, https://doi.org/10.5194/acp-24-9197-2024, 2024
Short summary
Short summary
This study uses airborne data to examine vertical profiles of trace gases, aerosol particles, and meteorological variables over a remote marine area (Bermuda). Results show distinct differences based on both air mass source region (North America, Ocean, Caribbean/North Africa) and altitude for a given air mass type. This work highlights the sensitivity of remote marine areas to long-range transport and the importance of considering the vertical dependence of trace gas and aerosol properties.
Kira Zeider, Grace Betito, Anthony Bucholtz, Peng Xian, Annette Walker, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9059–9083, https://doi.org/10.5194/acp-24-9059-2024, https://doi.org/10.5194/acp-24-9059-2024, 2024
Short summary
Short summary
The predominant wind direction along the California coast (northerly) reverses several times during the summer (to southerly). The effects of these wind reversals on aerosol and cloud characteristics are not well understood. Using data from multiple datasets we found that southerly flow periods had enhanced signatures of anthropogenic emissions due to shipping and continental sources, and clouds had more but smaller droplets.
Saleh Alzahrani, Doğuşhan Kılıç, Michael Flynn, Paul I. Williams, and James Allan
Atmos. Chem. Phys., 24, 9045–9058, https://doi.org/10.5194/acp-24-9045-2024, https://doi.org/10.5194/acp-24-9045-2024, 2024
Short summary
Short summary
This paper investigates emissions from aviation activities at an international airport to evaluate their impact on local air quality. The study provides detailed insights into the chemical composition of aerosols and key pollutants in the airport environment. Source apportionment analysis using positive matrix factorisation (PMF) identified three significant sources: less oxidised oxygenated organic aerosol, alkane organic aerosol, and more oxidised oxygenated organic aerosol.
Mingjie Kang, Mengying Bao, Wenhuai Song, Aduburexiati Abulimiti, Fang Cao, Sönke Szidat, and Yanlin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2098, https://doi.org/10.5194/egusphere-2024-2098, 2024
Short summary
Short summary
Reports on the molecular level knowledge of high temporal resolution PM2.5 components on hazy days are still limited. This study investigated many individual PM2.5 species and sources. The results show biomass burning (BB) was the main source of organic carbon. Moreover, BB enhanced fungal spore emissions and secondary aerosol formation. The contribution of non-fossils increased with increasing haze pollution. These findings suggest BB may be an important driver of haze events in winter.
Mikko Heikkilä, Krista Luoma, Timo Mäkelä, and Tiia Grönholm
Atmos. Chem. Phys., 24, 8927–8941, https://doi.org/10.5194/acp-24-8927-2024, https://doi.org/10.5194/acp-24-8927-2024, 2024
Short summary
Short summary
Black carbon (BC) concentration was measured from 211 ship exhaust gas plumes at a remote marine station. Emission factors of BC were calculated in grams per kilogram of fuel. Ships with an exhaust gas cleaning system (EGCS) were found to have median BC emissions per fuel consumed 5 times lower than ships without an EGCS. However, this might be because of non-EGCS ships running at low engine loads rather than the EGCS itself. A local speed restriction would increase BC emissions of ships.
Olga Zografou, Maria Gini, Prodromos Fetfatzis, Konstantinos Granakis, Romanos Foskinis, Manousos Ioannis Manousakas, Fotios Tsopelas, Evangelia Diapouli, Eleni Dovrou, Christina N. Vasilakopoulou, Alexandros Papayannis, Spyros N. Pandis, Athanasios Nenes, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 24, 8911–8926, https://doi.org/10.5194/acp-24-8911-2024, https://doi.org/10.5194/acp-24-8911-2024, 2024
Short summary
Short summary
Characterization of PM1 and positive matrix factorization (PMF) source apportionment of organic and inorganic fractions were conducted at the high-altitude station (HAC)2. Cloud presence reduced PM1, affecting sulfate more than organics. Free-troposphere (FT) conditions showed more black carbon (eBC) than planetary boundary layer (PBL) conditions.
Yuanyuan Qin, Xinghua Zhang, Wei Huang, Juanjuan Qin, Xiaoyu Hu, Yuxuan Cao, Tianyi Zhao, Yang Zhang, Jihua Tan, Ziyin Zhang, Xinming Wang, and Zhenzhen Wang
Atmos. Chem. Phys., 24, 8737–8750, https://doi.org/10.5194/acp-24-8737-2024, https://doi.org/10.5194/acp-24-8737-2024, 2024
Short summary
Short summary
Environmental persistent free radicals (EPFRs) and reactive oxygen species (ROSs) play an active role in the atmosphere. Despite control measures having effectively reduced their emissions, reductions were less than in PM2.5. Emission control measures performed well in achieving Parade Blue, but reducing the impact of the atmosphere on human health remains challenging. Thus, there is a need to reassess emission control measures to better address the challenges posed by EPFRs and ROSs.
Fenghua Wei, Xing Peng, Liming Cao, Mengxue Tang, Ning Feng, Xiaofeng Huang, and Lingyan He
Atmos. Chem. Phys., 24, 8507–8518, https://doi.org/10.5194/acp-24-8507-2024, https://doi.org/10.5194/acp-24-8507-2024, 2024
Short summary
Short summary
The water solubility of secondary organic aerosols (SOAs) is a crucial factor in determining their hygroscopicity and climatic impact. Stable carbon isotope and mass spectrometry techniques were combined to assess the water solubility of SOAs with different aging degrees in a coastal megacity in China. This work revealed a much higher water-soluble fraction of aged SOA compared to fresh SOA, indicating that the aging degree of SOA has considerable impacts on its water solubility.
Zijun Zhang, Weiqi Xu, Yi Zhang, Wei Zhou, Xiangyu Xu, Aodong Du, Yinzhou Zhang, Hongqin Qiao, Ye Kuang, Xiaole Pan, Zifa Wang, Xueling Cheng, Lanzhong Liu, Qingyan Fu, Douglas R. Worsnop, Jie Li, and Yele Sun
Atmos. Chem. Phys., 24, 8473–8488, https://doi.org/10.5194/acp-24-8473-2024, https://doi.org/10.5194/acp-24-8473-2024, 2024
Short summary
Short summary
We investigated aerosol composition and sources and the interaction between secondary organic aerosol (SOA) and clouds at a regional mountain site in southeastern China. Clouds efficiently scavenge more oxidized SOA; however, cloud evaporation leads to the production of less oxidized SOA. The unexpectedly high presence of nitrate in aerosol particles indicates that nitrate formed in polluted areas has undergone interactions with clouds, significantly influencing the regional background site.
Feifei Li, Shanshan Tang, Jitao Lv, Shiyang Yu, Xu Sun, Dong Cao, Yawei Wang, and Guibin Jiang
Atmos. Chem. Phys., 24, 8397–8411, https://doi.org/10.5194/acp-24-8397-2024, https://doi.org/10.5194/acp-24-8397-2024, 2024
Short summary
Short summary
Targeted derivatization and non-targeted analysis with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to reveal the molecular composition of carbonyl molecules in PM2.5, and the important role of carbonyls in increasing the oxidative potential of organic aerosol was found in real samples.
Adam E. Thomas, Hayley S. Glicker, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
EGUsphere, https://doi.org/10.5194/egusphere-2024-2230, https://doi.org/10.5194/egusphere-2024-2230, 2024
Short summary
Short summary
We present measurements of the composition of ultrafine particles collected from the eastern Amazon, a relatively understudied region that is subjected to increasing human influence. We find that while isoprene chemistry is likely significant to ultrafine particle growth throughout the year, compounds related to other sources such as biological spore emissions and biomass burning exhibit striking seasonal differences, implying an extensive variation in regional ultrafine particle sources.
Maya Abou-Ghanem, Daniel M. Murphy, Gregory P. Schill, Michael J. Lawler, and Karl D. Froyd
Atmos. Chem. Phys., 24, 8263–8275, https://doi.org/10.5194/acp-24-8263-2024, https://doi.org/10.5194/acp-24-8263-2024, 2024
Short summary
Short summary
Using particle analysis by laser mass spectrometry, we examine vanadium-containing ship exhaust particles measured on NASA's DC-8 during the Atmospheric Tomography Mission (ATom). Our results reveal ship exhaust particles are sufficiently widespread in the marine atmosphere and experience atmospheric aging. Finally, we use laboratory calibrations to determine the vanadium, sulfate, and organic single-particle mass fractions of vanadium-containing ship exhaust particles.
Cassandra J. Gaston, Joseph M. Prospero, Kristen Foley, Havala O. T. Pye, Lillian Custals, Edmund Blades, Peter Sealy, and James A. Christie
Atmos. Chem. Phys., 24, 8049–8066, https://doi.org/10.5194/acp-24-8049-2024, https://doi.org/10.5194/acp-24-8049-2024, 2024
Short summary
Short summary
To understand how changing emissions have impacted aerosols in remote regions, we measured nitrate and sulfate in Barbados and compared them to model predictions from EPA’s Air QUAlity TimE Series (EQUATES). Nitrate was stable, except for spikes in 2008 and 2010 due to transported smoke. Sulfate decreased in the 1990s due to reductions in sulfur dioxide (SO2) in the US and Europe; then it increased in the 2000s, likely due to anthropogenic emissions from Africa.
Jiao Xue, Tian Zhang, Keyhong Park, Jinpei Yan, Young Jun Yoon, Jiyeon Park, and Bingbing Wang
Atmos. Chem. Phys., 24, 7731–7754, https://doi.org/10.5194/acp-24-7731-2024, https://doi.org/10.5194/acp-24-7731-2024, 2024
Short summary
Short summary
Ice formation by particles is an important way of making mixed-phase and ice clouds. We found that particles collected in the marine atmosphere exhibit diverse ice nucleation abilities and mixing states. Sea salt mixed-sulfate particles were enriched in ice-nucleating particles. Selective aging on sea salt particles made particle populations more externally mixed. Characterizations of particles and their mixing state are needed for a better understanding of aerosol–cloud interactions.
Yangzhi Mo, Jun Li, Guangcai Zhong, Sanyuan Zhu, Shizhen Zhao, Jiao Tang, Hongxing Jiang, Zhineng Cheng, Chongguo Tian, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 24, 7755–7772, https://doi.org/10.5194/acp-24-7755-2024, https://doi.org/10.5194/acp-24-7755-2024, 2024
Short summary
Short summary
In this study, we found that biomass burning (31.0 %) and coal combustion (31.1 %) were the dominant sources of water-insoluble organic carbon in China, with coal combustion sources exhibiting the strongest light-absorbing capacity. Additionally, we propose a light-absorbing carbonaceous continuum, revealing that components enriched with fossil sources tend to have stronger light-absorbing capacity, higher aromaticity, higher molecular weights, and greater recalcitrance in the atmosphere.
Jing Duan, Ru-Jin Huang, Ying Wang, Wei Xu, Haobin Zhong, Chunshui Lin, Wei Huang, Yifang Gu, Jurgita Ovadnevaite, Darius Ceburnis, and Colin O'Dowd
Atmos. Chem. Phys., 24, 7687–7698, https://doi.org/10.5194/acp-24-7687-2024, https://doi.org/10.5194/acp-24-7687-2024, 2024
Short summary
Short summary
The chemical composition of atmospheric particles has shown significant changes in recent years. We investigated the potential effects of changes in inorganics on aerosol water uptake and, thus, secondary organic aerosol formation in wintertime haze based on the size-resolved measurements of non-refractory fine particulate matter (NR-PM2.5) in Xi’an, northwestern China. We highlight the key role of aerosol water as a medium to link inorganics and organics in their multiphase processes.
Benjamin Heutte, Nora Bergner, Hélène Angot, Jakob B. Pernov, Lubna Dada, Jessica A. Mirrielees, Ivo Beck, Andrea Baccarini, Matthew Boyer, Jessie M. Creamean, Kaspar R. Daellenbach, Imad El Haddad, Markus M. Frey, Silvia Henning, Tiaa Laurila, Vaios Moschos, Tuukka Petäjä, Kerri A. Pratt, Lauriane L. J. Quéléver, Matthew D. Shupe, Paul Zieger, Tuija Jokinen, and Julia Schmale
EGUsphere, https://doi.org/10.5194/egusphere-2024-1912, https://doi.org/10.5194/egusphere-2024-1912, 2024
Short summary
Short summary
Limited aerosol measurements in the central Arctic hinder our understanding of aerosol-climate interactions in the region. Our year-long observations of aerosol physicochemical properties during the MOSAiC expedition reveal strong seasonal variations in aerosol chemical composition, where the short-term variability is heavily affected by storms in the Arctic. Locally wind-generated particles are shown to be an important source of cloud seeds, especially in autumn.
Feng Jiang, Harald Saathoff, Junwei Song, Hengheng Zhang, Linyu Gao, and Thomas Leisner
EGUsphere, https://doi.org/10.5194/egusphere-2024-1848, https://doi.org/10.5194/egusphere-2024-1848, 2024
Short summary
Short summary
The chemical composition of brown carbon in the particle and gas phase were determined by mass spectrometry. BrC in the gas phase was mainly controlled by secondary formation and particle-to-gas partitioning. BrC in the particle phase was mainly from secondary formation. This work helps to get a better understanding of diurnal variations and the sources of brown carbon aerosol at rural location in central Europe.
Hongyong Li, Xiaopu Lyu, Likun Xue, Yunxi Huo, Dawen Yao, Haoxian Lu, and Hai Guo
Atmos. Chem. Phys., 24, 7085–7100, https://doi.org/10.5194/acp-24-7085-2024, https://doi.org/10.5194/acp-24-7085-2024, 2024
Short summary
Short summary
Organic aerosol is ubiquitous in the atmosphere and largely explains the gap between current levels of fine particulate matter in many cities and the World Health Organization guideline values. This study highlights the dominant contributions of cooking emissions to organic aerosol when marine air prevailed in Hong Kong, which were occasionally overwhelmed by aromatics-derived secondary organic aerosol in continental ouflows.
Shao Shi, Jinghao Zhai, Xin Yang, Yechun Ruan, Yuanlong Huang, Xujian Chen, Antai Zhang, Jianhuai Ye, Guomao Zheng, Baohua Cai, Yaling Zeng, Yixiang Wang, Chunbo Xing, Yujie Zhang, Tzung-May Fu, Lei Zhu, Huizhong Shen, and Chen Wang
Atmos. Chem. Phys., 24, 7001–7012, https://doi.org/10.5194/acp-24-7001-2024, https://doi.org/10.5194/acp-24-7001-2024, 2024
Short summary
Short summary
The determination of ions in the mass spectra of individual particles remains uncertain. We have developed a standard-free mass calibration algorithm applicable to more than 98 % of ambient particles. With our algorithm, ions with ~ 0.05 Th mass difference could be determined. Therefore, many more atmospheric species could be determined and involved in the source apportionment of aerosols, the study of chemical reaction mechanisms, and the analysis of single-particle mixing states.
Wei Sun, Xiaodong Hu, Yuzhen Fu, Guohua Zhang, Yujiao Zhu, Xinfeng Wang, Caiqing Yan, Likun Xue, He Meng, Bin Jiang, Yuhong Liao, Xinming Wang, Ping'an Peng, and Xinhui Bi
Atmos. Chem. Phys., 24, 6987–6999, https://doi.org/10.5194/acp-24-6987-2024, https://doi.org/10.5194/acp-24-6987-2024, 2024
Short summary
Short summary
The formation pathways of nitrogen-containing compounds (NOCs) in the atmosphere remain unclear. We investigated the composition of aerosols and fog water by state-of-the-art mass spectrometry and compared the formation pathways of NOCs. We found that NOCs in aerosols were mainly formed through nitration reaction, while ammonia addition played a more important role in fog water. The results deepen our understanding of the processes of organic particulate pollution.
Amie Dobracki, Ernie Lewis, Arthur Sedlacek III, Tyler Tatro, Maria Zawadowicz, and Paquita Zuidema
EGUsphere, https://doi.org/10.5194/egusphere-2024-1347, https://doi.org/10.5194/egusphere-2024-1347, 2024
Short summary
Short summary
Biomass-burning aerosol is commonly present in the marine boundary layer of the southeast Atlantic Ocean between June and October. Our research indicates that burning conditions, aerosol transport pathways, and prolonged oxidation processes, both heterogeneous and aqueous-phase determine the chemical, microphysical, and optical properties of the boundary layer aerosol. Notably, we find that the aerosol optical properties can be estimated from the chemical properties alone.
Fuzhen Shen, Michaela I. Hegglin, and Yue Yuan
Atmos. Chem. Phys., 24, 6539–6553, https://doi.org/10.5194/acp-24-6539-2024, https://doi.org/10.5194/acp-24-6539-2024, 2024
Short summary
Short summary
We attempt to use a novel structural self-organising map and machine learning models to identify a weather system and quantify the importance of each meteorological factor in driving the unexpected PM2.5 and O3 changes under the specific weather system during the COVID-19 lockdown in China. The result highlights that temperature under the double-centre high-pressure system plays the most crucial role in abnormal events.
Cited articles
Agus, E. L., Lingard, J. J., and Tomlin, A. S.: Suppression of nucleation
mode particles by biomass burning in an urban environment: a case study,
J. Environ. Monitor., 10, 979–988, 2008.
Aldhaif, A. M., Lopez, D. H., Dadashazar, H., and Sorooshian, A.: Sources,
frequency, and chemical nature of dust events impacting the United States
East Coast, Atmos. Environ., 231, 117456, https://doi.org/10.1016/j.atmosenv.2020.117456, 2020.
Alpert, D. J. and Hopke, P. K.: A determination of the sources of airborne
particles collected during the regional air pollution study, Atmos.
Environ., 15, 675–687, 1981.
Arimoto, R., Duce, R., Savoie, D., Prospero, J., Talbot, R., Cullen, J.,
Tomza, U., Lewis, N., and Ray, B.: Relationships among aerosol constituents
from Asia and the North Pacific during PEM-West A, J. Geophys.
Res.-Atmos., 101, 2011–2023, 1996.
AzadiAghdam, M., Braun, R. A., Edwards, E.-L., Bañaga, P. A., Cruz, M.
T., Betito, G., Cambaliza, M. O., Dadashazar, H., Lorenzo, G. R., and Ma,
L.: On the nature of sea salt aerosol at a coastal megacity: Insights from
Manila, Philippines in Southeast Asia, Atmos. Environ., 216, 116922, https://doi.org/10.1016/j.atmosenv.2019.116922,
2019.
Barman, S., Singh, R., Negi, M., and Bhargava, S.: Ambient air quality of
Lucknow City (India) during use of fireworks on Diwali Festival,
Environ. Monit. Assess., 137, 495–504, 2008.
Becker, J. M., Iskandrian, S., and Conkling, J.: Fatal and near-fatal asthma
in children exposed to fireworks, Ann. Allerg. Asthma Im.,
85, 512–513, 2000.
Beig, G., Chate, D., Ghude, S. D., Ali, K., Satpute, T., Sahu, S., Parkhi,
N., and Trimbake, H.: Evaluating population exposure to environmental
pollutants during Deepavali fireworks displays using air quality
measurements of the SAFAR network, Chemosphere, 92, 116–124, 2013.
Braun, R. A., Dadashazar, H., MacDonald, A. B., Aldhaif, A. M., Maudlin, L.
C., Crosbie, E., Aghdam, M. A., Hossein Mardi, A., and Sorooshian, A.:
Impact of wildfire emissions on chloride and bromide depletion in marine
aerosol particles, Environ. Sci. Technol., 51, 9013–9021,
2017.
Braun, R. A., Aghdam, M. A., Bañaga, P. A., Betito, G., Cambaliza, M. O., Cruz, M. T., Lorenzo, G. R., MacDonald, A. B., Simpas, J. B., Stahl, C., and Sorooshian, A.: Long-range aerosol transport and impacts on size-resolved aerosol composition in Metro Manila, Philippines, Atmos. Chem. Phys., 20, 2387–2405, https://doi.org/10.5194/acp-20-2387-2020, 2020.
Burton, S. P., Vaughan, M. A., Ferrare, R. A., and Hostetler, C. A.: Separating mixtures of aerosol types in airborne High Spectral Resolution Lidar data, Atmos. Meas. Tech., 7, 419–436, https://doi.org/10.5194/amt-7-419-2014, 2014.
Cao, Y., Zhang, Z., Xiao, H., Xie, Y., Liang, Y., and Xiao, H.: How aerosol
pH responds to nitrate to sulfate ratio of fine-mode particulate,
Environ. Sci. Pollut. R., 27, 1–9, 2020.
Carranza, J., Fisher, B., Yoder, G., and Hahn, D.: On-line analysis of
ambient air aerosols using laser-induced breakdown spectroscopy,
Spectrochim. Acta B, 56, 851–864, 2001.
Chatterjee, A., Sarkar, C., Adak, A., Mukherjee, U., Ghosh, S., and Raha,
S.: Ambient air quality during Diwali Festival over Kolkata-a mega-city in
India, Aerosol Air Qual. Res., 13, 1133–1144, 2013.
Cheng, Y., Engling, G., He, K.-B., Duan, F.-K., Du, Z.-Y., Ma, Y.-L., Liang,
L.-L., Lu, Z.-F., Liu, J.-M., and Zheng, M.: The characteristics of Beijing
aerosol during two distinct episodes: Impacts of biomass burning and
fireworks, Environ. Pollut., 185, 149–157, 2014.
Cohen, D. D., Stelcer, E., Santos, F. L., Prior, M., Thompson, C., and
Pabroa, P. C.: Fingerprinting and source apportionment of fine particle
pollution in Manila by IBA and PMF techniques: A 7-year study, X-Ray
Spectrom., 38, 18–25, 2009.
Crespo, J., Yubero, E., Nicolás, J. F., Lucarelli, F., Nava, S., Chiari,
M., and Calzolai, G.: High-time resolution and size-segregated elemental
composition in high-intensity pyrotechnic exposures, J. Hazard.
Mater., 241, 82–91, 2012.
Crosbie, E., Sorooshian, A., Monfared, N. A., Shingler, T., and Esmaili, O.:
A multi-year aerosol characterization for the greater Tehran area using
satellite, surface, and modeling data, Atmosphere, 5, 178–197, 2014.
Cruz, M. T., Bañaga, P. A., Betito, G., Braun, R. A., Stahl, C., Aghdam, M. A., Cambaliza, M. O., Dadashazar, H., Hilario, M. R., Lorenzo, G. R., Ma, L., MacDonald, A. B., Pabroa, P. C., Yee, J. R., Simpas, J. B., and Sorooshian, A.: Size-resolved composition and morphology of particulate matter during the southwest monsoon in Metro Manila, Philippines, Atmos. Chem. Phys., 19, 10675–10696, https://doi.org/10.5194/acp-19-10675-2019, 2019.
D'Anna, A. and Sirignano, M.: Detailed kinetic mechanisms of PAH and soot formation, in: Computer Aided Chemical Engineering, Elsevier, https://doi.org/10.1016/B978-0-444-64087-1.00012-7, 647–672 pp., 2019.
Dela Piedra, M. C.: A Filipino Tradition: The Role of Fireworks and
Firecrackers in the Philippine Culture, TALA, 1, 141–153, 2018.
de Leeuw, G., Cohen, L., Frohn, L. M., Geernaert, G., Hertel, O., Jensen,
B., Jickells, T., Klein, L., Kunz, G. J., and Lund, S.: Atmospheric input of
nitrogen into the North Sea: ANICE project overview, Cont. Shelf
Res., 21, 2073–2094, 2001.
Devara, P. C., Vijayakumar, K., Safai, P. D., Made, P. R., and Rao, P. S.:
Celebration-induced air quality over a tropical urban station, Pune, India,
Atmos. Pollut. Res., 6, 511–520, 2015.
Do, T.-M., Wang, C.-F., Hsieh, Y.-K., and Hsieh, H.-F.: Metals present in
ambient air before and after a firework festival in Yanshui, Tainan, Taiwan,
Aerosol Air Qual. Res., 12, 981–993, 2012.
Dorado, S. V., Holdsworth, J. L., Lagrosas, N. C., Villarin, J. R., Narisma,
G., Ellis, J., and Perez, R.: Characterization of urban atmosphere of Manila
with lidar, filter sampling, and radiosonde, P. Soc. Photo.-Opt. Ins., 4153, 591–598, 2001.
Drewnick, F., Hings, S. S., Curtius, J., Eerdekens, G., and Williams, J.:
Measurement of fine particulate and gas-phase species during the New Year's
fireworks 2005 in Mainz, Germany, Atmos. Environ., 40, 4316–4327,
2006.
Dusek, U., Frank, G., Curtius, J., Drewnick, F., Schneider, J., Kürten,
A., Rose, D., Andreae, M. O., Borrmann, S., and Pöschl, U.: Enhanced
organic mass fraction and decreased hygroscopicity of cloud condensation
nuclei (CCN) during new particle formation events, Geophys. Res.
Lett., 37, L03804, https://doi.org/10.1029/2009GL040930, 2010.
Dutcher, D. D., Perry, K. D., Cahill, T. A., and Copeland, S. A.: Effects of
indoor pyrotechnic displays on the air quality in the Houston Astrodome,
JAPCA J. Air Waste Ma., 49, 156–160, 1999.
Ennis, J. L. and Shanley, E. S.: On hazardous silver compounds, J.
Chem. Educ., 68, A6, https://doi.org/10.1021/ed068pA6, 1991.
Feng, J., Sun, P., Hu, X., Zhao, W., Wu, M., and Fu, J.: The chemical
composition and sources of PM2.5 during the 2009 Chinese New Year's holiday
in Shanghai, Atmos. Res., 118, 435–444, 2012.
Gonzalez, M. E., Stahl, C., Cruz, M. T., Bañaga, P. A., Betito, G., Braun, R. A., Aghdam, M. A., Cambaliza, M. O., Lorenzo, G. R., MacDonald, A. B., Simpas, J. B., Csavina, J., Sáez, E. A., Betterton, E., and Sorooshian, A.: Contrasting the size-resolved nature of particulate arsenic, cadmium, and lead among diverse regions, Atmos. Pollut. Res., 12, 352–361, https://doi.org/10.1016/j.apr.2021.01.002, 2021.
Gysel, M., Crosier, J., Topping, D. O., Whitehead, J. D., Bower, K. N., Cubison, M. J., Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131–6144, https://doi.org/10.5194/acp-7-6131-2007, 2007.
Hersey, S. P., Craven, J. S., Metcalf, A. R., Lin, J., Lathem, T., Suski, K.
J., Cahill, J. F., Duong, H. T., Sorooshian, A., and Jonsson, H. H.:
Composition and hygroscopicity of the Los Angeles aerosol: CalNex, J.
Geophys. Res.-Atmos., 118, 3016–3036, 2013.
Hilario, M. R. A., Cruz, M. T., Bañaga, P. A., Betito, G., Braun, R. A.,
Stahl, C., Cambaliza, M. O., Lorenzo, G. R., MacDonald, A. B., and
AzadiAghdam, M.: Characterizing weekly cycles of particulate matter in a
coastal megacity: The importance of a seasonal, size-resolved, and
chemically-speciated analysis, J. Geophys. Res.-Atmos., 125,
e2020JD032614, https://doi.org/10.1029/2020JD032614, 2020.
Hirai, K., Yamazaki, Y., Okada, K., Furuta, S., and Kubo, K.: Acute
eosinophilic pneumonia associated with smoke from fireworks, Internal
Med., 39, 401–403, 2000.
Hooper, W. P. and Eloranta, E. W.: Lidar measurements of wind in the
planetary boundary layer: the method, accuracy and results from joint
measurements with radiosonde and kytoon, J. Clim. Appl.
Meteorol., 25, 990–1001, 1986.
Hopke, P. K., Cohen, D. D., Begum, B. A., Biswas, S. K., Ni, B., Pandit, G.
G., Santoso, M., Chung, Y.-S., Davy, P., and Markwitz, A.: Urban air quality
in the Asian region, Sci. Total Environ., 404, 103–112, 2008.
Hussein, T., Dal Maso, M., Petaja, T., Koponen, I. K., Paatero, P., Aalto,
P. P., Hameri, K., and Kulmala, M.: Evaluation of an automatic algorithm for
fitting the particle number size distributions, Boreal Environ. Res.,
10, 337, 2005.
Jiang, Q., Sun, Y. L., Wang, Z., and Yin, Y.: Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects, Atmos. Chem. Phys., 15, 6023–6034, https://doi.org/10.5194/acp-15-6023-2015, 2015.
Joly, A., Smargiassi, A., Kosatsky, T., Fournier, M., Dabek-Zlotorzynska,
E., Celo, V., Mathieu, D., Servranckx, R., D'amours, R., and Malo, A.:
Characterisation of particulate exposure during fireworks displays,
Atmos. Environ., 44, 4325–4329, 2010.
Joshi, M., Khan, A., Anand, S., and Sapra, B.: Size evolution of ultrafine
particles: Differential signatures of normal and episodic events,
Environ. Pollut., 208, 354–360, 2016.
Joshi, M., Nakhwa, A., Khandare, P., Khan, A., and Sapra, B.: Simultaneous
measurements of mass, chemical compositional and number characteristics of
aerosol particles emitted during fireworks, Atmos. Environ., 217,
116925, https://doi.org/10.1016/j.atmosenv.2019.116925, 2019.
Karnae, S.: Analysis of aerosol composition and characteristics in a semi arid coastal urban area, Master of Science, Kingsville, ProQuest Dissertations Publishing, Texas A&M University-Kingsville, USA, 88 pp., 2005.
Khaparde, V. V., Pipalatkar, P. P., Pustode, T., Rao, C. C., and Gajghate,
D. G.: Influence of burning of fireworks on particle size distribution of PM10 and associated barium at Nagpur, Environ. Monit. Assess.,
184, 903–911, 2012.
Kong, S. F., Li, L., Li, X. X., Yin, Y., Chen, K., Liu, D. T., Yuan, L., Zhang, Y. J., Shan, Y. P., and Ji, Y. Q.: The impacts of firework burning at the Chinese Spring Festival on air quality: insights of tracers, source evolution and aging processes, Atmos. Chem. Phys., 15, 2167–2184, https://doi.org/10.5194/acp-15-2167-2015, 2015.
Kulshrestha, U., Rao, T. N., Azhaguvel, S., and Kulshrestha, M.: Emissions
and accumulation of metals in the atmosphere due to crackers and sparkles
during Diwali festival in India, Atmos. Environ., 38, 4421–4425,
2004.
Kumar, M., Singh, R., Murari, V., Singh, A., Singh, R., and Banerjee, T.:
Fireworks induced particle pollution: a spatio-temporal analysis,
Atmos. Res., 180, 78–91, 2016.
Lai, Y. and Brimblecombe, P.: Changes in air pollution and attitude to
fireworks in Beijing, Atmos. Environ., 231, 117549, https://doi.org/10.1016/j.atmosenv.2020.117549, 2020.
Li, J., Xu, T., Lu, X., Chen, H., Nizkorodov, S. A., Chen, J., Yang, X., Mo,
Z., Chen, Z., and Liu, H.: Online single particle measurement of fireworks
pollution during Chinese New Year in Nanning, J. Environ.
Sci., 53, 184–195, 2017.
Licudine, J. A., Yee, H., Chang, W. L., and Whelen, A. C.: Hazardous metals
in ambient air due to New Year fireworks during 2004–2011 celebrations in
Pearl City, Hawaii, Public Health Rep., 127, 440–450, 2012.
Lin, C.-C.: A review of the impact of fireworks on particulate matter in
ambient air, J. Air Waste Ma., 66,
1171–1182, 2016.
Lin, C.-C., Yang, L.-S., and Cheng, Y.-H.: Ambient PM2.5, black carbon, and
particle size-resolved number concentrations and the Ångström
exponent value of aerosols during the firework display at the lantern
festival in southern Taiwan, Aerosol Air Qual. Res, 16, 373–387, 2016.
Liu, D.-Y., Rutherford, D., Kinsey, M., and Prather, K. A.: Real-time
monitoring of pyrotechnically derived aerosol particles in the troposphere,
Anal. Chem., 69, 1808–1814, 1997.
Marple, V., Olson, B., Romay, F., Hudak, G., Geerts, S. M., and Lundgren,
D.: Second generation micro-orifice uniform deposit impactor, 120 MOUDI-II:
Design, evaluation, and application to long-term ambient sampling, Aerosol
Sci. Tech., 48, 427–433, 2014.
Martín-Alberca, C. and García-Ruiz, C.: Analytical techniques for
the analysis of consumer fireworks, TrAC-Trend. Anal. Chem., 56,
27–36, 2014.
Martín-Alberca, C., Zapata, F., Carrascosa, H., Ortega-Ojeda, F. E.,
and García-Ruiz, C.: Study of consumer fireworks post-blast residues by
ATR-FTIR, Talanta, 149, 257–265, 2016.
Mönkkönen, P., Uma, R., Srinivasan, D., Koponen, I., Lehtinen, K.,
Hämeri, K., Suresh, R., Sharma, V., and Kulmala, M.: Relationship and
variations of aerosol number and PM10 mass concentrations in a highly
polluted urban environment – New Delhi, India, Atmos. Environ., 38,
425–433, 2004.
Mora, M., Braun, R. A., Shingler, T., and Sorooshian, A.: Analysis of
remotely sensed and surface data of aerosols and meteorology for the Mexico
Megalopolis Area between 2003 and 2015, J. Geophys. Res.-Atmos., 122, 8705–8723, 2017.
Moreno, T., Querol, X., Alastuey, A., Amato, F., Pey, J., Pandolfi, M.,
Kuenzli, N., Bouso, L., Rivera, M., and Gibbons, W.: Effect of fireworks
events on urban background trace metal aerosol concentrations: is the
cocktail worth the show?, J. Hazard. Mater., 183, 945–949,
2010.
NASA: Clouds, Aerosol and Monsoon Processes –
Philippines Experiment, Size Resolved Aerosol Composition observed at Manila Observatory from July 19, 2018 to October 2, 2019, NASA [data set], https://doi.org/10.5067/Suborbital/CAMP2EX2018/DATA001,
2020.
Nicolás, J., Yubero, E., Galindo, N., Giménez, J., Castañer, R.,
Carratalá, A., Crespo, J., and Pastor, C.: Characterization of events by
aerosol mass size distributions, J. Environ. Monitor., 11,
394–399, 2009.
Oanh, N. K., Upadhyay, N., Zhuang, Y.-H., Hao, Z.-P., Murthy, D., Lestari,
P., Villarin, J., Chengchua, K., Co, H., and Dung, N.: Particulate air
pollution in six Asian cities: Spatial and temporal distributions, and
associated sources, Atmos. Environ., 40, 3367–3380, 2006.
Perrino, C., Tiwari, S., Catrambone, M., Dalla Torre, S., Rantica, E., and
Canepari, S.: Chemical characterization of atmospheric PM in Delhi, India,
during different periods of the year including Diwali festival, Atmos.
Pollut. Res., 2, 418–427, 2011.
Perry, K. D.: Effects of outdoor pyrotechnic displays on the regional air
quality of Western Washington State, J. Air Waste
Ma., 49, 146–155, 1999.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.
Philippines, DENR: Establishing the Provisional National Ambient Air Quality Guideline Values for Particulate Matter 2.5 (PM2.5), edited by: Department of Environment and Natural Resources, Quezon City, available at: https://air.emb.gov.ph/wp-content/uploads/2017/04/DAO-2013-13-PM2.5.pdf (last access: 1 April 2021), 2013.
Pirker, L., Gradišek, A., Višić, B., and Remškar, M.:
Nanoparticle exposure due to pyrotechnics during a football match,
Atmos. Environ., 233, 117567, https://doi.org/10.1016/j.atmosenv.2020.117567, 2020.
Pósfai, M., Simonics, R., Li, J., Hobbs, P. V., and Buseck, P. R.:
Individual aerosol particles from biomass burning in southern Africa: 1.
Compositions and size distributions of carbonaceous particles, J.
Geophys. Res., 108, 8483, https://doi.org/10.1029/2002JD002291, 2003.
Prospero, J. M., Savoie, D. L., and Arimoto, R.: Long-term record of
nss-sulfate and nitrate in aerosols on Midway Island, 1981–2000: Evidence
of increased (now decreasing?) anthropogenic emissions from Asia, J.
Geophys. Res., 108, 4019, https://doi.org/10.1029/2001JD001524, 2003.
PSA: NCR Statistics, available at: http://rssoncr.psa.gov.ph/ (last access: 13 February 2021),
2015.
Rao, P. S., Gajghate, D., Gavane, A., Suryawanshi, P., Chauhan, C., Mishra,
S., Gupta, N., Rao, C., and Wate, S.: Air quality status during Diwali
Festival of India: A case study, B. Environ. Contam.
Tox., 89, 376–379, 2012.
Ravindra, K., Mor, S., and Kaushik, C.: Short-term variation in air quality
associated with firework events: a case study, J. Environ.
Monitor., 5, 260–264, 2003.
Razenkov, I.: Characterization of a Geiger-mode avalanche photodiode detector for high spectral resolution lidar, Master of Science University of Wisconsin–Madison, USA, 72 pp., 2010.
Reid, J. S., Hyer, E. J., Johnson, R. S., Holben, B. N., Yokelson, R. J.,
Zhang, J., Campbell, J. R., Christopher, S. A., Di Girolamo, L., and Giglio,
L.: Observing and understanding the Southeast Asian aerosol system by remote
sensing: An initial review and analysis for the Seven Southeast Asian
Studies (7SEAS) program, Atmos. Res., 122, 403–468, 2013.
Reid, J. S., Kuehn, R. E., Holz, R. E., Eloranta, E. W., Kaku, K. C., Kuang, S., Newchurch, M. J., Thompson, A. M., Trepte, C. R., and Zhang, J.: Ground‐based High Spectral Resolution Lidar observation of aerosol vertical distribution in the summertime Southeast United States, J. Geophys. Res.-Atmos., 122, 2970–3004, 2017.
Retama, A., Neria-Hernández, A., Jaimes-Palomera, M.,
Rivera-Hernández, O., Sánchez-Rodríguez, M., López-Medina,
A., and Velasco, E.: Fireworks: a major source of inorganic and organic
aerosols during Christmas and New Year in Mexico city, Atmos.
Environ., 2, 100013, 2019.
Roca, J. B., de Los Reyes, V. C., Racelis, S., Deveraturda, I., Sucaldito,
M. N., Tayag, E., and O'Reilly, M.: Fireworks-related injury surveillance in
the Philippines: trends in 2010–2014, Western Pacific surveillance and
response journal: WPSAR, 6, 1–6, https://doi.org/10.5365/WPSAR.2015.6.1.014, 2015.
Rolph, G., Stein, A., and Stunder, B.: Real-time environmental applications
and display system: READY, Environ. Modell. Softw., 95,
210–228, 2017.
Santos, F. L., Pabroa, P. C. B., Morco, R. P., and Racho, J. M. D.: Elemental characterization of New Year's Day PM10 and PM2.2 particulates matter at several sites in Metro Manila, Philippine chemistry congress, Tagaytay City (Philippines), 10–13 April 2007, 2007.
Santos F. L., Pabroa, C. B., Morco, R. P., and Racho, J. M. D.:
Elemental characterization of inhalable particulate emissions on New Year's
day in Metro Manila, Philippines Nuclear Journal, 15, 35–43, 2010.
Sarkar, S., Khillare, P. S., Jyethi, D. S., Hasan, A., and Parween, M.:
Chemical speciation of respirable suspended particulate matter during a
major firework festival in India, J. Hazard. Mater., 184,
321–330, 2010.
Schlosser, J. S., Braun, R. A., Bradley, T., Dadashazar, H., MacDonald, A.
B., Aldhaif, A. A., Aghdam, M. A., Mardi, A. H., Xian, P., and Sorooshian,
A.: Analysis of aerosol composition data for western United States wildfires
between 2005 and 2015: Dust emissions, chloride depletion, and most enhanced
aerosol constituents, J. Geophys. Res.-Atmos., 122,
8951–8966, 2017.
Shen, Z., Cao, J., Arimoto, R., Han, Z., Zhang, R., Han, Y., Liu, S., Okuda,
T., Nakao, S., and Tanaka, S.: Ionic composition of TSP and PM2.5 during
dust storms and air pollution episodes at Xi'an, China, Atmos.
Environ., 43, 2911–2918, 2009.
Shimizu, T.: Fireworks: the art, science, and technique, Pyrotechnica publications, Tokyo, Japan, 1981.
Shingler, T., Crosbie, E., Ortega, A., Shiraiwa, M., Zuend, A., Beyersdorf,
A., Ziemba, L., Anderson, B., Thornhill, L., and Perring, A. E.: Airborne
characterization of subsaturated aerosol hygroscopicity and dry refractive
index from the surface to 6.5km during the SEAC4RS campaign, J.
Geophys. Res.-Atmos., 121, 4188–4210, 2016.
Shinozuka, Y., Clarke, A., DeCarlo, P., Jimenez, J., Dunlea, E., Roberts, G., Tomlinson, J., Collins, D., Howell, S., Kapustin, V., McNaughton, C., and Zhou, J.: Aerosol optical properties relevant to regional remote sensing of CCN activity and links to their organic mass fraction: airborne observations over Central Mexico and the US West Coast during MILAGRO/INTEX-B, Atmos. Chem. Phys, 9, 6727–6742, https://doi.org/10.5194/acp-9-6727-2009, 2009.
Singh, A., Pant, P., and Pope, F. D.: Air quality during and after
festivals: Aerosol concentrations, composition and health effects,
Atmos. Res., 227, 220–232, https://doi.org/10.1016/j.atmosres.2019.05.012, 2019.
Stahl, C., Cruz, M. T., Bañaga, P. A., Betito, G., Braun, R. A., Aghdam, M. A., Cambaliza, M. O., Lorenzo, G. R., MacDonald, A. B., Pabroa, P. C., Yee, H., Simpas, J. B., and Sorooshian, A.: An Annual Time Series of Weekly Size-Resolved Aerosol Properties in the Megacity of Metro Manila, Philippines, Figshare [data set], https://doi.org/10.6084/m9.figshare.11861859, 2020a.
Stahl, C., Cruz, M. T., Bañaga, P. A., Betito, G., Braun, R. A., Aghdam,
M. A., Cambaliza, M. O., Lorenzo, G. R., MacDonald, A. B., Pabroa, P. C.,
Yee, J. R., Simpas, J. B., and Sorooshian, A.: An annual time series of
weekly size-resolved aerosol properties in the megacity of Metro Manila,
Philippines, Scientific Data, 7, 128, https://doi.org/10.1038/s41597-020-0466-y, 2020b.
Stein, A., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M., and
Ngan, F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling
system, B. Am. Meteorol. Soc., 96, 2059–2077,
2015.
Steinhauser, G. and Klapotke, T. M.: Using the chemistry of fireworks to
engage students in learning basic chemical principles: a lesson in
eco-friendly pyrotechnics, J. Chem. Educ., 87, 150–156, 2010.
Stokes, R. and Robinson, R.: Interactions in aqueous nonelectrolyte
solutions. I. Solute-solvent equilibria, J. Phys. Chem.,
70, 2126–2131, 1966.
Sun, Y., Wang, Z., Fu, P., Jiang, Q., Yang, T., Li, J., and Ge, X.: The
impact of relative humidity on aerosol composition and evolution processes
during wintertime in Beijing, China, Atmos. Environ., 77, 927–934,
2013.
Tanda, S., Ličbinský, R., Hegrová, J., and Goessler, W.: Impact
of New Year's Eve fireworks on the size resolved element distributions in
airborne particles, Environ. Int., 128, 371–378, 2019.
ten Brink, H., Henzing, B., Otjes, R., and Weijers, E.: Visibility in the
Netherlands during New Year's fireworks: The role of soot and salty aerosol
products, Atmos. Environ., 173, 289–294, 2018.
Thakur, B., Chakraborty, S., Debsarkar, A., Chakrabarty, S., and Srivastava,
R.: Air pollution from fireworks during festival of lights (Deepawali) in
Howrah, India – a case study, Atmosfera, 23, 347–365, 2010.
Tian, Y. Z., Wang, J., Peng, X., Shi, G. L., and Feng, Y. C.: Estimation of the direct and indirect impacts of fireworks on the physicochemical characteristics of atmospheric PM10 and PM2.5, Atmos. Chem. Phys., 14, 9469–9479, https://doi.org/10.5194/acp-14-9469-2014, 2014.
Totsuka, T., Sase, H., and Shimizu, H.: Major activities of acid deposition
monitoring network in East Asia (EANET) and related studies, in: Plant
Responses to Air Pollution and Global Change, edited by: Omasa, K., Nouchi, I., and De Kok, L. J., Springer, Tokyo, Japan, 251–259 pp., 2005.
Tsai, J.-H., Lin, J.-H., Yao, Y.-C., and Chiang, H.-L.: Size distribution
and water soluble ions of ambient particulate matter on episode and
non-episode days in Southern Taiwan, Aerosol Air Qual. Res., 12,
263–274, 2011.
Tsai, H.-H., Chien, L.-H., Yuan, C.-S., Lin, Y.-C., Jen, Y.-H., and Ie,
I.-R.: Influences of fireworks on chemical characteristics of atmospheric
fine and coarse particles during Taiwan's Lantern Festival, Atmos.
Environ., 62, 256–264, 2012.
Tsay, S.-C., Hsu, N. C., Lau, W. K.-M., Li, C., Gabriel, P. M., Ji, Q.,
Holben, B. N., Welton, E. J., Nguyen, A. X., and Janjai, S.: From BASE-ASIA
toward 7-SEAS: A satellite-surface perspective of boreal spring
biomass-burning aerosols and clouds in Southeast Asia, Atmos.
Environ., 78, 20–34, 2013.
U.S. Department of Labor: Compliance Policy for Manufacture, Storage, Sale, Handling, Use and Display of Pyrotechnics, available at: https://www.osha.gov/OshDoc/Directive_pdf/CPL_02-01-053.pdf (last access: 12 April 2021), 2015.
Vecchi, R., Bernardoni, V., Cricchio, D., D'Alessandro, A., Fermo, P.,
Lucarelli, F., Nava, S., Piazzalunga, A., and Valli, G.: The impact of
fireworks on airborne particles, Atmos. Environ., 42, 1121–1132,
2008.
Villafuerte II, M. Q., Matsumoto, J., Akasaka, I., Takahashi, H. G., Kubota,
H., and Cinco, T. A.: Long-term trends and variability of rainfall extremes
in the Philippines, Atmos. Res., 137, 1–13, 2014.
Walsh, K. J., Milligan, M., and Sherwell, J.: Synoptic evaluation of
regional PM2.5 concentrations, Atmos. Environ., 43, 594–603, 2009.
Wang, Y., Zhuang, G., Xu, C., and An, Z.: The air pollution caused by the
burning of fireworks during the lantern festival in Beijing, Atmos.
Environ., 41, 417–431, 2007.
Wehner, B., Wiedensohler, A., and Heintzenberg, J.: Submicrometer aerosol
size distributions and mass concentration of the millennium fireworks 2000
in Leipzig, Germany, J. Aerosol Sci., 12, 1489–1493, 2000.
Wilkin, R. T., Fine, D. D., and Burnett, N. G.: Perchlorate behavior in a
municipal lake following fireworks displays, Environ. Sci.
Technol., 41, 3966–3971, 2007.
Wonaschuetz, A., Sorooshian, A., Ervens, B., Chuang, P. Y., Feingold, G.,
Murphy, S. M., De Gouw, J., Warneke, C., and Jonsson, H. H.: Aerosol and gas
re-distribution by shallow cumulus clouds: An investigation using airborne
measurements, J. Geophys. Res.-Atmos., 117, D17202, https://doi.org/10.1029/2012JD018089, 2012.
Wu, C., Wang, G., Wang, J., Li, J., Ren, Y., Zhang, L., Cao, C., Li, J., Ge,
S., and Xie, Y.: Chemical characteristics of haze particles in Xi'an during
Chinese Spring Festival: Impact of fireworks burning, J.
Environ. Sci., 71, 179–187, 2018.
Yadav, S. K., Kumar, M., Sharma, Y., Shukla, P., Singh, R. S., and Banerjee,
T.: Temporal evolution of submicron particles during extreme fireworks,
Environ. Monit. Assess., 191, 576, https://doi.org/10.1007/s10661-019-7735-2, 2019.
Yang, L., Gao, X., Wang, X., Nie, W., Wang, J., Gao, R., Xu, P., Shou, Y.,
Zhang, Q., and Wang, W.: Impacts of firecracker burning on aerosol chemical
characteristics and human health risk levels during the Chinese New Year
Celebration in Jinan, China, Sci. Total Environ., 476, 57–64,
2014.
Youn, J. S., Wang, Z., Wonaschütz, A., Arellano, A., Betterton, E. A.,
and Sorooshian, A.: Evidence of aqueous secondary organic aerosol formation
from biogenic emissions in the North American Sonoran Desert, Geophys.
Res. Lett., 40, 3468–3472, 2013.
Yuan, L., Zhang, X., Feng, M., Liu, X., Che, Y., Xu, H., Schaefer, K., Wang,
S., and Zhou, Y.: Size-resolved hygroscopic behaviour and mixing state of
submicron aerosols in a megacity of the Sichuan Basin during pollution and
fireworks episodes, Atmos. Environ., 226, 117393, https://doi.org/10.1016/j.atmosenv.2020.117393, 2020.
Zhang, J., Yang, L., Chen, J., Mellouki, A., Jiang, P., Gao, Y., Li, Y.,
Yang, Y., and Wang, W.: Influence of fireworks displays on the chemical
characteristics of PM2.5 in rural and suburban areas in Central and East
China, Sci. Total Environ., 578, 476–484, 2017.
Zhang, J., Lance, S., Freedman, J. M., Sun, Y., Crandall, B. A., Wei, X.,
and Schwab, J. J.: Detailed Measurements of Submicron Particles from an
Independence Day Fireworks Event in Albany, New York Using HR-ToF-AMS, ACS
Earth Space Chem., 3, 1451–1459, 2019.
Zhang, M., Wang, X., Chen, J., Cheng, T., Wang, T., Yang, X., Gong, Y.,
Geng, F., and Chen, C.: Physical characterization of aerosol particles
during the Chinese New Year's firework events, Atmos. Environ., 44,
5191–5198, 2010.
Short summary
Firework emissions change the physicochemical and optical properties of water-soluble particles, which subsequently alters the background aerosol’s respirability, influence on surroundings, ability to uptake gases, and viability as cloud condensation nuclei (CCN). There was heavy aerosol loading due to fireworks in the boundary layer. The aerosol constituents were largely water-soluble and submicrometer in size due to both inorganic salts in firework materials and gas-to-particle conversion.
Firework emissions change the physicochemical and optical properties of water-soluble particles,...
Altmetrics
Final-revised paper
Preprint