Articles | Volume 21, issue 15
https://doi.org/10.5194/acp-21-11519-2021
https://doi.org/10.5194/acp-21-11519-2021
Research article
 | 
02 Aug 2021
Research article |  | 02 Aug 2021

Decadal changes of connections among late-spring snow cover in West Siberia, summer Eurasia teleconnection and O3-related meteorology in North China

Zhicong Yin, Yu Wan, and Huijun Wang

Related authors

Distinctive dust weather intensities in North China resulted from two types of atmospheric circulation anomalies
Qianyi Huo, Zhicong Yin, Xiaoqing Ma, and Huijun Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1923,https://doi.org/10.5194/egusphere-2024-1923, 2024
Short summary
Predicting gridded winter PM2.5 concentration in the east of China
Zhicong Yin, Mingkeng Duan, Yuyan Li, Tianbao Xu, and Huijun Wang
Atmos. Chem. Phys., 22, 11173–11185, https://doi.org/10.5194/acp-22-11173-2022,https://doi.org/10.5194/acp-22-11173-2022, 2022
Short summary
Dipole pattern of summer ozone pollution in the east of China and its connection with climate variability
Xiaoqing Ma and Zhicong Yin
Atmos. Chem. Phys., 21, 16349–16361, https://doi.org/10.5194/acp-21-16349-2021,https://doi.org/10.5194/acp-21-16349-2021, 2021
Short summary
Comparison of the influence of two types of cold surge on haze dispersion in eastern China
Shiyue Zhang, Gang Zeng, Xiaoye Yang, Ruixi Wu, and Zhicong Yin
Atmos. Chem. Phys., 21, 15185–15197, https://doi.org/10.5194/acp-21-15185-2021,https://doi.org/10.5194/acp-21-15185-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
The key role of atmospheric absorption in the Asian summer monsoon response to dust emissions in CMIP6 models
Alcide Zhao, Laura J. Wilcox, and Claire L. Ryder
Atmos. Chem. Phys., 24, 13385–13402, https://doi.org/10.5194/acp-24-13385-2024,https://doi.org/10.5194/acp-24-13385-2024, 2024
Short summary
Multi-model effective radiative forcing of the 2020 sulfur cap for shipping
Ragnhild Bieltvedt Skeie, Rachael Byrom, Øivind Hodnebrog, Caroline Jouan, and Gunnar Myhre
Atmos. Chem. Phys., 24, 13361–13370, https://doi.org/10.5194/acp-24-13361-2024,https://doi.org/10.5194/acp-24-13361-2024, 2024
Short summary
Representation of iron aerosol size distributions of anthropogenic emissions is critical in evaluating atmospheric soluble iron input to the ocean
Mingxu Liu, Hitoshi Matsui, Douglas S. Hamilton, Sagar D. Rathod, Kara D. Lamb, and Natalie M. Mahowald
Atmos. Chem. Phys., 24, 13115–13127, https://doi.org/10.5194/acp-24-13115-2024,https://doi.org/10.5194/acp-24-13115-2024, 2024
Short summary
Revealing dominant patterns of aerosol regimes in the lower troposphere and their evolution from preindustrial times to the future in global climate model simulations
Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt
Atmos. Chem. Phys., 24, 12727–12747, https://doi.org/10.5194/acp-24-12727-2024,https://doi.org/10.5194/acp-24-12727-2024, 2024
Short summary
Improving estimation of a record-breaking east Asian dust storm emission with lagged aerosol Ångström exponent observations
Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi
Atmos. Chem. Phys., 24, 12643–12659, https://doi.org/10.5194/acp-24-12643-2024,https://doi.org/10.5194/acp-24-12643-2024, 2024
Short summary

Cited articles

Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B., Fiore, A. M., Li, Q., Liu, H., Mickley, L. J., and Schultz, M.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106, 23073–23095, https://doi.org/10.1029/2001JD000807, 2001. 
Bulygina, O. N., Groisman, P. Y., Razuvaev, V. N., and Korshunova, N. N.: Changes in snow cover characteristics over Northern Eurasia since 1966, Environ. Res. Lett., 6, 045204, https://doi.org/10.1088/1748-9326/6/4/045204, 2011. 
Chen, H. S., Sun, Z. B., and Zhu, W. J.: The Effects of Eurasian Snow Cover Anomaly on Winter Atmospheric General Circulation Part II. Model Simulation, Chinese J. Atmos. Sci., 27, 547–860, https://doi.org/10.3878/j.issn.1006-9895.2003.03.02, 2003 (in Chinese). 
Chen, S. F., Wu, R. G., and Liu, Y.: Dominant Modes of Interannual Variability in Eurasian Surface Air Temperature during Boreal Spring, J. Climate, 29, 1109–1125, https://doi.org/10.1175/JCLI-D-15-0524.1, 2016. 
Copernicus Climate Change Service: ERA5: fifth generation of ECMWF atmospheric reanalyses of the global climate Copernicus Climate Change Service Climate Data Store, available at: https://cds.climate.copernicus.eu/cdsapp#!/home, last access: 13 July 2021. 
Download
Short summary
Severe ozone pollution frequently occurred in North China and obviously damages human health and ecosystems. The meteorological conditions effectively affect the variations in ozone pollution by modulating the natural emissions of O3 precursors and photochemical reactions in the atmosphere. In this study, the interannual relationship between ozone-related meteorology and late-spring snow cover in West Siberia was explored, and the reasons of its decadal change were also physically explained.
Altmetrics
Final-revised paper
Preprint