Articles | Volume 21, issue 5
https://doi.org/10.5194/acp-21-4079-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-4079-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characterisation and surface radiative impact of Arctic low clouds from the IAOOS field experiment
Julia Maillard
CORRESPONDING AUTHOR
LATMOS/IPSL, Sorbonne Université, UVSQ, CNRS, Paris, France
François Ravetta
LATMOS/IPSL, Sorbonne Université, UVSQ, CNRS, Paris, France
Jean-Christophe Raut
LATMOS/IPSL, Sorbonne Université, UVSQ, CNRS, Paris, France
Vincent Mariage
LATMOS/IPSL, Sorbonne Université, UVSQ, CNRS, Paris, France
Jacques Pelon
LATMOS/IPSL, Sorbonne Université, UVSQ, CNRS, Paris, France
Related authors
Lilian Loyer, Jean-Christophe Raut, Claudia Di Biagio, Julia Maillard, Vincent Mariage, and Jacques Pelon
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-326, https://doi.org/10.5194/amt-2021-326, 2021
Revised manuscript not accepted
Short summary
Short summary
The Arctic is facing drastic climate changes, and more observations are needed to better understand what is happening. Unfortunately observations are limited in the High Arctic. To obtain more observations, multiples buoys equipped with lidar, have been deployed in this region. This paper presents an approach to estimate the optical properties of clouds, and solar plus terrestrial energies from lidar measurements in the Arctic.
Antonio Donateo, Gianluca Pappaccogli, Federico Scoto, Maurizio Busetto, Francesca Lucia Lovisco, Natalie Brett, Douglas Keller, Brice Barret, Elsa Dieudonné, Roman Pohorsky, Andrea Baccarini, Slimane Bekki, Jean-Christophe Raut, Julia Schmale, Kathy S. Law, Steve R. Arnold, Gilberto Javier Fochesatto, William R. Simpson, and Stefano Decesari
EGUsphere, https://doi.org/10.5194/egusphere-2025-1366, https://doi.org/10.5194/egusphere-2025-1366, 2025
Short summary
Short summary
A study in Fairbanks, Alaska, measured winter aerosol fluxes on snow. Both emission and deposition occurred, with larger particles settling faster. Weather influenced dispersion and deposition, while wind-driven turbulence enhanced deposition despite stable conditions. Results show aerosol accumulation in snow impacts pollution and snowmelt. Findings help improve aerosol models and pollution studies in cold cities.
Anderson Da Silva, Louis Marelle, Jean-Christophe Raut, Yvette Gramlich, Karolina Siegel, Sophie L. Haslett, Claudia Mohr, and Jennie L. Thomas
Atmos. Chem. Phys., 25, 5331–5354, https://doi.org/10.5194/acp-25-5331-2025, https://doi.org/10.5194/acp-25-5331-2025, 2025
Short summary
Short summary
Particle sources in polar climates are unclear, affecting climate representation in models. This study introduces an evaluated method for tracking particles with backward modeling. Tests on simulated particles allowed us to show that traditional detection methods often misidentify sources. An improved method that accurately traces the origins of aerosol particles in the Arctic is presented. The study recommends using this enhanced method for better source identification of atmospheric species.
Natalie Brett, Kathy S. Law, Steve R. Arnold, Javier G. Fochesatto, Jean-Christophe Raut, Tatsuo Onishi, Robert Gilliam, Kathleen Fahey, Deanna Huff, George Pouliot, Brice Barret, Elsa Dieudonné, Roman Pohorsky, Julia Schmale, Andrea Baccarini, Slimane Bekki, Gianluca Pappaccogli, Federico Scoto, Stefano Decesari, Antonio Donateo, Meeta Cesler-Maloney, William Simpson, Patrice Medina, Barbara D'Anna, Brice Temime-Roussel, Joel Savarino, Sarah Albertin, Jingqiu Mao, Becky Alexander, Allison Moon, Peter F. DeCarlo, Vanessa Selimovic, Robert Yokelson, and Ellis S. Robinson
Atmos. Chem. Phys., 25, 1063–1104, https://doi.org/10.5194/acp-25-1063-2025, https://doi.org/10.5194/acp-25-1063-2025, 2025
Short summary
Short summary
Processes influencing dispersion of local anthropogenic pollution in Arctic wintertime are investigated with Lagrangian dispersion modelling. Simulated power plant plume rise that considers temperature inversion layers improves results compared to observations (interior Alaska). Modelled surface concentrations are improved by representation of vertical mixing and emission estimates. Large increases in diesel vehicle emissions at temperatures reaching −35°C are required to reproduce observed NOx.
Gérard Ancellet, Camille Viatte, Anne Boynard, François Ravetta, Jacques Pelon, Cristelle Cailteau-Fischbach, Pascal Genau, Julie Capo, Axel Roy, and Philippe Nédélec
Atmos. Chem. Phys., 24, 12963–12983, https://doi.org/10.5194/acp-24-12963-2024, https://doi.org/10.5194/acp-24-12963-2024, 2024
Short summary
Short summary
Characterization of ozone pollution in urban areas benefited from a measurement campaign in summer 2022 in the Paris region. The analysis is based on 21 d of lidar and aircraft observations. The main objective is an analysis of the sensitivity of ozone pollution to the micrometeorological processes in the urban atmospheric boundary layer and the transport of regional pollution. The paper also discusses to what extent satellite observations can track observed ozone plumes.
Thomas Lesigne, François Ravetta, Aurélien Podglajen, Vincent Mariage, and Jacques Pelon
Atmos. Chem. Phys., 24, 5935–5952, https://doi.org/10.5194/acp-24-5935-2024, https://doi.org/10.5194/acp-24-5935-2024, 2024
Short summary
Short summary
Upper tropical clouds have a strong impact on Earth's climate but are challenging to observe. We report the first long-duration observations of tropical clouds from lidars flying on board stratospheric balloons. Comparisons with spaceborne observations reveal the enhanced sensitivity of balloon-borne lidar to optically thin cirrus. These clouds, which have a significant coverage and lie in the uppermost troposphere, are linked with the dehydration of air masses on their way to the stratosphere.
Julia Maillard, Jean-Christophe Raut, and François Ravetta
Geosci. Model Dev., 17, 3303–3320, https://doi.org/10.5194/gmd-17-3303-2024, https://doi.org/10.5194/gmd-17-3303-2024, 2024
Short summary
Short summary
Atmospheric models struggle to reproduce the strong temperature inversions in the vicinity of the surface over forested areas in the Arctic winter. In this paper, we develop modified simplified versions of surface layer schemes widely used by the community. Our modifications are used to correct the fact that original schemes place strong limits on the turbulent collapse, leading to a lower surface temperature gradient at low wind speeds. Modified versions show a better performance.
Victoria A. Flood, Kimberly Strong, Cynthia H. Whaley, Kaley A. Walker, Thomas Blumenstock, James W. Hannigan, Johan Mellqvist, Justus Notholt, Mathias Palm, Amelie N. Röhling, Stephen Arnold, Stephen Beagley, Rong-You Chien, Jesper Christensen, Makoto Deushi, Srdjan Dobricic, Xinyi Dong, Joshua S. Fu, Michael Gauss, Wanmin Gong, Joakim Langner, Kathy S. Law, Louis Marelle, Tatsuo Onishi, Naga Oshima, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Manu A. Thomas, Svetlana Tsyro, and Steven Turnock
Atmos. Chem. Phys., 24, 1079–1118, https://doi.org/10.5194/acp-24-1079-2024, https://doi.org/10.5194/acp-24-1079-2024, 2024
Short summary
Short summary
It is important to understand the composition of the Arctic atmosphere and how it is changing. Atmospheric models provide simulations that can inform policy. This study examines simulations of CH4, CO, and O3 by 11 models. Model performance is assessed by comparing results matched in space and time to measurements from five high-latitude ground-based infrared spectrometers. This work finds that models generally underpredict the concentrations of these gases in the Arctic troposphere.
Patrick Chazette and Jean-Christophe Raut
Atmos. Meas. Tech., 16, 5847–5861, https://doi.org/10.5194/amt-16-5847-2023, https://doi.org/10.5194/amt-16-5847-2023, 2023
Short summary
Short summary
The vertical profiles of the effective radii of ice crystals and ice water content in Arctic semi-transparent stratiform clouds were assessed using quantitative ground-based lidar measurements. The field campaign was part of the Pollution in the ARCtic System (PARCS) project which took place from 13 to 26 May 2016 in Hammerfest (70° 39′ 48″ N, 23° 41′ 00″ E). We show that under certain cloud conditions, lidar measurement combined with a dedicated algorithmic approach is an efficient tool.
Eleftherios Ioannidis, Kathy S. Law, Jean-Christophe Raut, Louis Marelle, Tatsuo Onishi, Rachel M. Kirpes, Lucia M. Upchurch, Thomas Tuch, Alfred Wiedensohler, Andreas Massling, Henrik Skov, Patricia K. Quinn, and Kerri A. Pratt
Atmos. Chem. Phys., 23, 5641–5678, https://doi.org/10.5194/acp-23-5641-2023, https://doi.org/10.5194/acp-23-5641-2023, 2023
Short summary
Short summary
Remote and local anthropogenic emissions contribute to wintertime Arctic haze, with enhanced aerosol concentrations, but natural sources, which also contribute, are less well studied. Here, modelled wintertime sea-spray aerosols are improved in WRF-Chem over the wider Arctic by including updated wind speed and temperature-dependent treatments. As a result, anthropogenic nitrate aerosols are also improved. Open leads are confirmed to be the main source of sea-spray aerosols over northern Alaska.
Cynthia H. Whaley, Kathy S. Law, Jens Liengaard Hjorth, Henrik Skov, Stephen R. Arnold, Joakim Langner, Jakob Boyd Pernov, Garance Bergeron, Ilann Bourgeois, Jesper H. Christensen, Rong-You Chien, Makoto Deushi, Xinyi Dong, Peter Effertz, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Greg Huey, Ulas Im, Rigel Kivi, Louis Marelle, Tatsuo Onishi, Naga Oshima, Irina Petropavlovskikh, Jeff Peischl, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Tom Ryerson, Ragnhild Skeie, Sverre Solberg, Manu A. Thomas, Chelsea Thompson, Kostas Tsigaridis, Svetlana Tsyro, Steven T. Turnock, Knut von Salzen, and David W. Tarasick
Atmos. Chem. Phys., 23, 637–661, https://doi.org/10.5194/acp-23-637-2023, https://doi.org/10.5194/acp-23-637-2023, 2023
Short summary
Short summary
This study summarizes recent research on ozone in the Arctic, a sensitive and rapidly warming region. We find that the seasonal cycles of near-surface atmospheric ozone are variable depending on whether they are near the coast, inland, or at high altitude. Several global model simulations were evaluated, and we found that because models lack some of the ozone chemistry that is important for the coastal Arctic locations, they do not accurately simulate ozone there.
Meryl Wimmer, Gwendal Rivière, Philippe Arbogast, Jean-Marcel Piriou, Julien Delanoë, Carole Labadie, Quitterie Cazenave, and Jacques Pelon
Weather Clim. Dynam., 3, 863–882, https://doi.org/10.5194/wcd-3-863-2022, https://doi.org/10.5194/wcd-3-863-2022, 2022
Short summary
Short summary
The effect of deep convection representation on the jet stream above the cold front of an extratropical cyclone is investigated in the global numerical weather prediction model ARPEGE. Two simulations using different deep convection schemes are compared with (re)analysis datasets and NAWDEX airborne observations. A deeper jet stream is observed with the less active scheme. The diabatic origin of this difference is interpreted by backward Lagrangian trajectories and potential vorticity budgets.
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Thibault Vaillant de Guélis, Gérard Ancellet, Anne Garnier, Laurent C.-Labonnote, Jacques Pelon, Mark A. Vaughan, Zhaoyan Liu, and David M. Winker
Atmos. Meas. Tech., 15, 1931–1956, https://doi.org/10.5194/amt-15-1931-2022, https://doi.org/10.5194/amt-15-1931-2022, 2022
Short summary
Short summary
A new IIR-based cloud and aerosol discrimination (CAD) algorithm is developed using the IIR brightness temperature differences for cloud and aerosol features confidently identified by the CALIOP version 4 CAD algorithm. IIR classifications agree with the majority of V4 cloud identifications, reduce the ambiguity in a notable fraction of
not confidentV4 cloud classifications, and correct a few V4 misclassifications of cloud layers identified as dense dust or elevated smoke layers by CALIOP.
Lilian Loyer, Jean-Christophe Raut, Claudia Di Biagio, Julia Maillard, Vincent Mariage, and Jacques Pelon
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-326, https://doi.org/10.5194/amt-2021-326, 2021
Revised manuscript not accepted
Short summary
Short summary
The Arctic is facing drastic climate changes, and more observations are needed to better understand what is happening. Unfortunately observations are limited in the High Arctic. To obtain more observations, multiples buoys equipped with lidar, have been deployed in this region. This paper presents an approach to estimate the optical properties of clouds, and solar plus terrestrial energies from lidar measurements in the Arctic.
Gwendal Rivière, Meryl Wimmer, Philippe Arbogast, Jean-Marcel Piriou, Julien Delanoë, Carole Labadie, Quitterie Cazenave, and Jacques Pelon
Weather Clim. Dynam., 2, 1011–1031, https://doi.org/10.5194/wcd-2-1011-2021, https://doi.org/10.5194/wcd-2-1011-2021, 2021
Short summary
Short summary
Inacurracies in representing processes occurring at spatial scales smaller than the grid scales of the weather forecast models are important sources of forecast errors. This is the case of deep convection representation in models with 10 km grid spacing. We performed simulations of a real extratropical cyclone using a model with different representations of deep convection. These forecasts lead to different behaviors in the ascending air masses of the cyclone and the jet stream aloft.
Didier Bruneau and Jacques Pelon
Atmos. Meas. Tech., 14, 4375–4402, https://doi.org/10.5194/amt-14-4375-2021, https://doi.org/10.5194/amt-14-4375-2021, 2021
Short summary
Short summary
Taking advantage of Aeolus success and of our airborne lidar system expertise, we present a new spaceborne wind lidar design for operational Aeolus follow-on missions, keeping most of the initial lidar system but relying on a single Mach–Zehnder interferometer to relax operational constraints and reduce measurement bias. System parameters are optimized. Random and systematic errors are shown to be compliant with the initial mission requirements. In addition, the system allows unbiased retrieval.
Anne Garnier, Jacques Pelon, Nicolas Pascal, Mark A. Vaughan, Philippe Dubuisson, Ping Yang, and David L. Mitchell
Atmos. Meas. Tech., 14, 3253–3276, https://doi.org/10.5194/amt-14-3253-2021, https://doi.org/10.5194/amt-14-3253-2021, 2021
Short summary
Short summary
The IIR Level 2 data products include cloud effective emissivities and cloud microphysical properties such as effective diameter (De) and ice or liquid water path estimates. This paper (Part I) describes the improvements in the V4 algorithms compared to those used in the version 3 (V3) release, while results are presented in a companion paper (Part II).
Anne Garnier, Jacques Pelon, Nicolas Pascal, Mark A. Vaughan, Philippe Dubuisson, Ping Yang, and David L. Mitchell
Atmos. Meas. Tech., 14, 3277–3299, https://doi.org/10.5194/amt-14-3277-2021, https://doi.org/10.5194/amt-14-3277-2021, 2021
Short summary
Short summary
The IIR Level 2 data products include cloud effective emissivities and cloud microphysical properties such as effective diameter (De) and ice or liquid water path estimates. This paper (Part II) shows retrievals over ocean and describes the improvements made with respect to version 3 as a result of the significant changes implemented in the version 4 algorithms, which are presented in a companion paper (Part I).
David L. A. Flack, Gwendal Rivière, Ionela Musat, Romain Roehrig, Sandrine Bony, Julien Delanoë, Quitterie Cazenave, and Jacques Pelon
Weather Clim. Dynam., 2, 233–253, https://doi.org/10.5194/wcd-2-233-2021, https://doi.org/10.5194/wcd-2-233-2021, 2021
Short summary
Short summary
The representation of an extratropical cyclone in simulations of two climate models is studied by comparing them to observations of the international field campaign NAWDEX. We show that the current resolution used to run climate model projections (more than 100 km) is not enough to represent the life cycle accurately, but the use of 50 km resolution is good enough. Despite these encouraging results, cloud properties (partitioning liquid and solid) are found to be far from the observations.
Setigui Aboubacar Keita, Eric Girard, Jean-Christophe Raut, Maud Leriche, Jean-Pierre Blanchet, Jacques Pelon, Tatsuo Onishi, and Ana Cirisan
Geosci. Model Dev., 13, 5737–5755, https://doi.org/10.5194/gmd-13-5737-2020, https://doi.org/10.5194/gmd-13-5737-2020, 2020
Cited articles
Blanchard, Y., Pelon, J., Eloranta, E. W., Moran, K. P., Delanoë, J., and
Sèze, G.: A Synergistic Analysis of Cloud Cover and Vertical Distribution
from A-Train and Ground-Based Sensors over the High Arctic Station Eureka
from 2006 to 2010, J. Appl. Meteorol. Clim., 53,
2553–2570, https://doi.org/10.1175/JAMC-D-14-0021.1, 2014. a, b
Bucholtz, A.: Rayleigh-scattering calculations for the terrestrial atmosphere,
OSA Proc., 34, 2765–2773, https://doi.org/10.1364/ao.34.002765, 1995. a
Cesana, G., Kay, J. E., Chepfer, H., English, J. M., and de Boer, G.:
Ubiquitous low-level liquid-containing Arctic clouds: new observations and
climate model constraints from CALIPSO-GOCCP, Geophys. Res. Lett.,
39, L20804, https://doi.org/10.1029/2012GL053385, 2012. a, b
Chan, M. A. and Comiso, J. C.: Arctic Cloud Characteristics as Derived from
MODIS, CALIPSO, and CloudSat, J. Climate, 26, 3285–3306,
https://doi.org/10.1175/JCLI-D-12-00204.1, 2013. a, b
Cohen, L., Hudson, S. R., Walden, V. P., Graham, R. M., and Granskog, M. A.:
Meteorological conditions in a thinner Arctic sea ice regime from winter to
summer during the Norwegian Young Sea Ice expedition (N-ICE2015), J. Geophys. Res.-Atmos., 122, 7235–7259,
https://doi.org/10.1002/2016jd026034, 2017. a, b
Curry, J. A., Ebert, E. E., and Herman, G. F.: Mean and turbulent structure of
the summertime Arctic cloudy boundary layer, Q. J. Roy.
Meteor. Soc., 114, 715–746, https://doi.org/10.1002/qj.49711448109, 1988. a, b
Curry, J. A., Rossow, W. B., Randall, D., and Schramm, J. L.: Overview of
Arctic cloud and radiation characteristics, J. Climate, 9, 1731–1763, https://doi.org/10.1175/1520-0442(1996)009<1731:ooacar>2.0.co;2,
1731–1763, 1996. a, b, c, d
de Boer, G., Eloranta, E. W., and Shupe, M. D.: Arctic Mixed-Phase Stratiform
Cloud Properties from Multiple Years of Surface-Based Measurements at Two
High-Latitude Locations, J. Atmos. Sci., 66,
2874–2887, https://doi.org/10.1175/2009JAS3029.1, 2009. a
Di Biagio, C., Pelon, J., Ancellet, G., Bazureau, A., and Mariage, V.: Sources,
load, vertical distribution, and fate of wintertime aerosols north of
Svalbard from combined V4 CALIOP data, ground-based IAOOS lidar observations
and trajectory analysis, J. Geophys. Res.-Atmos., 123, 1363–1383,
https://doi.org/10.1002/2017JD027530,
2018. a, b, c
Ding, Q., Schweiger, A., L'Heureux, M., Battisti, D. S., Po-Chedley, S.,
Johnson, N. C., Blanchard-Wrigglesworth, E., Harnos, K., Zhang, Q., Eastman,
R., and Steig, E. J.: Influence of high-latitude atmospheric circulation
changes on summertime Arctic sea ice, Nat. Clim. Change, 7, 289–295,
https://doi.org/10.1038/nclimate3241, 2017. a
Dong, X. and Mace, G. G.: Arctic Stratus Cloud Properties and Radiative
Forcing Derived from Ground-Based Data Collected at Barrow, Alaska, J.
of Climate, 16, 445–461,
https://doi.org/10.1175/1520-0442(2003)016<0445:ASCPAR>2.0.CO;2, 2003. a
Excelitas: Single Photon Counting Module, SPCM-ARQH datasheet,
available at: https://www.excelitas.com/product/spcm-aqrh (last access: 6 March 2021), 2018. a
Fisher, R. A.: On the Interpretation of χ2 from Contingency Tables, and
the Calculation of P, J. R. Stat. Soc., 85, 87–94,
https://doi.org/10.2307/2340521, 1922. a
Fitzpatrick, M. F., Brandt, R. E., and Warren, S. G.: Transmission of solar
radiation by clouds over snow and ice surfaces: a parameterization in terms
of optical depth, solar zenith angle, and surface albedo, J. Climate,
17, 266–275, https://doi.org/10.1175/1520-0442(2004)017<0266:tosrbc>2.0.co;2, 2003. a, b
Garnier, A., Pelon, J., Vaughan, M. A., Winker, D. M., Trepte, C. R., and Dubuisson, P.: Lidar multiple scattering factors inferred from CALIPSO lidar and IIR retrievals of semi-transparent cirrus cloud optical depths over oceans, Atmos. Meas. Tech., 8, 2759–2774, https://doi.org/10.5194/amt-8-2759-2015, 2015. a, b
Graham, R. M., Rinke, A., Cohen, L., Hudson, S. R., Walden, V. P., Granskog,
M. A., Dorn, W., Kayser, M., and Maturilli, M.: A comparison of the two
Arctic atmospheric winter states observed during N-ICE2015 and SHEBA, J. Geophys. Res.-Atmos., 122, 5716–5737, https://doi.org/10.1002/2016JD025475, 2017. a, b, c, d, e
Graham, R. M., Cohen, L., Ritzhaupt, N., Segger, B., Graversen, R. G., Rinke,
A., Walden, V. P., Granskog, M. A., and Hudson, S. R.: Evaluation of six
atmospheric reanalyses over Arctic sea ice from winter to early summer,
J. Climate, 32, 4121–4143, https://doi.org/10.1175/JCLI-D-18-0643.1, 2019. a, b
Hahn, C. J., Warren, S. G., and London, J.: The effect of moonlight on
observation of cloud cover at night, and application to cloud climatology,
J. Climate, 8, 1429–1446, https://doi.org/10.1175/1520-0442(1995)008<1429:teomoo>2.0.co;2, 1995. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.adbb2d47, 2018. a, b
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc.,
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hudson, S. R., Cohen, L., and Walden, V. P.: N-ICE2015 surface broadband
radiation data, Dataset, Norwegian Polar Institute, https://doi.org/10.21334/npolar.2016.a89cb766, 2016. a, b, c, d
Intrieri, J. M., Fairall, C. W., Shupe, M. D., Persson, P. O. G., Andreas,
E. L., Guest, P. S., and Moritz, R. E.: An annual cycle of Arctic surface
cloud forcing at SHEBA, J. Geophys. Res., 107, 8039, https://doi.org/10.1029/2000JC000439, 2002a. a
Intrieri, J. M., Shupe, M. D., Uttal, T., and McCarty, B. J.: An annual cycle
of Arctic cloud characteristics observed by radar and lidar at SHEBA, J. Geophys. Res., 107, 8030, https://doi.org/10.1029/2000JC000423, 2002b. a, b, c
Kambezidis, H. D., Psiloglou, B. E., Karagiannis, D., Dumka, U. C., and
Kaskaoutis, D. G.: Meteorological Radiation Model (MRM v6.1): Improvements in
diffuse radiation estimates and a new approach for implementation of cloud
products, Renewable and Sustainable Energy Reviews, 74, 616–637, https://doi.org/10.1016/j.rser.2017.02.058, 2017. a
Kay, J. E. and Gettelman, A.: Cloud influence on and response to seasonal
Arctic ice loss, J. Geophys. Res., 114, D18204, https://doi.org/10.1029/2009jd011773, 2009. a, b
Kay, J. E., L'Ecuyer, T., Chepfer, H., Loeb, N., Morrison, A., and Cesana, G.:
Recent advances in arctic cloud and climate research, Current Climate Change
Reports, 2, 159–169, https://doi.org/10.1007/s40641-016-0051-9, 2016. a
Koenig, Z., Provost, C., Villacieros-Robineau, N., Sennéchael, N., and Meyer,
A.: Winter ocean-ice interactions under thin sea ice observed by IAOOS
platforms during N-ICE2015: Salty surface mixed layer and active basal melt,
J. Geophys. Res.-Oceans, 121, 7898–7916,
https://doi.org/10.1002/2016JC012195,
2016. a
Liu, Y., Key, J. R., Ackermann, S. A., Mace, G., and Zhang, Q.: Arctic cloud
macrophysical characteristics from CloudSat and CALIPSO, Remote Sens.
Environ., 124, 159–173, https://doi.org/10.1016/j.rse.2012.05.006, 2012. a, b, c
Mann, H. B. and Whitney, D. R.: On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other, Ann. Math.
Stat., 18, 50–60, https://doi.org/10.1214/aoms/1177730491, 1947. a, b
Mariage, V., Pelon, J., Blouzon, F., Victori, S., Geyskens, N., Amarouche, N.,
Drezen, C., Guillot, A., Calzas, M., Garracio, M., Wegmuller, N.,
Sennéchael, N., and Provost, C.: IAOOS microlidar-on-buoy development and
first atmospheric observations obtained during 2014 and 2015 arctic drifts,
Opt. Express, 25, 73–84, https://doi.org/10.1364/OE.25.000A73,
2017. a, b, c
Morrison, H., de Boer, G., Feingold, G., Harrington, J., Shupe, M. D., and
Sulia, K.: Resilience of persistant Arctic mixed-phase clouds, Nat.
Geosci., 5, 11–17, https://doi.org/10.1038/ngeo1332, 2011. a
Niemelä, S., Räisänen, P., and Savijärvi, H.: Comparison of surface
radiative flux parameterizations: Part I: Longwave radiation, Atmos.
Res., 58, 1–18, https://doi.org/10.1016/S0169-8095(01)00084-9,
2001. a, b
Nomokonova, T., Ebell, K., Löhnert, U., Maturilli, M., Ritter, C., and O'Connor, E.: Statistics on clouds and their relation to thermodynamic conditions at Ny-Ålesund using ground-based sensor synergy, Atmos. Chem. Phys., 19, 4105–4126, https://doi.org/10.5194/acp-19-4105-2019, 2019. a
O'Connor, E. J., Illingworth, A. J., and Hogan, R. J.: A technique for
autocalibration of cloud lidar, J. Atmos. Ocean.
Technol., 21, 777–786, https://doi.org/10.1175/1520-0426(2004)021<0777:atfaoc>2.0.co;2, 2004. a
Perovich, D. K.: Seasonal evolution of the albedo of multiyear Arctic sea ice,
J. Geophys. Res., 107, SHE 20-1–SHE 20-13, https://doi.org/10.1029/2000jc000438, 2002. a
Pithan, F. and Mauritsen, T.: Arctic amplification dominated by temperature
feedbacks in contemporary climate models, Nat. Geosci., 7, 181–184, https://doi.org/10.1038/ngeo2071,
2014. a, b
Platt, C. M. R.: Lidar and radiometric observations of cirrus clouds, J.
Atmos. Sci., 30, 1192–1204, https://doi.org/10.1175/1520-0469(1973)030<1191:larooc>2.0.co;2, 1973. a
Ravetta, F. and Pascal, N.: IAOOS Lidar Observation data – level 0.5, AERIS Data, available at: https://www.aeris-data.fr/catalogue/ (last access: 1 November 2019, 2018. a
Refaat, T. F., Ismail, S., Abedin, M. N., Spuler, S. M., Mayor, S. D., and
Singh, U. N.: Lidar backscatter signal recovery from phototransistor
systematic effect by deconvolution, Appl. Optics, 47, 5281–5295, https://doi.org/10.1364/ao.47.005281, 2008. a
Reno, M. J., Hansen, C. W., and Stein, J.: Global horizontal irradiance clear
sky models: implementation and analysis, Technical Report, Sandia National
Laboratories, Albuquerque, New Mexico, USA, 68 pp., 2012. a
Richardson, W. H.: Bayesian-Based Iterative Method of Image Restoration,
J. Opt. Soc. Am., 62, 55–59, https://doi.org/10.1364/josa.62.000055, 1972. a
Schmetz, P., Schmetz, J., and Raschke, E.: Estimation of daytime downward longwave radiation at the surface from satellite and grid point data,
Theor. Appl. Climatol., 37, 136–149, https://doi.org/10.1007/bf00867847, 1986. a
Shupe, M., Intrieri, J., and Uttal, T.: ETL Radar-Lidar 10-min Cloud Physical
Properties, Version 1.0, Dataset,
Earth Observing Laboratory,
https://doi.org/10.5065/D6MS3R4G, 2007. a, b
Shupe, M. D. and Intrieri, J. M.: Cloud radiative forcing of the Arctic
surface: the influence of cloud properties, surface albedo, and solar zenith
angle, J. Climate, 17, 616–628, https://doi.org/10.1175/1520-0442(2004)017<0616:crfota>2.0.co;2, 2003. a, b
Shupe, M. D., Matrosov, S. Y., and Uttal, T.: Arctic mixed-phase cloud
properties derived from surface-based sensors at SHEBA, J. Atmos. Sci., 63, 697–709, https://doi.org/10.1175/jas3659.1, 2006. a, b, c, d
Shupe, M. D., Walden, V. P., Eloranta, E., Uttal, T., Campbell, J. R.,
Starkweather, S. M., and Shiobara, M.: Clouds at Arctic Atmospheric
Observatories. Part I: Occurrence and Macrophysical Properties, J.
Appl. Meteorol. Clim., 50, 626–644,
https://doi.org/10.1175/2010jamc2467.1, 2011. a
Sorbonne Université: Accueil – ÉQUIPEX IAOOS, UPMC – Université Pierre et Marie Curie website, available at: http://www.iaoos-equipex.upmc.fr/fr/index.html (last access: 3 March 2021), 2016. a
Sotiropoulou, G., Tjernström, M., Sedlar, J., Achtert, P., Brooks, B. J., Brooks, I. M., Persson, P. O. G., Prytherch, J., Salisbury, D. J., Shupe, M. D., Johnston, P. E., and Wolfe, D.: Atmospheric conditions during the Arctic Clouds in Summer
Experiment (ACSE): Contrasting open water and sea ice surfaces during melt
and freeze-up seasons, J. Climate, 29, 8721–8744,
https://doi.org/10.1175/JCLI-D-16-0211.1, 2016. a
Stramler, K., Genio, A. D. D., and Rossow, W. B.: Synoptically driven Arctic
winter states, J. Climate, 24, 1747–1762, https://doi.org/10.1175/2010jcli3817.1, 2011. a, b
Tjernström, M., Sedlar, J., and Shupe, M. D.: How Well Do Regional Climate
Models Reproduce Radiation and Clouds in the Arctic? An Evaluation of ARCMIP
Simulations, J. Appl. Meteorol. Clim., 47, 2405–2422,
https://doi.org/10.1175/2008JAMC1845.1, 2008. a
Tjernström, M., Birch, C. E., Brooks, I. M., Shupe, M. D., Persson, P. O. G., Sedlar, J., Mauritsen, T., Leck, C., Paatero, J., Szczodrak, M., and Wheeler, C. R.: Meteorological conditions in the central Arctic summer during the Arctic Summer Cloud Ocean Study (ASCOS), Atmos. Chem. Phys., 12, 6863–6889, https://doi.org/10.5194/acp-12-6863-2012, 2012. a
Tjernström, M., Leck, C., Birch, C. E., Bottenheim, J. W., Brooks, B. J., Brooks, I. M., Bäcklin, L., Chang, R. Y.-W., de Leeuw, G., Di Liberto, L., de la Rosa, S., Granath, E., Graus, M., Hansel, A., Heintzenberg, J., Held, A., Hind, A., Johnston, P., Knulst, J., Martin, M., Matrai, P. A., Mauritsen, T., Müller, M., Norris, S. J., Orellana, M. V., Orsini, D. A., Paatero, J., Persson, P. O. G., Gao, Q., Rauschenberg, C., Ristovski, Z., Sedlar, J., Shupe, M. D., Sierau, B., Sirevaag, A., Sjogren, S., Stetzer, O., Swietlicki, E., Szczodrak, M., Vaattovaara, P., Wahlberg, N., Westberg, M., and Wheeler, C. R.: The Arctic Summer Cloud Ocean Study (ASCOS): overview and experimental design, Atmos. Chem. Phys., 14, 2823–2869, https://doi.org/10.5194/acp-14-2823-2014, 2014. a
Turner, D. D.: Arctic mixed-phase cloud properties from AERI Lidar
observations: algorithm and results from SHEBA, J. Appl.
Meteorol., 44, 427–444, https://doi.org/10.1175/jam2208.1, 2005. a
Uttal, T., Starkweather, S., Drummond, J. R., Vihma, T., Makshtas, A. P.,
Darby, L. S., Burkhart, J. F., Cox, C. J., Schmeisser, L. N., Haiden, T.,
Maturilli, M., Shupe, M. D., De Boer, G., Saha, A., Grachev, A. A.,
Crepinsek, S. M., Bruhwiler, L., Goodison, B., McArthur, B., Walden, V. P.,
Dlugokencky, E. J., Persson, P. O. G., Lesins, G., Laurila, T., Ogren, J. A.,
Stone, R., Long, C. N., Sharma, S., Massling, A., Turner, D. D., Stanitski,
D. M., Asmi, E., Aurela, M., Skov, H., Eleftheriadis, K., Virkkula, A.,
Platt, A., Førland, E. J., Iijima, Y., Nielsen, I. E., Bergin, M. H.,
Candlish, L., Zimov, N. S., Zimov, S. A., O’Neill, N. T., Fogal, P. F.,
Kivi, R., Konopleva-Akish, E. A., Verlinde, J., Kustov, V. Y., Vasel, B.,
Ivakhov, V. M., Viisanen, Y., and Intrieri, J. M.: International Arctic
Systems for Observing the Atmosphere: An International Polar Year Legacy
Consortium, B. Am. Meteorol. Soc., 97, 1033–1056,
https://doi.org/10.1175/BAMS-D-14-00145.1, 2016. a
Walden, V. P., Hudson, S. R., and Cohen, L.: Norwegian Young Sea Ice Experiment
(N-ICE) Field Campaign Report, Office of Scientific and Technical Information (OSTI), Oak Ridge, TN, USA, https://doi.org/10.2172/1248935, 2016. a, b
Walden, V. P., Hudson, S. R., Cohen, L., Murphy, S. Y., and Granskog, M. A.:
Atmospheric components of the surface energy budget over young sea ice:
Results from the N-ICE2015 campaign, J. Geophys. Res.-Atmos., 122, 8427–8446, https://doi.org/10.1002/2016jd026091, 2017. a, b, c, d
Weatherly, J. W., Briegleb, B. P., Large, W. G., and Maslanik, J. A.: Sea Ice
and Polar Climate in the NCAR CSM, J. Climate, 11, 1472–1486,
https://doi.org/10.1175/1520-0442(1998)011<1472:siapci>2.0.co;2, 1998. a, b
Wendisch, M., Macke, A., Ehrlich, A., Lüpkes, C., Mech, M., Chechin, D.,
Dethloff, K., Velasco, C. B., Bozem, H., Brückner, M., Clemen, H.-C.,
Crewell, S., Donth, T., Dupuy, R., Ebell, K., Egerer, U., Engelmann, R.,
Engler, C., Eppers, O., Gehrmann, M., Gong, X., Gottschalk, M., Gourbeyre,
C., Griesche, H., Hartmann, J., Hartmann, M., Heinold, B., Herber, A.,
Herrmann, H., Heygster, G., Hoor, P., Jafariserajehlou, S., Jäkel, E.,
Järvinen, E., Jourdan, O., Kästner, U., Kecorius, S., Knudsen, E. M.,
Köllner, F., Kretzschmar, J., Lelli, L., Leroy, D., Maturilli, M., Mei, L.,
Mertes, S., Mioche, G., Neuber, R., Nicolaus, M., Nomokonova, T., Notholt,
J., Palm, M., van Pinxteren, M., Quaas, J., Richter, P., Ruiz-Donoso, E.,
Schäfer, M., Schmieder, K., Schnaiter, M., Schneider, J., Schwarzenböck,
A., Seifert, P., Shupe, M. D., Siebert, H., Spreen, G., Stapf, J., Stratmann,
F., Vogl, T., Welti, A., Wex, H., Wiedensohler, A., Zanatta, M., and
Zeppenfeld, S.: The Arctic Cloud Puzzle: Using ACLOUD/PASCAL
Multiplatform Observations to Unravel the Role of Clouds and Aerosol
Particles in Arctic Amplification, B. Am. Meteorol.
Soc., 100, 841–871, https://doi.org/10.1175/bams-d-18-0072.1, 2019. a
Winker, D. M. and Vaughan, M. A.: Vertical distribution of clouds over Hampton,
Virginia observed by lidar under the ECLIPS and FIRE ETO programs,
Atmos. Res., 34, 117–133, https://doi.org/10.1016/0169-8095(94)90084-1, 1994. a, b
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z., Hunt, W. H., and Young, S. A.: Overview of the CALIPSO mission and
CALIOP data processing algorithms, J. Atmos. Ocean.
Technol., 26, 2310–2323, https://doi.org/10.1175/2009jtecha1281.1, 2009. a, b, c
Winton, M.: Amplified Arctic climate change: What does surface albedo feedback
have to do with it?, Geophys. Res. Lett., 33, L03701, https://doi.org/10.1029/2005gl025244, 2006.
a
Woods, C., Caballero, R., and Svensson, G.: Large-scale circulation associated
with moisture intrusions into the Arctic during the winter, Geophys.
Res. Lett., 40, 4717–4721, https://doi.org/10.1002/grl.50912, 2013. a, b
Zygmuntowska, M., Mauritsen, T., Quaas, J., and Kaleschke, L.: Arctic Clouds and Surface Radiation – a critical comparison of satellite retrievals and the ERA-Interim reanalysis, Atmos. Chem. Phys., 12, 6667–6677, https://doi.org/10.5194/acp-12-6667-2012, 2012. a, b, c, d
Short summary
Clouds remain a major source of uncertainty in understanding the Arctic climate, due in part to the lack of measurements over the sea ice. In this paper, we exploit a series of lidar profiles acquired from autonomous drifting buoys deployed in the Arctic Ocean and derive a statistic of low cloud frequency and macrophysical properties. We also show that clouds contribute to warm the surface in the shoulder seasons but not significantly from May to September.
Clouds remain a major source of uncertainty in understanding the Arctic climate, due in part to...
Altmetrics
Final-revised paper
Preprint