Articles | Volume 21, issue 22
https://doi.org/10.5194/acp-21-16709-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-16709-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tracking the influence of cloud condensation nuclei on summer diurnal precipitating systems over complex topography in Taiwan
Yu-Hung Chang
Department of Atmospheric Sciences, National Taiwan University,
Taipei, Taiwan
Department of Atmospheric Sciences, National Taiwan University,
Taipei, Taiwan
Chien-Ming Wu
Department of Atmospheric Sciences, National Taiwan University,
Taipei, Taiwan
Christopher Moseley
Department of Atmospheric Sciences, National Taiwan University,
Taipei, Taiwan
Chia-Chun Wu
Meteorology Division, National Science and Technology Center for Disaster Reduction, New Taipei City, Taiwan
Related authors
No articles found.
Jia-Xin Guo, Wei-Ting Chen, and Chien-Ming Wu
EGUsphere, https://doi.org/10.5194/egusphere-2025-4831, https://doi.org/10.5194/egusphere-2025-4831, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
This study unravels the large-scale and upstream moisture dynamical control on distinct heavy rainfall behaviours over Taiwan's complex terrain. With machine-learning-based large-scale dynamical regimes that preserve the multi-scale circulation features of the Asian-Australian monsoon, and large-eddy simulations with realistic topography that realize local rainfall outcomes, this work provides a process-based alternative pathway to project topographic heavy rainfalls in the future climate.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Hsi-Yen Ma, Chen Zhou, Yunyan Zhang, Stephen A. Klein, Mark D. Zelinka, Xue Zheng, Shaocheng Xie, Wei-Ting Chen, and Chien-Ming Wu
Geosci. Model Dev., 14, 73–90, https://doi.org/10.5194/gmd-14-73-2021, https://doi.org/10.5194/gmd-14-73-2021, 2021
Short summary
Short summary
We propose an experimental design of a suite of multi-year, short-term hindcasts and compare them with corresponding observations or measurements for periods based on different weather and climate phenomena. This atypical way of evaluating model performance is particularly useful and beneficial, as these hindcasts can give scientists a robust picture of modeled precipitation, and cloud and radiation processes from their diurnal variation to year-to-year variability.
Cited articles
Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness,
Science, 245, 1227–1230,
https://doi.org/10.1126/science.245.4923.1227, 1989.
Altaratz, O., Koren, I., Remer, L. A., and Hirsch, E.: Review: Cloud
invigoration by aerosols – Coupling between microphysics and dynamics,
Atmos. Res., 140–141, 38–60, https://doi.org/10.1016/j.atmosres.2014.01.009, 2014.
Andreae, M. O.: Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions, Atmos. Chem. Phys., 9, 543–556, https://doi.org/10.5194/acp-9-543-2009, 2009.
Beaudoing, H. and Rodell, M. (NASA/GSFC/HSL): GLDAS Noah Land Surface Model L4 3 hourly 0.25 × 0.25 degree V2.0, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/342OHQM9AK6Q, 2019.
Chen, F. and Dudhia, J.: Coupling an Advanced Land Surface–Hydrology Model
with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation
and Sensitivity, Mon. Weather Rev., 129, 569–585,
https://doi.org/10.1175/1520-0493(2001)129<0569:Caalsh>2.0.Co;2, 2001.
Chen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H.-L., Koren, V., Duan,
Q. Y., Ek, M., and Betts, A.: Modeling of land surface evaporation by four
schemes and comparison with FIFE observations, J. Geophys.
Res.-Atmos., 101, 7251–7268,
https://doi.org/10.1029/95jd02165, 1996.
Chen, C.-S., Liu, C.-L., Yen, M.-C., Chen, C.-Y., Lin, P.-L., Huang, C.-Y.,
and Teng, J.-H.: Terrain Effects on an Afternoon Heavy Rainfall Event,
Observed over Northern Taiwan on 20 June 2000 during Monsoon Break, J. Meteorol. Soc. JPN, 88, 649–671,
https://doi.org/10.2151/jmsj.2010-403, 2010.
Cheng, C.-T., Wang, W.-C., and Chen, J.-P.: Simulation of the effects of
increasing cloud condensation nuclei on mixed-phase clouds and precipitation
of a front system, Atmos. Res., 96, 461–476,
https://doi.org/10.1016/j.atmosres.2010.02.005, 2010.
Chien, M.-H. and Wu, C.-M.: Representation of topography by partial steps
using the immersed boundary method in a vector vorticity equation model
(VVM), J. Adv. Model. Earth Sy., 8, 212–223,
https://doi.org/10.1002/2015ms000514, 2016.
Clavner, M., Cotton, W. R., van den Heever, S. C., Saleeby, S. M., and
Pierce, J. R.: The response of a simulated mesoscale convective system to
increased aerosol pollution: Part I: Precipitation intensity, distribution,
and efficiency, Atmos. Res., 199, 193–208,
https://doi.org/10.1016/j.atmosres.2017.08.010, 2018.
Clyne, J., Mininni, P., Norton, A., and Rast, M.: Interactive desktop
analysis of high resolution simulations: application to turbulent plume
dynamics and current sheet formation, New J. Phys., 9, 301–301,
https://doi.org/10.1088/1367-2630/9/8/301, 2007.
Deardorff, J. W.: Parameterization of the Planetary Boundary layer for Use
in General Circulation Models, Mon. Weather Rev., 100, 93–106,
https://doi.org/10.1175/1520-0493(1972)100<0093:Potpbl>2.3.Co;2, 1972.
Fan, J., Leung, L. R., Rosenfeld, D., Chen, Q., Li, Z., Zhang, J., and Yan,
H.: Microphysical effects determine macrophysical response for aerosol
impacts on deep convective clouds, P. Natl. Acad. Sci. USA, 110, E4581–E4590,
https://doi.org/10.1073/pnas.1316830110, 2013.
Fan, J., Wang, Y., Rosenfeld, D., and Liu, X.: Review of Aerosol–Cloud
Interactions: Mechanisms, Significance, and Challenges, J. Atmos. Sci., 73, 4221–4252, https://doi.org/10.1175/jas-d-16-0037.1, 2016.
Givati, A. and Rosenfeld, D.: Quantifying Precipitation Suppression Due to
Air Pollution, J. Appl. Meteorol., 43, 1038–1056,
https://doi.org/10.1175/1520-0450(2004)043<1038:Qpsdta>2.0.Co;2, 2004.
Grabowski, W. W.: Can the Impact of Aerosols on Deep Convection be Isolated
from Meteorological Effects in Atmospheric Observations?, J. Atmos. Sci., 75, 3347–3363,
https://doi.org/10.1175/jas-d-18-0105.1, 2018.
Grabowski, W. W., Bechtold, P., Cheng, A., Forbes, R., Halliwell, C.,
Khairoutdinov, M., Lang, S., Nasuno, T., Petch, J., Tao, W.-K., Wong, R.,
Wu, X., and Xu, K.-M.: Daytime convective development over land: A model
intercomparison based on LBA observations, Q. J. Roy.
Meteor. Soc., 132, 317–344,
https://doi.org/10.1256/qj.04.147, 2006.
Grabowski, W. W. and Morrison, H.: Untangling Microphysical Impacts on Deep
Convection Applying a Novel Modeling Methodology. Part II: Double-Moment
Microphysics, J. Atmos. Sci., 73, 3749–3770, https://doi.org/10.1175/jas-d-15-0367.1, 2016.
Hsieh, M.-K.: Effects of orographically induced low-level moisture
convergence and inversion strength on upslope fog: a case study at Xitou,
Master's thesis, Department of Atmospheric Sciences, National Taiwan
University, Taiwan, 43 pp.,
https://doi.org/10.6342/ntu201900872, 2019.
Huang, J.-D. and Wu, C.-M.: Effects of Microphysical Processes on the
Precipitation Spectrum in a Strongly Forced Environment, Earth and Space
Science, 7, e2020EA001190,
https://doi.org/10.1029/2020ea001190, 2020.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008jd009944, 2008.
Iguchi, T., Nakajima, T., Khain, A. P., Saito, K., Takemura, T., and Suzuki, K.: Modeling the influence of aerosols on cloud microphysical properties in the east Asia region using a mesoscale model coupled with a bin-based cloud microphysics scheme, J. Geophys. Res.-Atmos., 113, D14215, https://doi.org/10.1029/2007jd009774, 2008.
Jirak, I. L. and Cotton, W. R.: Effect of Air Pollution on Precipitation
along the Front Range of the Rocky Mountains, J. Appl. Meteorol. Clim., 45, 236–245,
https://doi.org/10.1175/jam2328.1, 2006.
Jung, J.-H. and Arakawa, A.: A Three-Dimensional Anelastic Model Based on
the Vorticity Equation, Mon. Weather Rev., 136, 276–294,
https://doi.org/10.1175/2007mwr2095.1, 2008.
Kawecki, S., Henebry, G. M., and Steiner, A. L.: Effects of Urban Plume
Aerosols on a Mesoscale Convective System, J. Atmos.
Sci., 73, 4641–4660,
https://doi.org/10.1175/jas-d-16-0084.1, 2016.
Khain, A., Pokrovsky, A., Pinsky, M., Seifert, A., and Phillips, V.:
Simulation of Effects of Atmospheric Aerosols on Deep Turbulent Convective
Clouds Using a Spectral Microphysics Mixed-Phase Cumulus Cloud Model. Part
I: Model Description and Possible Applications, J. Atmos.
Sci., 61, 2963–2982, https://doi.org/10.1175/jas-3350.1,
2004.
Khain, A., Rosenfeld, D., and Pokrovsky, A.: Aerosol impact on the dynamics
and microphysics of deep convective clouds, Q. J. Roy.
Meteor. Soc., 131, 2639–2663,
https://doi.org/10.1256/qj.04.62, 2005.
Khain, A. P.: Notes on state-of-the-art investigations of aerosol effects on precipitation: a critical review, Environ. Res. Lett., 4, 015004, https://doi.org/10.1088/1748-9326/4/1/015004, 2009.
Khvorostyanov, V. I. and Curry, J. A.: Aerosol size spectra and CCN activity spectra: Reconciling the lognormal, algebraic, and power laws, J. Geophys. Res.-Atmos., 111, D12202, https://doi.org/10.1029/2005jd006532, 2006.
Krueger, S. K.: Numerical Simulation of Tropical Cumulus Clouds and Their
Interaction with the Subcloud Layer, J. Atmos. Sci.,
45, 2221–2250,
https://doi.org/10.1175/1520-0469(1988)045<2221:Nsotcc>2.0.Co;2, 1988.
Kuo, K.-T. and Wu, C.-M.: The Precipitation Hotspots of Afternoon
Thunderstorms over the Taipei Basin: Idealized Numerical Simulations,
J. Meteorol. Soc. JPN Ser. II, 97, 501–517,
https://doi.org/10.2151/jmsj.2019-031, 2019.
Lebo, Z. J.: The Sensitivity of a Numerically Simulated Idealized Squall
Line to the Vertical Distribution of Aerosols, J. Atmos.
Sci., 71, 4581–4596, https://doi.org/10.1175/jas-d-14-0068.1, 2014.
Lebo, Z. J. and Morrison, H.: Dynamical Effects of Aerosol Perturbations on
Simulated Idealized Squall Lines, Mon. Weather Rev., 142, 991–1009,
https://doi.org/10.1175/mwr-d-13-00156.1, 2014.
Li, G., Wang, Y., Lee, K.-H., Diao, Y., and Zhang, R.: Impacts of aerosols on the development and precipitation of a mesoscale squall line, J. Geophys. Res.-Atmos., 114, D17205, https://doi.org/10.1029/2008jd011581, 2009.
Lin, P.-F., Chang, P.-L., Jou, B. J.-D., Wilson, J. W., and Roberts, R. D.:
Warm Season Afternoon Thunderstorm Characteristics under Weak Synoptic-Scale
Forcing over Taiwan Island, Weather Forecast., 26, 44–60,
https://doi.org/10.1175/2010waf2222386.1, 2011.
Lin, W.-T.: A study of the cloud condensation nuclei (CCN) activity for
urban ambient aerosols, Master's thesis, Department of Atmospheric Sciences,
National Taiwan University, Taiwan, 57 pp.,
https://doi.org/10.6342/ntu.2012.01002, 2012.
Liu, L., Cui, C., Deng, Y., Zhou, Z., Hu, Y., Wang, B., Ren, J., Cai, Z.,
Bai, Y., Yang, J., and Dong, X.: Localization and Invigoration of Mei-yu
Front Rainfall due to Aerosol-Cloud Interactions: A Preliminary Assessment
Based on WRF Simulations and IMFRE 2018 Field Observations, J. Geophys. Res.-Atmos., 125, e2019JD031952,
https://doi.org/10.1029/2019jd031952, 2020.
Lynn, B. H., Khain, A. P., Dudhia, J., Rosenfeld, D., Pokrovsky, A., and
Seifert, A.: Spectral (Bin) Microphysics Coupled with a Mesoscale Model
(MM5). Part II: Simulation of a CaPE Rain Event with a Squall Line, Mon. Weather Rev., 133, 59–71, https://doi.org/10.1175/mwr-2841.1,
2005.
Lynn, B., Khain, A., Rosenfeld, D., and Woodley, W. L.: Effects of aerosols on precipitation from orographic clouds, J. Geophys. Res.-Atmos., 112, D10225, https://doi.org/10.1029/2006jd007537, 2007.
McCoy, D. T., Field, P. R., Schmidt, A., Grosvenor, D. P., Bender, F. A.-M., Shipway, B. J., Hill, A. A., Wilkinson, J. M., and Elsaesser, G. S.: Aerosol midlatitude cyclone indirect effects in observations and high-resolution simulations, Atmos. Chem. Phys., 18, 5821–5846, https://doi.org/10.5194/acp-18-5821-2018, 2018.
Miao, J.-E. and Yang, M.-J.: A Modeling Study of the Severe Afternoon
Thunderstorm Event at Taipei on 14 June 2015: The Roles of Sea Breeze,
Microphysics, and Terrain, J. Meteorol. Soc. JPN
Ser. II, 98, 129–152, https://doi.org/10.2151/jmsj.2020-008,
2020.
Ministry of Science and Technology and Chinese Culture University: Central Weather Bureau Weather Station Observation Data, Data Bank for Atmospheric and Hydrologic Research (DBAR) [data set], available at: https://dbar.pccu.edu.tw/ (last access: 28 January 2021), 2018.
Morrison, H. and Grabowski, W. W.: Comparison of Bulk and Bin Warm-Rain
Microphysics Models Using a Kinematic Framework, J. Atmos.
Sci., 64, 2839–2861, https://doi.org/10.1175/jas3980, 2007.
Morrison, H. and Grabowski, W. W.: Modeling Supersaturation and
Subgrid-Scale Mixing with Two-Moment Bulk Warm Microphysics, J. Atmos.
Sci., 65, 792–812,
https://doi.org/10.1175/2007jas2374.1, 2008.
Morrison, H. and Milbrandt, J. A.: Parameterization of Cloud Microphysics
Based on the Prediction of Bulk Ice Particle Properties. Part I: Scheme
Description and Idealized Tests, J. Atmos.
Sci., 72, 287–311, https://doi.org/10.1175/jas-d-14-0065.1, 2015.
Moseley, C., Berg, P., and Haerter, J. O.: Probing the precipitation life
cycle by iterative rain cell tracking, J. Geophys. Res.-Atmos., 118, 13361–13370,
https://doi.org/10.1002/2013jd020868, 2013.
Moseley, C., Henneberg, O., and Haerter, J. O.: A Statistical Model for
Isolated Convective Precipitation Events, J. Adv. Model.
Earth Sy., 11, 360–375,
https://doi.org/10.1029/2018ms001383, 2019.
Mülmenstädt, J. and Feingold, G.: The Radiative Forcing of
Aerosol–Cloud Interactions in Liquid Clouds: Wrestling and Embracing
Uncertainty, Curr. Clim. Change Rep., 4, 23–40,
https://doi.org/10.1007/s40641-018-0089-y, 2018.
Nugent, A. D., Watson, C. D., Thompson, G., and Smith, R. B.: Aerosol
Impacts on Thermally Driven Orographic Convection, J. Atmos. Sci., 73, 3115–3132,
https://doi.org/10.1175/jas-d-15-0320.1, 2016.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data
Assimilation System, B. Am. Meteorol. Soc., 85,
381–394, https://doi.org/10.1175/bams-85-3-381, 2004.
Rosenfeld, D., Lohmann, U., Raga, G. B., Dowd, C. D., Kulmala, M., Fuzzi,
S., Reissell, A., and Andreae, M. O.: Flood or Drought: How Do Aerosols
Affect Precipitation?, Science, 321, 1309–1313,
https://doi.org/10.1126/science.1160606, 2008.
Seo, J. M., Lee, H., Moon, S., and Baik, J.-J.: How Mountain Geometry
Affects Aerosol-Cloud-Precipitation Interactions: Part I. Shallow Convective
Clouds, J. Meteorol. Soc. JPN Ser. II, 98, 43–60,
https://doi.org/10.2151/jmsj.2020-003, 2020.
Shutts, G. J. and Gray, M. E. B.: A numerical modelling study of the
geostrophic adjustment process following deep convection, Q. J. Roy. Meteor. Soc., 120, 1145–1178,
https://doi.org/10.1002/qj.49712051903, 1994.
Stevens, B. and Feingold, G.: Untangling aerosol effects on clouds and
precipitation in a buffered system, Nature, 461, 607–613,
https://doi.org/10.1038/nature08281, 2009.
Su, C.-Y., Chen, W.-T., Chen, J.-P., Chang, W.-Y., and Jou, B. J.-D.: The
Impacts of cloud condensation nuclei on the extreme precipitation of a
monsoon coastal mesoscale convection system, Terr. Atmos. Ocean. Sci., 31, 131–139,
https://doi.org/10.3319/tao.2019.11.29.01, 2020.
Su, S.-H., Chu, J.-L., Yo, T.-S., and Lin, L.-Y.: Identification of synoptic
weather types over Taiwan area with multiple classifiers, Atmos.
Sci. Lett., 19, e861, https://doi.org/10.1002/asl.861,
2018.
Tao, W.-K., Li, X., Khain, A., Matsui, T., Lang, S., and Simpson, J.: Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations, J. Geophys. Res.-Atmos., 112, D24S18, https://doi.org/10.1029/2007jd008728, 2007.
Tao, W.-K., Chen, J.-P., Li, Z., Wang, C., and Zhang, C.: Impact of aerosols on convective clouds and precipitation, Rev. Geophys., 50, RG2001, https://doi.org/10.1029/2011RG000369, 2012.
Thompson, G. and Eidhammer, T.: A Study of Aerosol Impacts on Clouds and
Precipitation Development in a Large Winter Cyclone, J. Atmos. Sci., 71, 3636–3658,
https://doi.org/10.1175/jas-d-13-0305.1, 2014.
Tropical Rainfall Measuring Mission (TRMM): TRMM (TMPA) Rainfall Estimate L3 3 hour 0.25 degree × 0.25 degree V7, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/TRMM/TMPA/3H/7, 2011.
Tsai, W.-M. and Wu, C.-M.: The environment of aggregated deep convection,
J. Adv. Model. Earth Sys., 9, 2061–2078,
https://doi.org/10.1002/2017ms000967, 2017.
Wang, C.: A modeling study of the response of tropical deep convection to the increase of cloud condensation nuclei concentration: 1. Dynamics and microphysics, J. Geophys. Res.-Atmos., 110, D21211, https://doi.org/10.1029/2004jd005720, 2005.
White, B., Gryspeerdt, E., Stier, P., Morrison, H., Thompson, G., and Kipling, Z.: Uncertainty from the choice of microphysics scheme in convection-permitting models significantly exceeds aerosol effects, Atmos. Chem. Phys., 17, 12145–12175, https://doi.org/10.5194/acp-17-12145-2017, 2017.
Wu, C.-M. and Arakawa, A.: Inclusion of Surface Topography into the Vector Vorticity Equation Model (VVM), J. Adv. Model. Earth Sy., 3, M04002, https://doi.org/10.1029/2011ms000061, 2011.
Wu, C.-M., Lin, H.-C., Cheng, F.-Y., and Chien, M.-H.: Implementation of the
Land Surface Processes into a Vector Vorticity Equation Model (VVM) to Study
its Impact on Afternoon Thunderstorms over Complex Topography in Taiwan,
Asia-Pac, J. Atmos. Sci., 55, 701–717,
https://doi.org/10.1007/s13143-019-00116-x, 2019.
Wu, C.-M. and Chen, P.-Y.: Idealized cloud-resolving simulations of land–atmosphere coupling over tropical islands, Terr. Atmos. Ocean. Sci., 32, 191–202, https://doi.org/10.3319/TAO.2020.12.16.01, 2021.
Zhang, L., Fu, T.-M., Tian, H., Ma, Y., Chen, J.-P., Tsai, T.-C., Tsai,
I.-C., Meng, Z., and Yang, X.: Anthropogenic Aerosols Significantly Reduce
Mesoscale Convective System Occurrences and Precipitation Over Southern
China in April, Geophys. Res. Lett., 47, e2019GL086204,
https://doi.org/10.1029/2019gl086204, 2020.
Short summary
The impacts of increasing cloud condensation nuclei on summertime diurnal precipitation in weak synoptic weather over complex topography in Taiwan were investigated by applying object-based tracking analyses to semi-realistic large-eddy simulations. In hotspots of orographic locking processes, rain initiation is delayed, which prolongs the development of local circulation and convection. For this organized regime, the occurrence of extreme diurnal precipitating systems is notably enhanced.
The impacts of increasing cloud condensation nuclei on summertime diurnal precipitation in weak...
Altmetrics
Final-revised paper
Preprint