Articles | Volume 21, issue 3
https://doi.org/10.5194/acp-21-2003-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-2003-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Emission inventory of air pollutants and chemical speciation for specific anthropogenic sources based on local measurements in the Yangtze River Delta region, China
Jingyu An
State Environmental Protection Key Laboratory of the Formation and
Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental
Sciences, Shanghai 200233, China
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,
Department of Environmental Science and Engineering, Fudan University,
Shanghai 200438, China
Yiwei Huang
State Environmental Protection Key Laboratory of the Formation and
Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental
Sciences, Shanghai 200233, China
State Environmental Protection Key Laboratory of the Formation and
Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental
Sciences, Shanghai 200233, China
Xin Wang
China National Environmental Monitoring Centre, Beijing 100012, China
Rusha Yan
State Environmental Protection Key Laboratory of the Formation and
Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental
Sciences, Shanghai 200233, China
Qian Wang
State Environmental Protection Key Laboratory of the Formation and
Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental
Sciences, Shanghai 200233, China
Hongli Wang
State Environmental Protection Key Laboratory of the Formation and
Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental
Sciences, Shanghai 200233, China
Sheng'ao Jing
State Environmental Protection Key Laboratory of the Formation and
Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental
Sciences, Shanghai 200233, China
Yan Zhang
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,
Department of Environmental Science and Engineering, Fudan University,
Shanghai 200438, China
Yiming Liu
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,
Department of Environmental Science and Engineering, Fudan University,
Shanghai 200438, China
Yuan Chen
USC Marshall, University of Southern California, Los Angeles, CA 90089, USA
Chang Xu
State Environmental Protection Key Laboratory of the Formation and
Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental
Sciences, Shanghai 200233, China
Liping Qiao
State Environmental Protection Key Laboratory of the Formation and
Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental
Sciences, Shanghai 200233, China
Min Zhou
State Environmental Protection Key Laboratory of the Formation and
Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental
Sciences, Shanghai 200233, China
Shuhui Zhu
State Environmental Protection Key Laboratory of the Formation and
Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental
Sciences, Shanghai 200233, China
Qingyao Hu
State Environmental Protection Key Laboratory of the Formation and
Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental
Sciences, Shanghai 200233, China
Jun Lu
State Environmental Protection Key Laboratory of the Formation and
Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental
Sciences, Shanghai 200233, China
Changhong Chen
State Environmental Protection Key Laboratory of the Formation and
Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental
Sciences, Shanghai 200233, China
Related authors
Fei Ye, Jingyi Li, Yaqin Gao, Hongli Wang, Jingyu An, Cheng Huang, Song Guo, Keding Lu, Kangjia Gong, Haowen Zhang, Momei Qin, and Jianlin Hu
Atmos. Chem. Phys., 24, 7467–7479, https://doi.org/10.5194/acp-24-7467-2024, https://doi.org/10.5194/acp-24-7467-2024, 2024
Short summary
Short summary
Naphthalene (Nap) and methylnaphthalene (MN) are key precursors of secondary organic aerosol (SOA), yet their sources and sinks are often inadequately represented in air quality models. In this study, we incorporated detailed emissions, gas-phase chemistry, and SOA parameterization of Nap and MN into CMAQ to address this issue. The findings revealed remarkably high SOA formation potentials for these compounds despite their low emissions in the Yangtze River Delta region during summer.
Jingyu An, Cheng Huang, Dandan Huang, Momei Qin, Huan Liu, Rusha Yan, Liping Qiao, Min Zhou, Yingjie Li, Shuhui Zhu, Qian Wang, and Hongli Wang
Atmos. Chem. Phys., 23, 323–344, https://doi.org/10.5194/acp-23-323-2023, https://doi.org/10.5194/acp-23-323-2023, 2023
Short summary
Short summary
This paper aims to build up an approach to establish a high-resolution emission inventory of intermediate-volatility and semi-volatile organic compounds in city-scale and detailed source categories and incorporate it into the CMAQ model. We believe this approach can be widely applied to improve the simulation of secondary organic aerosol and its source contributions.
Min Zhou, Guangjie Zheng, Hongli Wang, Liping Qiao, Shuhui Zhu, DanDan Huang, Jingyu An, Shengrong Lou, Shikang Tao, Qian Wang, Rusha Yan, Yingge Ma, Changhong Chen, Yafang Cheng, Hang Su, and Cheng Huang
Atmos. Chem. Phys., 22, 13833–13844, https://doi.org/10.5194/acp-22-13833-2022, https://doi.org/10.5194/acp-22-13833-2022, 2022
Short summary
Short summary
The trend of aerosol pH and its drivers is crucial in understanding the multiphase formation pathways of aerosols. We reported the first trend analysis of aerosol pH from 2011 to 2019 in eastern China. Although significant variations of aerosol compositions were observed from 2011 to 2019, the aerosol pH estimated by model only slightly declined by 0.24. Our work shows that the opposite effects of SO42− and non-volatile cation changes play key roles in determining the moderate pH trend.
Han Zang, Yue Zhao, Juntao Huo, Qianbiao Zhao, Qingyan Fu, Yusen Duan, Jingyuan Shao, Cheng Huang, Jingyu An, Likun Xue, Ziyue Li, Chenxi Li, and Huayun Xiao
Atmos. Chem. Phys., 22, 4355–4374, https://doi.org/10.5194/acp-22-4355-2022, https://doi.org/10.5194/acp-22-4355-2022, 2022
Short summary
Short summary
Particulate nitrate plays an important role in wintertime haze pollution in eastern China, yet quantitative constraints on detailed nitrate formation mechanisms remain limited. Here we quantified the contributions of the heterogeneous N2O5 hydrolysis (66 %) and gas-phase OH + NO2 reaction (32 %) to nitrate formation in this region and identified the atmospheric oxidation capacity (i.e., availability of O3 and OH radicals) as the driving factor of nitrate formation from both processes.
Yarong Peng, Hongli Wang, Qian Wang, Shengao Jing, Jingyu An, Yaqin Gao, Cheng Huang, Rusha Yan, Haixia Dai, Tiantao Cheng, Qiang Zhang, Meng Li, Li Li, Shengrong Lou, Shikang Tao, Qinyao Hu, Jun Lu, and Changhong Chen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1108, https://doi.org/10.5194/acp-2020-1108, 2020
Revised manuscript not accepted
Short summary
Short summary
The evolution of NMHCs emissions and the effectiveness of control measures were investigated based on long term measurements in a megacity of China. Discrepancies between measurements and emission inventories emphasized the need for emission validation both in speciation and sources. Varied trends of NMHCs speciation and sources suggested the differential effect of the past control measures, which provided new insights into future clean air policies in polluted region including China.
Xu Yu, Min Zhou, Shuhui Zhu, Liping Qiao, Jinjian Li, Yingge Ma, Zijing Zhang, Kezheng Liao, Hongli Wang, and Jian Zhen Yu
Atmos. Chem. Phys., 25, 9061–9074, https://doi.org/10.5194/acp-25-9061-2025, https://doi.org/10.5194/acp-25-9061-2025, 2025
Short summary
Short summary
Online measurements of bulk aerosol organic nitrogen (ON), in conjunction with a comprehensive array of source markers, have revealed five emission sources and five potentially significant formation processes of nitrogenous organic aerosols. This study provides a first quantitative source analysis of ON aerosol and valuable observational evidence of secondary ON aerosol formation through NH3 and NOx chemistries.
Chunshui Lin, Ru-Jin Huang, Jing Duan, Jing Qu, Jiahua Liu, Yi Liu, Yan Luo, Wei Huang, Wei Xu, Yanan Zhan, Zhitao Liu, Sihan Liu, Qingshuang Zhang, Quan Liu, Zirui Liu, Shengrong Lou, Huinan Yang, Dan Dan Huang, Cheng Huang, and Hongli Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2521, https://doi.org/10.5194/egusphere-2025-2521, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Since China's 2013 Clean Air Act cut PM2.5 by over half, winter haze in the North China Plain persists due to secondary organic aerosols now dominating primary pollutants, requiring urgent regional cooperation to address model-underestimated chemical transformations and cross-border pollution.
Binyu Xiao, Fan Zhang, Zeyu Liu, Yan Zhang, Rui Li, Can Wu, Xinyi Wan, Yi Wang, Yubao Chen, Yong Han, Min Cui, Libo Zhang, Yingjun Chen, and Gehui Wang
Atmos. Chem. Phys., 25, 7053–7069, https://doi.org/10.5194/acp-25-7053-2025, https://doi.org/10.5194/acp-25-7053-2025, 2025
Short summary
Short summary
Intermediate-volatility/semi-volatile organic compounds in gas and particle phases from ship exhausts are enhanced due to the switch of fuels from low sulfur to ultra-low sulfur. The findings indicate that optimization is necessary for the forthcoming global implementation of an ultra-low-sulfur oil policy. Besides, we find that organic diagnostic markers of hopanes in conjunction with the ratio of octadecanoic to tetradecanoic could be considered potential tracers for heavy fuel oil exhausts.
Qianying Liu, Dan Dan Huang, Andrew T. Lambe, Shengrong Lou, Lulu Zeng, Yuhang Wu, Congyan Huang, Shikang Tao, Xi Cheng, Qi Chen, Ka In Hoi, Hongli Wang, Kai Meng Mok, Cheng Huang, and Yong Jie Li
Atmos. Meas. Tech., 18, 2509–2521, https://doi.org/10.5194/amt-18-2509-2025, https://doi.org/10.5194/amt-18-2509-2025, 2025
Short summary
Short summary
We evaluate the applicability of empirical equations to estimate OH exposure (OHexp) in an oxidative flow reactor (OFR). The fitting parameters obtained within a narrow range of conditions can generally be extended to estimate the OHexp for wide ranges of conditions in the OFR, except for external OH reactivity, which requires new fitting. At least 20–30 data points from SO2 or CO decay with varying conditions are required to fit a set of empirical parameters that can accurately estimate OHexp.
Jiaqi Liu, Shanshan Wang, Yan Zhang, Sanbao Zhang, Yuhao Yan, Zimin Han, and Bin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2025-1083, https://doi.org/10.5194/egusphere-2025-1083, 2025
Short summary
Short summary
A six-year study in a Shanghai port shows during low-sulfur fuel policies adjustment phase (2018–2020), ship pollution decreases by 43.47 % and 23.08 % yearly, but emissions rebounded 19.5 % yearly post-2020 as shipping grew. Using air sensors and data analysis, researchers identified cargo ships as key polluters and created a cost-effective monitoring method for global ports. Findings warn shipping expansion risks air quality progress, urging smarter policies while supporting trade.
Guangyuan Yu, Yan Zhang, Qian Wang, Zimin Han, Shenglan Jiang, Fan Yang, Xin Yang, and Cheng Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3892, https://doi.org/10.5194/egusphere-2024-3892, 2025
Short summary
Short summary
China has carried out staged low-sulfur fuel policies since 2017. This study simulated the changing spatiotemporal patterns of the impacts of ship emissions on PM2.5 from 2017 to 2021 based on the updated emission inventories and mapping of chemical species in the CMAQ. Fuel policies caused evident relative changes in inorganic and organic components of the shipping-related PM2.5 over China’s port cities. The driving factors of the interannual, seasonal, and diurnal patterns were discussed.
Shengqian Zhou, Ying Chen, Shan Huang, Xianda Gong, Guipeng Yang, Honghai Zhang, Hartmut Herrmann, Alfred Wiedensohler, Laurent Poulain, Yan Zhang, Fanghui Wang, Zongjun Xu, and Ke Yan
Earth Syst. Sci. Data, 16, 4267–4290, https://doi.org/10.5194/essd-16-4267-2024, https://doi.org/10.5194/essd-16-4267-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is a crucial natural reactive gas in the global climate system due to its great contribution to aerosols and subsequent impact on clouds over remote oceans. Leveraging machine learning techniques, we constructed a long-term global sea surface DMS gridded dataset with daily resolution. Compared to previous datasets, our new dataset holds promise for improving atmospheric chemistry modeling and advancing our comprehension of the climate effects associated with oceanic DMS.
Fan Zhang, Binyu Xiao, Zeyu Liu, Yan Zhang, Chongguo Tian, Rui Li, Can Wu, Yali Lei, Si Zhang, Xinyi Wan, Yubao Chen, Yong Han, Min Cui, Cheng Huang, Hongli Wang, Yingjun Chen, and Gehui Wang
Atmos. Chem. Phys., 24, 8999–9017, https://doi.org/10.5194/acp-24-8999-2024, https://doi.org/10.5194/acp-24-8999-2024, 2024
Short summary
Short summary
Mandatory use of low-sulfur fuel due to global sulfur limit regulations means large uncertainties in volatile organic compound (VOC) emissions. On-board tests of VOCs from nine cargo ships in China were carried out. Results showed that switching from heavy-fuel oil to diesel increased emission factor VOCs by 48 % on average, enhancing O3 and the secondary organic aerosol formation potential. Thus, implementing a global ultra-low-sulfur oil policy needs to be optimized in the near future.
Shenglan Jiang, Yan Zhang, Guangyuan Yu, Zimin Han, Junri Zhao, Tianle Zhang, and Mei Zheng
Atmos. Chem. Phys., 24, 8363–8381, https://doi.org/10.5194/acp-24-8363-2024, https://doi.org/10.5194/acp-24-8363-2024, 2024
Short summary
Short summary
This study aims to provide gridded data on sea-wide concentrations, deposition fluxes, and soluble deposition fluxes with detailed source categories of metals using the modified CMAQ model. We developed a monthly emission inventory of six metals – Fe, Al, V, Ni, Zn, and Cu – from terrestrial anthropogenic, ship, and dust sources in East Asia in 2017. Our results reveal the contribution of each source to the emissions, concentrations, and deposition fluxes of metals in the East Asian seas.
Fei Ye, Jingyi Li, Yaqin Gao, Hongli Wang, Jingyu An, Cheng Huang, Song Guo, Keding Lu, Kangjia Gong, Haowen Zhang, Momei Qin, and Jianlin Hu
Atmos. Chem. Phys., 24, 7467–7479, https://doi.org/10.5194/acp-24-7467-2024, https://doi.org/10.5194/acp-24-7467-2024, 2024
Short summary
Short summary
Naphthalene (Nap) and methylnaphthalene (MN) are key precursors of secondary organic aerosol (SOA), yet their sources and sinks are often inadequately represented in air quality models. In this study, we incorporated detailed emissions, gas-phase chemistry, and SOA parameterization of Nap and MN into CMAQ to address this issue. The findings revealed remarkably high SOA formation potentials for these compounds despite their low emissions in the Yangtze River Delta region during summer.
Wenjie Wang, Bin Yuan, Hang Su, Yafang Cheng, Jipeng Qi, Sihang Wang, Wei Song, Xinming Wang, Chaoyang Xue, Chaoqun Ma, Fengxia Bao, Hongli Wang, Shengrong Lou, and Min Shao
Atmos. Chem. Phys., 24, 4017–4027, https://doi.org/10.5194/acp-24-4017-2024, https://doi.org/10.5194/acp-24-4017-2024, 2024
Short summary
Short summary
This study investigates the important role of unmeasured volatile organic compounds (VOCs) in ozone formation. Based on results in a megacity of China, we show that unmeasured VOCs can contribute significantly to ozone fomation and also influence the determination of ozone control strategy. Our results show that these unmeasured VOCs are mainly from human sources.
Qiongqiong Wang, Shuhui Zhu, Shan Wang, Cheng Huang, Yusen Duan, and Jian Zhen Yu
Atmos. Chem. Phys., 24, 475–486, https://doi.org/10.5194/acp-24-475-2024, https://doi.org/10.5194/acp-24-475-2024, 2024
Short summary
Short summary
We investigated short-term source apportionment of PM2.5 utilizing rolling positive matrix factorization (PMF) and online PM chemical speciation data, which included source-specific organic tracers collected over a period of 37 d during the winter of 2019–2020 in suburban Shanghai, China. The findings highlight that by imposing constraints on the primary source profiles, short-term PMF analysis successfully replicated both the individual primary sources and the total secondary sources.
Benjamin N. Murphy, Darrell Sonntag, Karl M. Seltzer, Havala O. T. Pye, Christine Allen, Evan Murray, Claudia Toro, Drew R. Gentner, Cheng Huang, Shantanu Jathar, Li Li, Andrew A. May, and Allen L. Robinson
Atmos. Chem. Phys., 23, 13469–13483, https://doi.org/10.5194/acp-23-13469-2023, https://doi.org/10.5194/acp-23-13469-2023, 2023
Short summary
Short summary
We update methods for calculating organic particle and vapor emissions from mobile sources in the USA. Conventionally, particulate matter (PM) and volatile organic carbon (VOC) are speciated without consideration of primary semivolatile emissions. Our methods integrate state-of-the-science speciation profiles and correct for common artifacts when sampling emissions in a laboratory. We quantify impacts of the emission updates on ambient pollution with the Community Multiscale Air Quality model.
Matthias Kohl, Jos Lelieveld, Sourangsu Chowdhury, Sebastian Ehrhart, Disha Sharma, Yafang Cheng, Sachchida Nand Tripathi, Mathew Sebastian, Govindan Pandithurai, Hongli Wang, and Andrea Pozzer
Atmos. Chem. Phys., 23, 13191–13215, https://doi.org/10.5194/acp-23-13191-2023, https://doi.org/10.5194/acp-23-13191-2023, 2023
Short summary
Short summary
Knowledge on atmospheric ultrafine particles (UFPs) with a diameter smaller than 100 nm is crucial for public health and the hydrological cycle. We present a new global dataset of UFP concentrations at the Earth's surface derived with a comprehensive chemistry–climate model and evaluated with ground-based observations. The evaluation results are combined with high-resolution primary emissions to downscale UFP concentrations to an unprecedented horizontal resolution of 0.1° × 0.1°.
Xiaodong Xie, Jianlin Hu, Momei Qin, Song Guo, Min Hu, Dongsheng Ji, Hongli Wang, Shengrong Lou, Cheng Huang, Chong Liu, Hongliang Zhang, Qi Ying, Hong Liao, and Yuanhang Zhang
Atmos. Chem. Phys., 23, 10563–10578, https://doi.org/10.5194/acp-23-10563-2023, https://doi.org/10.5194/acp-23-10563-2023, 2023
Short summary
Short summary
The atmospheric age of particles reflects how long particles have been formed and suspended in the atmosphere, which is closely associated with the evolution processes of particles. An analysis of the atmospheric age of PM2.5 provides a unique perspective on the evolution processes of different PM2.5 components. The results also shed lights on how to design effective emission control actions under unfavorable meteorological conditions.
Shuhui Zhu, Min Zhou, Liping Qiao, Dan Dan Huang, Qiongqiong Wang, Shan Wang, Yaqin Gao, Shengao Jing, Qian Wang, Hongli Wang, Changhong Chen, Cheng Huang, and Jian Zhen Yu
Atmos. Chem. Phys., 23, 7551–7568, https://doi.org/10.5194/acp-23-7551-2023, https://doi.org/10.5194/acp-23-7551-2023, 2023
Short summary
Short summary
Organic aerosol (OA) is increasingly important in urban PM2.5 pollution as inorganic ions are becoming lower. We investigated the chemical characteristics of OA during nine episodes in Shanghai. The availability of bi-hourly measured molecular markers revealed that the control of local urban sources such as vehicular and cooking emissions lessened the severity of local episodes. Regional control of precursors and biomass burning would reduce PM2.5 episodes influenced by regional transport.
Yaqin Gao, Hongli Wang, Lingling Yuan, Shengao Jing, Bin Yuan, Guofeng Shen, Liang Zhu, Abigail Koss, Yingjie Li, Qian Wang, Dan Dan Huang, Shuhui Zhu, Shikang Tao, Shengrong Lou, and Cheng Huang
Atmos. Chem. Phys., 23, 6633–6646, https://doi.org/10.5194/acp-23-6633-2023, https://doi.org/10.5194/acp-23-6633-2023, 2023
Short summary
Short summary
A near-complete speciation of reactive organic gases from residential combustion was developed to get more insights into their atmospheric effects. Oxygenated species, higher hydrocarbons and nitrogen-containing species played larger roles in these emissions compared with common hydrocarbons. Based on the near-complete speciation, these emissions were largely underestimated, leading to more underestimation of their hydroxyl radical reactivity and secondary organic aerosol formation potential.
Yiqun Lu, Yingge Ma, Dan Dan Huang, Shengrong Lou, Sheng'ao Jing, Yaqin Gao, Hongli Wang, Yanjun Zhang, Hui Chen, Yunhua Chang, Naiqiang Yan, Jianmin Chen, Christian George, Matthieu Riva, and Cheng Huang
Atmos. Chem. Phys., 23, 3233–3245, https://doi.org/10.5194/acp-23-3233-2023, https://doi.org/10.5194/acp-23-3233-2023, 2023
Short summary
Short summary
N-containing oxygenated organic molecules have been identified as important precursors of aerosol particles. We used an ultra-high-resolution mass spectrometer coupled with an online sample inlet to accurately measure their molecular composition, concentration level and variation patterns. We show their formation process and influencing factors in a Chinese megacity involving various volatile organic compound precursors and atmospheric oxidants, and we highlight the influence of PM2.5 episodes.
Jingyu An, Cheng Huang, Dandan Huang, Momei Qin, Huan Liu, Rusha Yan, Liping Qiao, Min Zhou, Yingjie Li, Shuhui Zhu, Qian Wang, and Hongli Wang
Atmos. Chem. Phys., 23, 323–344, https://doi.org/10.5194/acp-23-323-2023, https://doi.org/10.5194/acp-23-323-2023, 2023
Short summary
Short summary
This paper aims to build up an approach to establish a high-resolution emission inventory of intermediate-volatility and semi-volatile organic compounds in city-scale and detailed source categories and incorporate it into the CMAQ model. We believe this approach can be widely applied to improve the simulation of secondary organic aerosol and its source contributions.
Yarong Peng, Hongli Wang, Yaqin Gao, Shengao Jing, Shuhui Zhu, Dandan Huang, Peizhi Hao, Shengrong Lou, Tiantao Cheng, Cheng Huang, and Xuan Zhang
Atmos. Meas. Tech., 16, 15–28, https://doi.org/10.5194/amt-16-15-2023, https://doi.org/10.5194/amt-16-15-2023, 2023
Short summary
Short summary
This work examined the phase partitioning behaviors of organic compounds at hourly resolution in ambient conditions with the use of the CHemical Analysis of aeRosols ONline (CHARON) inlet coupled to a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS). Properly accounting for the neutral losses of small moieties during the molecular feature extraction from PTR mass spectra could significantly reduce uncertainties associated with the gas–particle partitioning measurements.
Min Zhou, Guangjie Zheng, Hongli Wang, Liping Qiao, Shuhui Zhu, DanDan Huang, Jingyu An, Shengrong Lou, Shikang Tao, Qian Wang, Rusha Yan, Yingge Ma, Changhong Chen, Yafang Cheng, Hang Su, and Cheng Huang
Atmos. Chem. Phys., 22, 13833–13844, https://doi.org/10.5194/acp-22-13833-2022, https://doi.org/10.5194/acp-22-13833-2022, 2022
Short summary
Short summary
The trend of aerosol pH and its drivers is crucial in understanding the multiphase formation pathways of aerosols. We reported the first trend analysis of aerosol pH from 2011 to 2019 in eastern China. Although significant variations of aerosol compositions were observed from 2011 to 2019, the aerosol pH estimated by model only slightly declined by 0.24. Our work shows that the opposite effects of SO42− and non-volatile cation changes play key roles in determining the moderate pH trend.
Sihang Wang, Bin Yuan, Caihong Wu, Chaomin Wang, Tiange Li, Xianjun He, Yibo Huangfu, Jipeng Qi, Xiao-Bing Li, Qing'e Sha, Manni Zhu, Shengrong Lou, Hongli Wang, Thomas Karl, Martin Graus, Zibing Yuan, and Min Shao
Atmos. Chem. Phys., 22, 9703–9720, https://doi.org/10.5194/acp-22-9703-2022, https://doi.org/10.5194/acp-22-9703-2022, 2022
Short summary
Short summary
Volatile organic compound (VOC) emissions from vehicles are measured using online mass spectrometers. Differences between gasoline and diesel vehicles are observed with higher emission factors of most oxygenated VOCs (OVOCs) and heavier aromatics from diesel vehicles. A higher aromatics / toluene ratio could provide good indicators to distinguish emissions from both vehicle types. We show that OVOCs account for significant contributions to VOC emissions from vehicles, especially diesel vehicles.
Junri Zhao, Weichun Ma, Kelsey R. Bilsback, Jeffrey R. Pierce, Shengqian Zhou, Ying Chen, Guipeng Yang, and Yan Zhang
Atmos. Chem. Phys., 22, 9583–9600, https://doi.org/10.5194/acp-22-9583-2022, https://doi.org/10.5194/acp-22-9583-2022, 2022
Short summary
Short summary
Marine dimethylsulfide (DMS) emissions play important roles in atmospheric sulfur cycle and climate effects. In this study, DMS emissions were estimated by using the machine learning method and drove the global 3D chemical transport model to simulate their climate effects. To our knowledge, this is the first study in the Asian region that quantifies the combined impacts of DMS on sulfate, particle number concentration, and radiative forcings.
Wenjie Wang, David D. Parrish, Siwen Wang, Fengxia Bao, Ruijing Ni, Xin Li, Suding Yang, Hongli Wang, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 8935–8949, https://doi.org/10.5194/acp-22-8935-2022, https://doi.org/10.5194/acp-22-8935-2022, 2022
Short summary
Short summary
Tropospheric ozone is an air pollutant that is detrimental to human health, vegetation and ecosystem productivity. A comprehensive characterisation of the spatial and temporal distribution of tropospheric ozone is critical to our understanding of these issues. Here we summarise this distribution over China from the available observational records to the extent possible. This study provides insights into efficient future ozone control strategies in China.
Shijie Cui, Dan Dan Huang, Yangzhou Wu, Junfeng Wang, Fuzhen Shen, Jiukun Xian, Yunjiang Zhang, Hongli Wang, Cheng Huang, Hong Liao, and Xinlei Ge
Atmos. Chem. Phys., 22, 8073–8096, https://doi.org/10.5194/acp-22-8073-2022, https://doi.org/10.5194/acp-22-8073-2022, 2022
Short summary
Short summary
Refractory black carbon (rBC) aerosols are important to air quality and climate change. rBC can mix with many other species, which can significantly change its properties and impacts. We used a specific set of techniques to exclusively characterize rBC-containing (rBCc) particles in Shanghai. We elucidated their composition, sources and size distributions and factors that affect their properties. Our findings are very valuable for advancing the understanding of BC and controlling BC pollution.
Xuefei Ma, Zhaofeng Tan, Keding Lu, Xinping Yang, Xiaorui Chen, Haichao Wang, Shiyi Chen, Xin Fang, Shule Li, Xin Li, Jingwei Liu, Ying Liu, Shengrong Lou, Wanyi Qiu, Hongli Wang, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 22, 7005–7028, https://doi.org/10.5194/acp-22-7005-2022, https://doi.org/10.5194/acp-22-7005-2022, 2022
Short summary
Short summary
This paper presents the first OH and HO2 radical observations made in the Yangtze River Delta in China, and strong oxidation capacity is discovered based on direct measurements. The impacts of new OH regeneration mechanisms, monoterpene oxidation, and HO2 uptake processes are examined and discussed. The sources and the factors to sustain such strong oxidation are the key to understanding the ozone pollution formed in this area.
Haoran Zhang, Nan Li, Keqin Tang, Hong Liao, Chong Shi, Cheng Huang, Hongli Wang, Song Guo, Min Hu, Xinlei Ge, Mindong Chen, Zhenxin Liu, Huan Yu, and Jianlin Hu
Atmos. Chem. Phys., 22, 5495–5514, https://doi.org/10.5194/acp-22-5495-2022, https://doi.org/10.5194/acp-22-5495-2022, 2022
Short summary
Short summary
We developed a new algorithm with low economic/technique costs to identify primary and secondary components of PM2.5. Our model was shown to be reliable by comparison with different observation datasets. We systematically explored the patterns and changes in the secondary PM2.5 pollution in China at large spatial and time scales. We believe that this method is a promising tool for efficiently estimating primary and secondary PM2.5, and has huge potential for future PM mitigation.
Han Zang, Yue Zhao, Juntao Huo, Qianbiao Zhao, Qingyan Fu, Yusen Duan, Jingyuan Shao, Cheng Huang, Jingyu An, Likun Xue, Ziyue Li, Chenxi Li, and Huayun Xiao
Atmos. Chem. Phys., 22, 4355–4374, https://doi.org/10.5194/acp-22-4355-2022, https://doi.org/10.5194/acp-22-4355-2022, 2022
Short summary
Short summary
Particulate nitrate plays an important role in wintertime haze pollution in eastern China, yet quantitative constraints on detailed nitrate formation mechanisms remain limited. Here we quantified the contributions of the heterogeneous N2O5 hydrolysis (66 %) and gas-phase OH + NO2 reaction (32 %) to nitrate formation in this region and identified the atmospheric oxidation capacity (i.e., availability of O3 and OH radicals) as the driving factor of nitrate formation from both processes.
Haichao Wang, Chao Peng, Xuan Wang, Shengrong Lou, Keding Lu, Guicheng Gan, Xiaohong Jia, Xiaorui Chen, Jun Chen, Hongli Wang, Shaojia Fan, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 22, 1845–1859, https://doi.org/10.5194/acp-22-1845-2022, https://doi.org/10.5194/acp-22-1845-2022, 2022
Short summary
Short summary
Via combining laboratory and modeling work, we found that heterogeneous reaction of N2O5 with saline mineral dust aerosol could be an important source of tropospheric ClNO2 in inland regions.
Runlong Cai, Yihao Li, Yohann Clément, Dandan Li, Clément Dubois, Marlène Fabre, Laurence Besson, Sebastien Perrier, Christian George, Mikael Ehn, Cheng Huang, Ping Yi, Yingge Ma, and Matthieu Riva
Atmos. Meas. Tech., 14, 2377–2387, https://doi.org/10.5194/amt-14-2377-2021, https://doi.org/10.5194/amt-14-2377-2021, 2021
Short summary
Short summary
Orbitool is an open-source software tool, mainly coded in Python, with a graphical user interface (GUI), specifically developed to facilitate the analysis of online Orbitrap mass spectrometric data. It is notably optimized for long-term atmospheric measurements and laboratory studies.
Yarong Peng, Hongli Wang, Qian Wang, Shengao Jing, Jingyu An, Yaqin Gao, Cheng Huang, Rusha Yan, Haixia Dai, Tiantao Cheng, Qiang Zhang, Meng Li, Li Li, Shengrong Lou, Shikang Tao, Qinyao Hu, Jun Lu, and Changhong Chen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1108, https://doi.org/10.5194/acp-2020-1108, 2020
Revised manuscript not accepted
Short summary
Short summary
The evolution of NMHCs emissions and the effectiveness of control measures were investigated based on long term measurements in a megacity of China. Discrepancies between measurements and emission inventories emphasized the need for emission validation both in speciation and sources. Varied trends of NMHCs speciation and sources suggested the differential effect of the past control measures, which provided new insights into future clean air policies in polluted region including China.
Caihong Wu, Chaomin Wang, Sihang Wang, Wenjie Wang, Bin Yuan, Jipeng Qi, Baolin Wang, Hongli Wang, Chen Wang, Wei Song, Xinming Wang, Weiwei Hu, Shengrong Lou, Chenshuo Ye, Yuwen Peng, Zelong Wang, Yibo Huangfu, Yan Xie, Manni Zhu, Junyu Zheng, Xuemei Wang, Bin Jiang, Zhanyi Zhang, and Min Shao
Atmos. Chem. Phys., 20, 14769–14785, https://doi.org/10.5194/acp-20-14769-2020, https://doi.org/10.5194/acp-20-14769-2020, 2020
Short summary
Short summary
Based on measurements from an online mass spectrometer, we quantify volatile organic compound (VOC) concentrations from numerous ions of the mass spectrometer, using information from laboratory-obtained calibration results. We find that most VOC concentrations are from oxygenated VOCs (OVOCs). We further show that these OVOCs also contribute significantly to OH reactivity. Our results suggest the important role of OVOCs in VOC emissions and chemistry in urban air.
Rui Li, Qiongqiong Wang, Xiao He, Shuhui Zhu, Kun Zhang, Yusen Duan, Qingyan Fu, Liping Qiao, Yangjun Wang, Ling Huang, Li Li, and Jian Zhen Yu
Atmos. Chem. Phys., 20, 12047–12061, https://doi.org/10.5194/acp-20-12047-2020, https://doi.org/10.5194/acp-20-12047-2020, 2020
Cited articles
An, J., Huang, Y., Huang, C., Wang, X., Yan, R., Wang, Q., Zhang, Y., Xu, C., Qiao, L., Wang, H., Jing, S., Zhou, M., Zhu, S., Hu, Q., Lu, J., Chen, A. J. Y., and Chen, C.: Emission inventory of air pollutants and chemical speciation for detailed anthropogenic sources based on local measurements in the Yangtze River Delta region, China, Dataset, Figshare, https://doi.org/10.6084/m9.figshare.13340648, 2020.
Cai, S. Y., Ma, Q., Wang, S. X., Zhao, B., Brauer, M., Cohen, A., Marting,
R. V., Zhang, Q. Q., Li, Q. B., Wang, Y. X., Hao, J. M., Frostad, J.,
Forouzanfar, M. H., and Burnettk, R. T.: Impact of air pollution control
policies on future PM2.5 concentrations and their source contributions
in China, J. Environ. Manage., 227, 124–133, 2018.
Carter, W. P. L.: Development of ozone reactivity scales for volatile
organic compounds, J. Air Waste Manage., 44, 881–899, 1994.
Chen, Y.: Study on characteristics ammonia emission from typical large scale
pig farm in Shanghai, Master Thesis, East China University of Science and
Technology, Shanghai China, 73 pp., 2017.
Chen, Y., Fang, X. F., Shen, G. X., Xu, C., Qian, X. Y., Zhao, Z. G., Yu, S.
F., Li, J. W., and Wang, Z. Q.: Research on ammonia emission characteristics
and its influencing factors from paddy fields in Taihu Lake region,
Acta Agriculturae Zhejiangensis, 29, 119–128, 2017.
Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., van Aardenne, J. A., Monni, S., Doering, U., Olivier, J. G. J., Pagliari, V., and Janssens-Maenhout, G.: Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2, Earth Syst. Sci. Data, 10, 1987–2013, https://doi.org/10.5194/essd-10-1987-2018, 2018.
European Environment Agency (EEA): EMEP/EEA air pollution emission inventory
guidebook, available at: http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2013 (last access: 15 January 2018), 2013.
Fan, Q. Z., Zhang, Y., Ma, W. C., Ma, H. X., Feng, J. L., Yu, Q., Yang, X.,
Ng, S. K. W., Fu, Q. Y., and Chen, L. M.: Spatial and seasonal dynamics of
ship emissions over the Yangtze River Delta and East China Sea and their
potential environmental influence, Environ. Sci. Technol., 50, 1322–1329,
2016.
Fiore, A. M., Naik, V., Spracklen, D. V., Steiner, A., Unger, N., Prather,
M., Bergmann, D., Cameron-Smith, P. J., Cionni, I., Collins, W. J.,
Dalsøren, S., Eyring, V., Folberth, G. A., Ginoux, P., Horowitz, L. W.,
Josse, B., Lamarque, J., MacKenzie, I. A., Nagashima, T., O'Connor, F. M.,
Righi, M., Rumbold, S. T., Shindell, D. T., Skeie, R. B., Sudo, K., Szopa,
S., Takemurat, T., and Zeng, G.: Global air quality and climate,
Chem. Soc. Rev., 41, 6663–6683, 2012.
Fu, M. L., Ge, Y. S., Tan, J. W., Zeng, T., and Liang, B.: Characteristics
of typical non-road machinery emissions in China by using portable emission
measurement system, Sci. Total Environ., 437, 255–261, 2012.
Fu, M. L., Ding, Y., Yin, H., Ji, Z., Ge, Y. S., and Liang, B.:
Characteristics of agricultural tractors emissions under real-world
operating cycle,
Transactions of the Chinese Society of Agricultural Engineering, 29, 42–48, 2013.
Fu, X., Wang, S. X., Zhao, B., Xing, J., Cheng, Z., Liu, H., and Hao, J. M.:
Emission inventory of primary pollutants and chemical speciation in 2010 for
the Yangtze River Delta region, China, Atmos. Environ., 70, 39–50, 2013.
Gao, Y. Q., Wang, H. L., Xu, R. Z., Jing, S. A., Liu, Y. H., and Peng, Y.
R.: Characterization of volatile organic compounds from cooking emissions,
Huanjing Kexue, 40, 1627–1633, 2019.
Ge, Y. S., Liu, H. K., Ding, Y., Yin, H., Fu, M. L., and Li, J. Q.:
Experimental study on characteristics of emissions and fuel consumption for
combines, Transactions of the Chinese Society of Agricultural Engineering,
29, 41–47, 2013.
Guan, W. J., Zheng, X. Y., Chung, K. F., and Zhong, N. S.: Impact of air
pollution on the burden of chronic respiratory diseases in China: time for
urgent action, Lancet, 388, 1939–1951, 2016.
Guo, Y. Y., Gao, X., Zhu, T. Y., Luo, L., and Zheng, Y.: Chemical profiles
of PM emitted from the iron and steel industry in northern China, Atmos.
Environ., 150, 187–197, 2017.
Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, 2018.
Hsu, Y., Divita, F., and Dorn, J.: SPECIATE version 4.4 database development
documentation, final report, US EPA, EPA/600/R-13/307, USA, 21 pp., 2014.
Huang, C., Chen, C. H., Li, L., Cheng, Z., Wang, H. L., Huang, H. Y., Streets, D. G., Wang, Y. J., Zhang, G. F., and Chen, Y. R.: Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region, China, Atmos. Chem. Phys., 11, 4105–4120, https://doi.org/10.5194/acp-11-4105-2011, 2011.
Huang, C., Wang, H. L., Li, L., Wang, Q., Lu, Q., de Gouw, J. A., Zhou, M., Jing, S. A., Lu, J., and Chen, C. H.: VOC species and emission inventory from vehicles and their SOA formation potentials estimation in Shanghai, China, Atmos. Chem. Phys., 15, 11081–11096, https://doi.org/10.5194/acp-15-11081-2015, 2015.
Huang, C., Lou, S. R., Qiao, L. P., Jing, S. A., Tao, S. K., Zhou, M., and
Chen, C. H.: Physicochemical characteristics of real-world PM emissions from
heavy-duty diesel buses, Res. Environ. Sci., 29, 1352–1361,
2016.
Huang, C., Tao, S. K., Lou, S. R., Hu, Q. Y., Wang, H. L., Wang, Q., Li, L.,
Wang, H. Y., Liu, J. G., Quan, Y. F., and Zhou, L. L.: Evaluation of
emission factors for light-duty gasoline vehicles based on chassis
dynamometer and tunnel studies in Shanghai, China, Atmos. Environ., 169,
193–203, 2017.
Huang, C., An, J. Y., and Lu, J.: Emission inventory and prediction of
non-road machineries in the Yangtze River Delta region, China, Huanjing
Kexue, 39, 3965–3975, 2018a.
Huang, C., Hu, Q. Y., and Lu, J.: Measurements of OC and EC emission factors
for light-duty gasoline vehicles, Huanjing Kexue, 39, 3110–3117, 2018b.
Huang, C., Hu, Q. Y., Lou, S. R., Tian, J. J., Wang, R. N., Xu, C., An, J.
Y., Ren, H. J., Ma, D., Quan, Y. F., Zhang, Y. J., and Li, L.: Ammonia
emission measurements for light-duty gasoline vehicles in China and
implications for emission modeling, Environ. Sci. Technol., 52,
11223–11231, 2018c.
Huang, C., Hu, Q. Y., Wang, H. Y., Qiao, L. P., Jing, S. A., Wang, H. L.,
Zhou, M., Zhu, S. H., Ma, Y. G., Lou, S. R., Li, L., Tao, S. K., Li, Y. J.,
and Lou, D. M.: Emission factors of particulate and gaseous compounds from a
large cargo vessel operated under real-world conditions, Environ. Pollut.,
242, 667–674, 2018d.
Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., Denier van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li, M.: HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution, Atmos. Chem. Phys., 15, 11411–11432, https://doi.org/10.5194/acp-15-11411-2015, 2015.
Klimont, Z., Kupiainen, K., Heyes, C., Purohit, P., Cofala, J., Rafaj, P., Borken-Kleefeld, J., and Schöpp, W.: Global anthropogenic emissions of particulate matter including black carbon, Atmos. Chem. Phys., 17, 8681–8723, https://doi.org/10.5194/acp-17-8681-2017, 2017.
Li, L., An, J. Y., Zhou, M., Qiao, L. P., Zhu, S. H., Yan, R. S., Ooi, C.
G., Wang, H. L., Huang, C., Huang, L., Tao, S. K., Yu, J. Z., Chan, A.,
Wang, Y. J., Feng, J. L., and Chen, C. H.: An integrated source apportionment
methodology and its application over the Yangtze River Delta region, China,
Environ. Sci. Technol., 52, 14216–14227, 2018.
Li, L., An, J. Y., Huang, L., Yan, R. S., Huang, C., and Yarwood, G.: Ozone
source apportionment over the Yangtze River Delta region, China:
Investigation of regional transport, sectoral contributions and seasonal
differences, Atmos. Environ., 202, 269–280, 2019.
Li, M., Zhang, Q., Streets, D. G., He, K. B., Cheng, Y. F., Emmons, L. K., Huo, H., Kang, S. C., Lu, Z., Shao, M., Su, H., Yu, X., and Zhang, Y.: Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms, Atmos. Chem. Phys., 14, 5617–5638, https://doi.org/10.5194/acp-14-5617-2014, 2014.
Li, Z., Zhang, K. S., Pang, K. L., and Di, B. F.: A fuel-based approach for
emission factor development for highway paving construction equipment in
China, J. Air Waste Manage., 66, 1214–1223, 2016.
Liang, C. S., Duan, F. Q., He, K. B., and Ma, Y. L.: Review on recent
progress in observations, source identifications and countermeasures of
PM2.5, Environ. Int., 86, 150–170, 2016.
Lou, S. R.: Emission characteristics of PM2.5 from medium and small
capacity coal-fired boilers in service, Acta Scientiae Circumstantiae, 34,
3119–3125, 2014.
Ministry of Environmental Protection (MEP), P. R. of China: Guidebooks for
compiling air pollution emission inventories, available at: http://www.mee.gov.cn/gkml/hbb/bgg/201408/t20140828_288364.htm, last access: 20 August 2014.
Monks, P. S., Granier, C., Fuzzi, S., Stohl, A., Williams, M. L., Akimoto,
H., Amann, M., Baklanov, A., Baltensperger, U., Bey, I., Blake, N., Blake,
R. S., Carslaw, K., Cooper, O. R., Dentener, F., Fowler, D., Fragkou, E.,
Frost, G. J., Generoso, S., Ginoux, P., Grewe, V., Guenther, A., Hansson, H.
C., Henne, S., Hjorth, J., Hofzumahaus, A., Huntrieser, H., Isaksen, I. S.
A., Jenkin, M. E., Kaiser, J., Kanakidou, M., Klimont, Z., Kulmala, M., Laj,
P., Lawrence, M. G., Lee, J. D., Liousse, C., Maione, M., McFiggans, G.,
Metzger, A., Mieville, A., Moussiopoulos, N., Orlando, J. J., O'Dowd, C. D.,
Palmer, P. I., Parrish, D. D., Petzold, A., Platt, U., Pöschl, U.,
Prévôt, A. S. H., Reeves, C. E., Reimann, S., Rudich, Y., Sellegri,
K., Steinbrecher, R., Simpson, D., ten Brink, H., Theloke, J., van der Werf,
G. R., Vautard, R., Vestreng, V., Vlachokostas, C., and von Glasow, R.:
Atmospheric composition change – global and regional air quality, Atmos.
Environ., 43, 5268–5350, 2009.
National Bureau of Statistics of China: China Statistical Yearbook 2018,
China Statistics Press, Beijing, China, 949 pp., 2018.
Ni, Z.-Z., Luo, K., Gao, Y., Gao, X., Jiang, F., Huang, C., Fan, J.-R., Fu, J. S., and Chen, C.-H.: Spatial–temporal variations and process analysis of O3 pollution in Hangzhou during the G20 summit, Atmos. Chem. Phys., 20, 5963–5976, https://doi.org/10.5194/acp-20-5963-2020, 2020.
Qiao, L. P., Cai, J., Wang, H. L., Wang, W. B., Zhou, M., Lou, S. R., Chen,
R. J., Dai, H. X., Chen, C. H., and Kan, H. D.: PM2.5 constituents and
hospital emergency-room visits in Shanghai, China, Environ. Sci. Technol.,
48, 10406–10414, 2014.
Qu, L., He, L. Q., Hu, J. N., Jin, T. S., Zu, L., Wang, M. Y., and Song, J.
H.: Characteristics of PM2.5 emissions and its carbonaceous components
from construction machines under different typical driving modes, Res. Environ. Sci., 28, 1047–1052, 2015.
Reff, A., Bhave, P. V., Simon, H., Pace, T. G., Pouliot, G. A., Mobley, J.
D., and Houyoux, M.: Emissions inventory of PM2.5 trace elements across
the United States, Environ. Sci. Technol., 43, 5790–5796, 2009.
Requia, W. J., Adams, M. D., Arain, A., Papatheodorou, S., Koutrakis, P.,
and Mahmoud, M.: Global association of air pollution and cardiorespiratory
diseases: a systematic review, meta-Analysis, and investigation of modifier
variables, Am. J. Public Health, 108, S123–S130, 2018.
Sha, T., Ma, X. Y., Jia, H. L., van der A, R. J., Ding, J. Y., Zhang, Y. L.,
and Chang, Y. H.: Exploring the influence of two inventories on simulated air
pollutants during winter over the Yangtze River Delta, Atmos. Environ., 206,
170–182, 2019.
Simayi, M., Hao, Y. F., Li, J., Wu, R. R., Shi, Y. Q., Xi, Z. Y., Zhou, Y.,
and Xie, S. D.: Establishment of county-level emission inventory for industrial
NMVOCs in China and spatial-temporal characteristics for 2010–2016, Atmos.
Environ., 211, 194–203, 2019.
Simon, H., Beck, L., Bhave, P. V., Divita, F., Hsu, Y., Luecken, D., Mobley, J. D., Pouliot, G. A., Reff, A., Sarwar, A., and Strum, M.: The development and uses of EPA's SPECIATE database, Atmos. Pollut. Res., 1, 196–206, 2010.
Song, C. B., Ma, C., Zhang, Y. J., Wang, T., Wu, L., Wang, P., Liu, Y., Li,
Q., Zhang, J. S., Dai, Q. L., Zou, C., Sun, L. N., and Mao, H. J.: Heavy-duty
diesel vehicles dominate vehicle emissions in a tunnel study in northern
China, Sci. Total Environ., 637–638, 431–442, 2018.
Stroud, C. A., Makar, P. A., Zhang, J., Moran, M. D., Akingunola, A., Li, S.-M., Leithead, A., Hayden, K., and Siu, M.: Improving air quality model predictions of organic species using measurement-derived organic gaseous and particle emissions in a petrochemical-dominated region, Atmos. Chem. Phys., 18, 13531–13545, https://doi.org/10.5194/acp-18-13531-2018, 2018.
Sun, X. W., Shao, M., Granier, C., Liu, Y., Ye, C. S., and Zheng, J. Y.: Long-Term
trends of anthropogenic SO2, NOx, CO, and NMVOCs emissions in
China, Earth's Future, 6, 1112–1133, 2018a.
Sun, X. W., Cheng, S. Y., Lang, J. L., Ren, Z. H., and Sun, C.: Development of emissions inventory and identification of sources for priority control in
the middle reaches of Yangtze River Urban Agglomerations, Sci. Total
Environ., 625, 155–167, 2018b.
Sun, Y. Y.: Study on emission inventory and uncertainty assessment of
multi-pollutants from coal-fired power plants, Master thesis, Zhejiang
University, Hangzhou, China, 73 pp., 2015.
Tang, X. B., Huang, C., Lou, S. R., Qiao, L. P., Wang, H. L., Zhou, M.,
Chen, M. H., Chen, C. H., Wang, Q., Li, G. L., Li, L., Huang, H. Y., and
Zhang, G. F.: Emission factors and PM chemical composition study of biomass
burning in the Yangtze River Delta Region, Huanjing Kexue, 35, 1623–1632,
2014.
US Environmental Protection Agency (USEPA): Compilation of air pollutant
emission Factors, AP-42, 5th Edn., available at: https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emissions-factors (9 February 2021), 2002.
US Environmental Protection Agency (USEPA): Exhaust and crankcase emission
factors for non-road engine modeling-compression ignition, Washington DC, 26 pp.,
2010.
Wang, H. L., Lou, S. R., Huang, C., Qiao, L. P., Tang, X. B., Chen, C. H.,
Zeng, L. M., Wang, Q., Zhou, M., Lu, S. H., and Xu, X. N.: Source profiles
of volatile organic compounds from biomass burning in Yangtze River Delta,
China, Aerosol Air. Qual. Res., 14, 818–828, 2014a.
Wang, H. L., Qiao, Y. Z., Chen, C. H., Lu, J., Dai, H. X., Qiao, L. P., Lou,
S. R., Huang, C., Li, L., Jing, S. A., and Wu, J. P.: Source profiles and
chemical reactivity of volatile organic compounds from solvent use in
Shanghai, China, Aerosol Air. Qual. Res., 14, 301–310, 2014b.
Wang, H. L., Jing, S. A., Wang, Q., Huang, C., Lou, S. R., Qiao, L. P., and
Li, L.: Measurement and characterization of emissions of volatile organic
compounds in solvent use, Res. Environ. Sci., 29,
1433–1439, 2016.
Wang, H. L., Yang, Z. X., and Jing, S. A.: Volatile organic compounds (VOCs) source profiles of industrial processing and solvent use emissions: a
review, Huanjing Kexue, 38, 2617–2628, 2017a.
Wang, H. L., Jing, S. A., Lou, S. R., Hu, Q. Y., Li, L., Tao, S. K., Huang,
C., Qiao, L. P., and Chen, C. H.: Volatile organic compounds (VOCs) source
profiles of on-road vehicle emissions in China, Sci. Total Environ.,
607–608, 253–261, 2017b.
Wang, H. L., Jing, S. A., Lou, S. R., Tao, S. K., Qiao, L. P., Li, L.,
Huang, C., Lin, L., and Chen, C. H.: Estimation of fine particle
(PM2.5) emission inventory from cooking: case study for Shanghai,
Huanjing Kexue, 39, 1971–1977, 2018.
Wang, J. D., Zhao, B., Wang, S. X., Yang, F. M., Xing, J., Morawska, L.,
Ding, A. J., Kulmala, M., Kerminen, V., Kujansuu, J., Wang, Z. F., Ding, D.,
Zhang, X. Y., Wang, H. B., Tian, M., Petäjä, T., Jiang, J. K., and
Hao, J. M.: Particulate matter pollution over China and the effects of
control policies, Sci. Total Environ., 584–585, 426–447, 2017.
Wang, P., Ying, Q., Zhang, H. L., Hu, J. L., Lin, Y. C., and Mao, H. J.:
Source apportionment of secondary organic aerosol in China using a regional
source-oriented chemical transport model and two emission inventories,
Environ. Pollut., 237, 756–766, 2018.
Wang, R. N., Huang, C., Ren, H. J., Yan, R. S., Hong, Z., Xu, C., Hu, Q. Y.,
An, J. Y., Dong, B. N., and Li, L.: Air pollutant emission inventory from
LTO cycles of aircraft in civil aviation airports in the Yangtze River Delta
region, China, Acta Scientiae Circumstantiae, 38, 4472–4479, 2018.
Wang, S., Zhu, F. H., Wang, H. M., Zuo, Y., Sun, X. L., Zhao, X. Y., Chen,
H., and Liu, G.: Fine particle emission characteristics from coal-fired
power plants based on field test, Acta Scientiae Circumstantiae, 31,
630–635, 2011.
Wayson, R. L., Fleming, G. G., and Lovinelli, R.: Methodology to estimate
particulate matter emissions from certified commercial aircraft engines,
J. Air Waste Manage., 59, 91–100, 2009.
Wen, Y. F., Wang, H., Larson, T., Kelp, M., Zhang, S. J., Wu, Y., and Marshall, J. D.: On-highway vehicle emission factors, and spatial patterns, based on
mobile monitoring and absolute principal component score, Sci. Total
Environ., 676, 242–251, 2019.
Wu, R. L., Liu, F., Tong, D., Zheng, Y. X., Lei, Y., Hong, C. P., Li, M.,
Liu, J., Zheng, B., Bo, Y., Chen, X. T., Li, X., and Zhang, Q.: Air quality and
health benefits of China's emission control policies on coal-fired power
plants during 2005–2020, Environ. Res. Lett., 14, 094016, https://doi.org/10.1088/1748-9326/ab3bae, 2019.
Wu, R. R. and Xie, S. D.: Spatial distribution of ozone formation in China
derived from emissions of speciated volatile organic compounds, Environ.
Sci. Technol., 52, 8146–8156, 2018a.
Wu, R. R. and Xie, S. D.: Spatial distribution of secondary organic aerosol
formation potential in China derived from speciated anthropogenic volatile
organic compound emissions, Environ. Sci. Technol., 52, 8146–8156, 2018b.
Wu, Y., Zhang, S. J., Li, M. L., Ge, Y. S., Shu, J. W., Zhou, Y., Xu, Y. Y., Hu, J. N., Liu, H., Fu, L. X., He, K. B., and Hao, J. M.: The challenge to NOx emission control for heavy-duty diesel vehicles in China, Atmos. Chem. Phys., 12, 9365–9379, https://doi.org/10.5194/acp-12-9365-2012, 2012.
Xia, Y., Yang, Q., Xu, C., Lu, B., Tang, W., Jing, B. L., Lu, Q., Huang, C.,
and Lu, J.: Study on high resolution NH3 emission inventory based on
analysis of large data for agriculture in Hangzhou, Acta Scientiae
Circumstantiae, 38, 661–668, 2018.
Xu, J., Huang, C., Li, L., Chen, Y. H., Lou, S. R., Qiao, L. P., and Wang,
H. Y.: Chemical composition characteristics of PM2.5 emitted by medium
and small capacity coal-fired boilers in the Yangtze River Delta Region,
Huanjing Kexue, 39, 1493–1501, 2018.
Yang, Q., Huang, C., Lu, B., Jing, B. L., Xia, Y., Tang, W., Lu, Q., Lu, J.,
Xu, C., and Gu, Z. Y.: Air pollutant emission inventory based on local emission
source surveys in Hangzhou, China, Acta Scientiae Circumstantiae, 37,
3240–3254, 2017.
Yang, Y. and Zhao, Y.: Quantification and evaluation of atmospheric pollutant emissions from open biomass burning with multiple methods: a case study for the Yangtze River Delta region, China, Atmos. Chem. Phys., 19, 327–348, https://doi.org/10.5194/acp-19-327-2019, 2019.
Yao, Z. M., Teng, Y., Li, J., Wu, X. F., and Duan, N.: NOx emission
factors from medium and small layer burning boilers firing soft coal,
Res. Environ. Sci., 22, 1263–1268, 2009.
Ying, Q., Feng, M., Song, D. L., Wu, L., Hu, J. L., Zhang, H. L., Kleeman,
M. J., and Li, X. H.: Improve regional distribution and source apportionment
of PM2.5 trace elements in China using inventory-observation
constrained emission factors, Sci. Total Environ., 624, 355–365, 2018.
Zhang, J., Liu, L., Zhao, Y., Li, H., Lian, Y., Zhang, Z., Huang, C., and
Du, X.: Development of a high-resolution emission inventory of agricultural
machinery with a novel methodology: A case study for Yangtze River Delta
region, Environ. Pollut., 266, 115075, https://doi.org/10.1016/j.envpol.2020.115075, 2020.
Zhang, S. J., Wu, Y., Zhao, B., Wu, X. M., Shu, J. W., and Hao, J. M.:
City-specific vehicle emission control strategies to achieve stringent
emission reduction targets in China's Yangtze River Delta region, J.
Environ. Sci., 51, 75–87, 2017.
Zhang, X. M., Wu, Y. Y., Liu, X. J., Reis, S., Jin, J. X., Dragosits, U.,
van Damme, M., Clarisse, L., Whitburn, S., Coheur, P., and Gu, B. J.: Ammonia
emissions may be substantially underestimated in China, Environ. Sci.
Technol., 51, 12089–12096, 2017.
Zhang, Y., Bo, X., Zhao, Y., and Nielsen, C. P.: Benefits of current and future
policies on emissions of China's coalfired power sector indicated by
continuous emission monitoring, Environ. Pollut., 251, 415–424, 2019.
Zhao, Y., Wang, S. X., Nielsen, C. P., Li, X. H., and Hao, J. M.:
Establishment of a database of emission factors for atmospheric pollutants
from Chinese coal-fired power plants, Atmos. Environ., 44, 1515–1523, 2010.
Zhao, Y., Qiu, L. P., Xu, R. Y., Xie, F. J., Zhang, Q., Yu, Y. Y., Nielsen, C. P., Qin, H. X., Wang, H. K., Wu, X. C., Li, W. Q., and Zhang, J.: Advantages of a city-scale emission inventory for urban air quality research and policy: the case of Nanjing, a typical industrial city in the Yangtze River Delta, China, Atmos. Chem. Phys., 15, 12623–12644, https://doi.org/10.5194/acp-15-12623-2015, 2015.
Zhao, Y., Mao, P., Zhou, Y., Yang, Y., Zhang, J., Wang, S., Dong, Y., Xie, F., Yu, Y., and Li, W.: Improved provincial emission inventory and speciation profiles of anthropogenic non-methane volatile organic compounds: a case study for Jiangsu, China, Atmos. Chem. Phys., 17, 7733–7756, https://doi.org/10.5194/acp-17-7733-2017, 2017.
Zhao, Y., Xia, Y. M., Zhou, Y. D.: Assessment of a high-resolution NOx
emission inventory using satellite observations: A case study of southern
Jiangsu, China, Atmos. Environ., 190, 135–145, 2018.
Zhao, Y., Yuan, M., Huang, X., Chen, F., and Zhang, J.: Quantification and evaluation of atmospheric ammonia emissions with different methods: a case study for the Yangtze River Delta region, China, Atmos. Chem. Phys., 20, 4275–4294, https://doi.org/10.5194/acp-20-4275-2020, 2020.
Zheng, B., Zhang, Q., Tong, D., Chen, C., Hong, C., Li, M., Geng, G., Lei, Y., Huo, H., and He, K.: Resolution dependence of uncertainties in gridded emission inventories: a case study in Hebei, China, Atmos. Chem. Phys., 17, 921–933, https://doi.org/10.5194/acp-17-921-2017, 2017.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
Zheng, H., Cai, S., Wang, S., Zhao, B., Chang, X., and Hao, J.: Development of a unit-based industrial emission inventory in the Beijing–Tianjin–Hebei region and resulting improvement in air quality modeling, Atmos. Chem. Phys., 19, 3447–3462, https://doi.org/10.5194/acp-19-3447-2019, 2019.
Zheng, J. J., Jiang, P., Qiao, W., Zhu, Y., and Kennedy, E.: Analysis of air
pollution reduction and climate change mitigation in the industry sector of
Yangtze River Delta in China, J. Clean. Prod., 114, 314–322, 2016.
Zheng, M., Zhang, Y. J., Yan, C. Q., Fu, H. Y., Niu, H. Y., Huang, K., Hu,
M., Zeng, L. M., Liu, Q. Z., Pei, B., and Fu, Q. Y.: Establishing PM2.5
industrial source profiles in Shanghai, China Environmental Science, 33,
1354–1359, 2013.
Zhou, Y., Zhao, Y., Mao, P., Zhang, Q., Zhang, J., Qiu, L., and Yang, Y.: Development of a high-resolution emission inventory and its evaluation and application through air quality modeling for Jiangsu Province, China, Atmos. Chem. Phys., 17, 211–233, https://doi.org/10.5194/acp-17-211-2017, 2017.
Zhou, Z. Q.: Study on characteristics ammonia emission from typical large
scale dairy cow farm in Shanghai, Master Thesis, East China University of
Science and Technology, Shanghai, China, 76 pp., 2019.
Short summary
This study established a 4 km × 4 km anthropogenic emission inventory in the Yangtze River Delta region, China, for 2017 based on locally measured emission factors and source profiles. There are high-intensity NOx and NMVOC species emissions in the eastern areas of the region. Toluene, 1,2,4-trimethylbenzene, m,p-xylene, propylene, ethylene, o-xylene, and OVOCs from industry and mobile sources have the highest comprehensive potentials for ozone and secondary organic aerosol formation.
This study established a 4 km × 4 km anthropogenic emission inventory in the Yangtze River...
Altmetrics
Final-revised paper
Preprint