Articles | Volume 20, issue 11
https://doi.org/10.5194/acp-20-6991-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-6991-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying uncertainties of climate signals in chemistry climate models related to the 11-year solar cycle – Part 1: Annual mean response in heating rates, temperature, and ozone
Markus Kunze
CORRESPONDING AUTHOR
Institut für Meteorologie, Freie Universität Berlin, 12165 Berlin, Germany
Tim Kruschke
Swedish Meteorological and Hydrological Institute – Rossby Centre, Norrköping, Sweden
Ulrike Langematz
Institut für Meteorologie, Freie Universität Berlin, 12165 Berlin, Germany
Miriam Sinnhuber
Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
Thomas Reddmann
Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
Katja Matthes
Research Division Ocean Circulation and Climate,
GEOMAR Helmholtz Centre for Ocean Research, 24105 Kiel, Germany
Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
Related authors
Markus Kunze, Christoph Zülicke, Tarique Adnan Siddiqui, Claudia Christine Stephan, Yosuke Yamazaki, Claudia Stolle, Sebastian Borchert, and Hauke Schmidt
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-191, https://doi.org/10.5194/gmd-2024-191, 2024
Preprint under review for GMD
Short summary
Short summary
We present the Icosahedral Nonhydrostatic (ICON) general circulation model with upper atmosphere extension with the physics package for numerical weather prediction (UA-ICON(NWP)). The parameters for the gravity wave parameterizations were optimized, and realistic modelling of the thermal and dynamic state of the mesopause regions was achieved. UA-ICON(NWP) now shows a realistic frequency of major sudden stratospheric warmings and well-represented solar tides in temperature.
Matthias Nützel, Laura Stecher, Patrick Jöckel, Franziska Winterstein, Martin Dameris, Michael Ponater, Phoebe Graf, and Markus Kunze
Geosci. Model Dev., 17, 5821–5849, https://doi.org/10.5194/gmd-17-5821-2024, https://doi.org/10.5194/gmd-17-5821-2024, 2024
Short summary
Short summary
We extended the infrastructure of our modelling system to enable the use of an additional radiation scheme. After calibrating the model setups to the old and the new radiation scheme, we find that the simulation with the new scheme shows considerable improvements, e.g. concerning the cold-point temperature and stratospheric water vapour. Furthermore, perturbations of radiative fluxes associated with greenhouse gas changes, e.g. of methane, tend to be improved when the new scheme is employed.
Laura Stecher, Franziska Winterstein, Martin Dameris, Patrick Jöckel, Michael Ponater, and Markus Kunze
Atmos. Chem. Phys., 21, 731–754, https://doi.org/10.5194/acp-21-731-2021, https://doi.org/10.5194/acp-21-731-2021, 2021
Short summary
Short summary
This study investigates the impact of strongly increased atmospheric methane mixing ratios on the Earth's climate. An interactive model system including atmospheric dynamics, chemistry, and a mixed-layer ocean model is used to analyse the effect of doubled and quintupled methane mixing ratios. We assess feedbacks on atmospheric chemistry and changes in the stratospheric circulation, focusing on the impact of tropospheric warming, and their relevance for the model's climate sensitivity.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Ales Kuchar, William Ball, Pavle Arsenovic, Ellis Remsberg, Patrick Jöckel, Markus Kunze, David A. Plummer, Andrea Stenke, Daniel Marsh, Doug Kinnison, and Thomas Peter
Atmos. Chem. Phys., 21, 201–216, https://doi.org/10.5194/acp-21-201-2021, https://doi.org/10.5194/acp-21-201-2021, 2021
Short summary
Short summary
The solar signal in the mesospheric H2O and CO was extracted from the CCMI-1 model simulations and satellite observations using multiple linear regression (MLR) analysis. MLR analysis shows a pronounced and statistically robust solar signal in both H2O and CO. The model results show a general agreement with observations reproducing a negative/positive solar signal in H2O/CO. The pattern of the solar signal varies among the considered models, reflecting some differences in the model setup.
Matt Amos, Paul J. Young, J. Scott Hosking, Jean-François Lamarque, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Douglas Kinnison, Ole Kirner, Markus Kunze, Marion Marchand, David A. Plummer, David Saint-Martin, Kengo Sudo, Simone Tilmes, and Yousuke Yamashita
Atmos. Chem. Phys., 20, 9961–9977, https://doi.org/10.5194/acp-20-9961-2020, https://doi.org/10.5194/acp-20-9961-2020, 2020
Short summary
Short summary
We present an updated projection of Antarctic ozone hole recovery using an ensemble of chemistry–climate models. To do so, we employ a method, more advanced and skilful than the current multi-model mean standard, which is applicable to other ensemble analyses. It calculates the performance and similarity of the models, which we then use to weight the model. Calculating model similarity allows us to account for models which are constructed from similar components.
Amanda C. Maycock, Katja Matthes, Susann Tegtmeier, Hauke Schmidt, Rémi Thiéblemont, Lon Hood, Hideharu Akiyoshi, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Oliver Kirner, Markus Kunze, Marion Marchand, Daniel R. Marsh, Martine Michou, David Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Yousuke Yamashita, and Kohei Yoshida
Atmos. Chem. Phys., 18, 11323–11343, https://doi.org/10.5194/acp-18-11323-2018, https://doi.org/10.5194/acp-18-11323-2018, 2018
Short summary
Short summary
The 11-year solar cycle is an important driver of climate variability. Changes in incoming solar ultraviolet radiation affect atmospheric ozone, which in turn influences atmospheric temperatures. Constraining the impact of the solar cycle on ozone is therefore important for understanding climate variability. This study examines the representation of the solar influence on ozone in numerical models used to simulate past and future climate. We highlight important differences among model datasets.
Katja Matthes, Bernd Funke, Monika E. Andersson, Luke Barnard, Jürg Beer, Paul Charbonneau, Mark A. Clilverd, Thierry Dudok de Wit, Margit Haberreiter, Aaron Hendry, Charles H. Jackman, Matthieu Kretzschmar, Tim Kruschke, Markus Kunze, Ulrike Langematz, Daniel R. Marsh, Amanda C. Maycock, Stergios Misios, Craig J. Rodger, Adam A. Scaife, Annika Seppälä, Ming Shangguan, Miriam Sinnhuber, Kleareti Tourpali, Ilya Usoskin, Max van de Kamp, Pekka T. Verronen, and Stefan Versick
Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, https://doi.org/10.5194/gmd-10-2247-2017, 2017
Short summary
Short summary
The solar forcing dataset for climate model experiments performed for the upcoming IPCC report is described. This dataset provides the radiative and particle input of solar variability on a daily basis from 1850 through to 2300. With this dataset a better representation of natural climate variability with respect to the output of the Sun is provided which provides the most sophisticated and comprehensive respresentation of solar variability that has been used in climate model simulations so far.
Ulrike Langematz, Franziska Schmidt, Markus Kunze, Gregory E. Bodeker, and Peter Braesicke
Atmos. Chem. Phys., 16, 15619–15627, https://doi.org/10.5194/acp-16-15619-2016, https://doi.org/10.5194/acp-16-15619-2016, 2016
Short summary
Short summary
The extent of anthropogenically driven Antarctic ozone depletion prior to 1980 is examined using transient chemistry–climate model simulations from 1960 to 2000 with prescribed changes of ozone depleting substances in conjunction with observations. All models show a long-term, halogen-induced negative trend in Antarctic ozone from 1960 to 1980, ranging between 26 and 50 % of the total anthropogenic ozone depletion from 1960 to 2000. A stronger ozone decline of 56 % was estimated from observation.
Markus Kunze, Peter Braesicke, Ulrike Langematz, and Gabriele Stiller
Atmos. Chem. Phys., 16, 8695–8714, https://doi.org/10.5194/acp-16-8695-2016, https://doi.org/10.5194/acp-16-8695-2016, 2016
Simone Dietmüller, Patrick Jöckel, Holger Tost, Markus Kunze, Catrin Gellhorn, Sabine Brinkop, Christine Frömming, Michael Ponater, Benedikt Steil, Axel Lauer, and Johannes Hendricks
Geosci. Model Dev., 9, 2209–2222, https://doi.org/10.5194/gmd-9-2209-2016, https://doi.org/10.5194/gmd-9-2209-2016, 2016
Short summary
Short summary
Four new radiation related submodels (RAD, AEROPT, CLOUDOPT, and ORBIT) are available within the MESSy framework now. They are largely based on the original radiation scheme of ECHAM5. RAD simulates radiative transfer, AEROPT calculates aerosol optical properties, CLOUDOPT calculates cloud optical properties, and ORBIT is responsible for Earth orbit calculations. Multiple diagnostic calls of the radiation routine are possible, so radiative forcing can be calculated during the model simulation.
Patrick Jöckel, Holger Tost, Andrea Pozzer, Markus Kunze, Oliver Kirner, Carl A. M. Brenninkmeijer, Sabine Brinkop, Duy S. Cai, Christoph Dyroff, Johannes Eckstein, Franziska Frank, Hella Garny, Klaus-Dirk Gottschaldt, Phoebe Graf, Volker Grewe, Astrid Kerkweg, Bastian Kern, Sigrun Matthes, Mariano Mertens, Stefanie Meul, Marco Neumaier, Matthias Nützel, Sophie Oberländer-Hayn, Roland Ruhnke, Theresa Runde, Rolf Sander, Dieter Scharffe, and Andreas Zahn
Geosci. Model Dev., 9, 1153–1200, https://doi.org/10.5194/gmd-9-1153-2016, https://doi.org/10.5194/gmd-9-1153-2016, 2016
Short summary
Short summary
With an advanced numerical global chemistry climate model (CCM) we performed several detailed
combined hind-cast and projection simulations of the period 1950 to 2100 to assess the
past, present, and potential future dynamical and chemical state of the Earth atmosphere.
The manuscript documents the model and the various applied model set-ups and provides
a first evaluation of the simulation results from a global perspective as a quality check of the data.
K. Karami, P. Braesicke, M. Kunze, U. Langematz, M. Sinnhuber, and S. Versick
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-33283-2015, https://doi.org/10.5194/acpd-15-33283-2015, 2015
Revised manuscript has not been submitted
Markus Kunze, Christoph Zülicke, Tarique Adnan Siddiqui, Claudia Christine Stephan, Yosuke Yamazaki, Claudia Stolle, Sebastian Borchert, and Hauke Schmidt
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-191, https://doi.org/10.5194/gmd-2024-191, 2024
Preprint under review for GMD
Short summary
Short summary
We present the Icosahedral Nonhydrostatic (ICON) general circulation model with upper atmosphere extension with the physics package for numerical weather prediction (UA-ICON(NWP)). The parameters for the gravity wave parameterizations were optimized, and realistic modelling of the thermal and dynamic state of the mesopause regions was achieved. UA-ICON(NWP) now shows a realistic frequency of major sudden stratospheric warmings and well-represented solar tides in temperature.
Laura Schaffer, Andreas Boesch, Johanna Baehr, and Tim Kruschke
EGUsphere, https://doi.org/10.5194/egusphere-2024-3144, https://doi.org/10.5194/egusphere-2024-3144, 2024
Short summary
Short summary
We developed a simple yet effective model to predict storm surges in the German Bight, using wind data and a multiple linear regression approach. Trained on historical data from 1959 to 2022, our storm surge model demonstrates high predictive skill and performs as well as more complex models, despite its simplicity. It can predict both moderate and extreme storm surges, making it a valuable tool for future climate change studies.
Anja Lindenthal, Claudia Hinrichs, Simon Jandt-Scheelke, Tim Kruschke, Priidik Lagemaa, Eefke M. van der Lee, Ilja Maljutenko, Helen E. Morrison, Tabea R. Panteleit, and Urmas Raudsepp
State Planet, 4-osr8, 16, https://doi.org/10.5194/sp-4-osr8-16-2024, https://doi.org/10.5194/sp-4-osr8-16-2024, 2024
Short summary
Short summary
In 2022, large parts of the Baltic Sea experienced the third-warmest to warmest summer and autumn temperatures since 1997 and several marine heatwaves (MHWs). Using remote sensing, reanalysis, and in situ data, this study characterizes regional differences in MHW properties in the Baltic Sea in 2022. Furthermore, it presents an analysis of long-term trends and the relationship between atmospheric warming and MHW occurrences, including their propagation into deeper layers.
Matthias Nützel, Laura Stecher, Patrick Jöckel, Franziska Winterstein, Martin Dameris, Michael Ponater, Phoebe Graf, and Markus Kunze
Geosci. Model Dev., 17, 5821–5849, https://doi.org/10.5194/gmd-17-5821-2024, https://doi.org/10.5194/gmd-17-5821-2024, 2024
Short summary
Short summary
We extended the infrastructure of our modelling system to enable the use of an additional radiation scheme. After calibrating the model setups to the old and the new radiation scheme, we find that the simulation with the new scheme shows considerable improvements, e.g. concerning the cold-point temperature and stratospheric water vapour. Furthermore, perturbations of radiative fluxes associated with greenhouse gas changes, e.g. of methane, tend to be improved when the new scheme is employed.
Miriam Sinnhuber, Christina Arras, Stefan Bender, Bernd Funke, Hanli Liu, Daniel R. Marsh, Thomas Reddmann, Eugene Rozanov, Timofei Sukhodolov, Monika E. Szelag, and Jan Maik Wissing
EGUsphere, https://doi.org/10.5194/egusphere-2024-2256, https://doi.org/10.5194/egusphere-2024-2256, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Formation of nitric oxide NO in the upper atmosphere varies with solar activity. Observations show that it starts a chain of processes in the entire atmosphere affecting the ozone layer and climate system. This is often underestimated in models. We compare five models which show large differences in simulated NO. Analysis of results point out problems related to the oxygen balance, and to the impact of atmospheric waves on dynamics. Both must be modeled well to reproduce the downward coupling.
Wenjuan Huo, Tobias Spiegl, Sebastian Wahl, Katja Matthes, Ulrike Langematz, Holger Pohlmann, and Jürgen Kröger
EGUsphere, https://doi.org/10.5194/egusphere-2024-1288, https://doi.org/10.5194/egusphere-2024-1288, 2024
Short summary
Short summary
Uncertainties of the solar signals in the middle atmosphere are assessed based on large ensemble simulations with multiple climate models. Our results demonstrate the 11-year solar signals in the short wave heating rate, temperature, and ozone anomalies are significant and robust. the simulated dynamical responses are model-dependent, and solar imprints in the polar night jet are influenced by biases in the model used.
Tabea Rahm, Robin Pilch Kedzierski, Martje Hänsch, and Katja Matthes
EGUsphere, https://doi.org/10.5194/egusphere-2024-667, https://doi.org/10.5194/egusphere-2024-667, 2024
Preprint archived
Short summary
Short summary
Sudden Stratospheric Warmings (SSWs) are extreme wintertime events that can impact surface weather. However, a distinct surface response is not observed for every SSW. Here, we classify SSWs that do and do not impact the troposphere in ERA5 reanalysis data. In addition, we evaluate the effects of two kinds of waves: planetary and synoptic-scale. Our findings emphasize that the lower stratosphere and synoptic-scale waves play crucial roles in coupling the SSW signal to the surface.
Bernd Funke, Thierry Dudok de Wit, Ilaria Ermolli, Margit Haberreiter, Doug Kinnison, Daniel Marsh, Hilde Nesse, Annika Seppälä, Miriam Sinnhuber, and Ilya Usoskin
Geosci. Model Dev., 17, 1217–1227, https://doi.org/10.5194/gmd-17-1217-2024, https://doi.org/10.5194/gmd-17-1217-2024, 2024
Short summary
Short summary
We outline a road map for the preparation of a solar forcing dataset for the upcoming Phase 7 of the Coupled Model Intercomparison Project (CMIP7), considering the latest scientific advances made in the reconstruction of solar forcing and in the understanding of climate response while also addressing the issues that were raised during CMIP6.
Monali Borthakur, Miriam Sinnhuber, Alexandra Laeng, Thomas Reddmann, Peter Braesicke, Gabriele Stiller, Thomas von Clarmann, Bernd Funke, Ilya Usoskin, Jan Maik Wissing, and Olesya Yakovchuk
Atmos. Chem. Phys., 23, 12985–13013, https://doi.org/10.5194/acp-23-12985-2023, https://doi.org/10.5194/acp-23-12985-2023, 2023
Short summary
Short summary
Reduced ozone levels resulting from ozone depletion mean more exposure to UV radiation, which has various effects on human health. We analysed solar events to see what influence it has on the chemistry of Earth's atmosphere and how this atmospheric chemistry change can affect the ozone. To do this, we used an atmospheric model considering only chemistry and compared it with satellite data. The focus was mainly on the contribution of chlorine, and we found about 10 %–20 % ozone loss due to that.
Tobias C. Spiegl, Ulrike Langematz, Holger Pohlmann, and Jürgen Kröger
Weather Clim. Dynam., 4, 789–807, https://doi.org/10.5194/wcd-4-789-2023, https://doi.org/10.5194/wcd-4-789-2023, 2023
Short summary
Short summary
We investigate the role of the solar cycle in atmospheric domains with the Max Plank Institute Earth System Model in high resolution (MPI-ESM-HR). We focus on the tropical upper stratosphere, Northern Hemisphere (NH) winter dynamics and potential surface imprints. We found robust solar signals at the tropical stratopause and a weak dynamical response in the NH during winter. However, we cannot confirm the importance of the 11-year solar cycle for decadal variability in the troposphere.
Thomas Reddmann, Miriam Sinnhuber, Jan Maik Wissing, Olesya Yakovchuk, and Ilya Usoskin
Atmos. Chem. Phys., 23, 6989–7000, https://doi.org/10.5194/acp-23-6989-2023, https://doi.org/10.5194/acp-23-6989-2023, 2023
Short summary
Short summary
Recent analyses of isotopic records of ice cores and sediments have shown that very strong explosions may occur on the Sun, perhaps about one such explosion every 1000 years. Such explosions pose a real threat to humankind. It is therefore of great interest to study the impact of such explosions on Earth. We analyzed how the explosions would affect the chemistry of the middle atmosphere and show that the related ozone loss is not dramatic and that the atmosphere will recover within 1 year.
Gerald Wetzel, Michael Höpfner, Hermann Oelhaf, Felix Friedl-Vallon, Anne Kleinert, Guido Maucher, Miriam Sinnhuber, Janna Abalichin, Angelika Dehn, and Piera Raspollini
Atmos. Meas. Tech., 15, 6669–6704, https://doi.org/10.5194/amt-15-6669-2022, https://doi.org/10.5194/amt-15-6669-2022, 2022
Short summary
Short summary
Satellite measurements of stratospheric trace gases are essential for monitoring distributions and trends of these species on a global scale. Here, we compare the final MIPAS ESA Level 2 version 8 data (temperature and trace gases) with measurements obtained with the balloon version of MIPAS in terms of data agreement of both sensors, including combined errors. For most gases, we find a 5 % to 20 % agreement of the retrieved vertical profiles of both MIPAS instruments in the lower stratosphere.
Annika Drews, Wenjuan Huo, Katja Matthes, Kunihiko Kodera, and Tim Kruschke
Atmos. Chem. Phys., 22, 7893–7904, https://doi.org/10.5194/acp-22-7893-2022, https://doi.org/10.5194/acp-22-7893-2022, 2022
Short summary
Short summary
Solar irradiance varies with a period of approximately 11 years. Using a unique large chemistry–climate model dataset, we investigate the solar surface signal in the North Atlantic and European region and find that it changes over time, depending on the strength of the solar cycle. For the first time, we estimate the potential predictability associated with including realistic solar forcing in a model. These results may improve seasonal to decadal predictions of European climate.
Irina Mironova, Miriam Sinnhuber, Galina Bazilevskaya, Mark Clilverd, Bernd Funke, Vladimir Makhmutov, Eugene Rozanov, Michelle L. Santee, Timofei Sukhodolov, and Thomas Ulich
Atmos. Chem. Phys., 22, 6703–6716, https://doi.org/10.5194/acp-22-6703-2022, https://doi.org/10.5194/acp-22-6703-2022, 2022
Short summary
Short summary
From balloon measurements, we detected unprecedented, extremely powerful, electron precipitation over the middle latitudes. The robustness of this event is confirmed by satellite observations of electron fluxes and chemical composition, as well as by ground-based observations of the radio signal propagation. The applied chemistry–climate model shows the almost complete destruction of ozone in the mesosphere over the region where high-energy electrons were observed.
Ioana Ivanciu, Katja Matthes, Arne Biastoch, Sebastian Wahl, and Jan Harlaß
Weather Clim. Dynam., 3, 139–171, https://doi.org/10.5194/wcd-3-139-2022, https://doi.org/10.5194/wcd-3-139-2022, 2022
Short summary
Short summary
Greenhouse gas concentrations continue to increase, while the Antarctic ozone hole is expected to recover during the twenty-first century. We separate the effects of ozone recovery and of greenhouse gases on the Southern Hemisphere atmospheric and oceanic circulation, and we find that ozone recovery is generally reducing the impact of greenhouse gases, with the exception of certain regions of the stratosphere during spring, where the two effects reinforce each other.
Sheena Loeffel, Roland Eichinger, Hella Garny, Thomas Reddmann, Frauke Fritsch, Stefan Versick, Gabriele Stiller, and Florian Haenel
Atmos. Chem. Phys., 22, 1175–1193, https://doi.org/10.5194/acp-22-1175-2022, https://doi.org/10.5194/acp-22-1175-2022, 2022
Short summary
Short summary
SF6-derived trends of stratospheric AoA from observations and model simulations disagree in sign. SF6 experiences chemical degradation, which we explicitly integrate in a global climate model. In our simulations, the AoA trend changes sign when SF6 sinks are considered; thus, the process has the potential to reconcile simulated with observed AoA trends. We show that the positive AoA trend is due to the SF6 sinks themselves and provide a first approach for a correction to account for SF6 loss.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Klaus Wyser, Torben Koenigk, Uwe Fladrich, Ramon Fuentes-Franco, Mehdi Pasha Karami, and Tim Kruschke
Geosci. Model Dev., 14, 4781–4796, https://doi.org/10.5194/gmd-14-4781-2021, https://doi.org/10.5194/gmd-14-4781-2021, 2021
Short summary
Short summary
This paper describes the large ensemble done by SMHI with the EC-Earth3 climate model. The ensemble comprises 50 realizations for each of the historical experiments after 1970 and four different future projections for CMIP6. We describe the creation of the initial states for the ensemble and the reduced set of output variables. A first look at the results illustrates the changes in the climate during this century and puts them in relation to the uncertainty from the model's internal variability.
Tian Tian, Shuting Yang, Mehdi Pasha Karami, François Massonnet, Tim Kruschke, and Torben Koenigk
Geosci. Model Dev., 14, 4283–4305, https://doi.org/10.5194/gmd-14-4283-2021, https://doi.org/10.5194/gmd-14-4283-2021, 2021
Short summary
Short summary
Three decadal prediction experiments with EC-Earth3 are performed to investigate the impact of ocean, sea ice concentration and thickness initialization, respectively. We find that the persistence of perennial thick ice in the central Arctic can affect the sea ice predictability in its adjacent waters via advection process or wind, despite those regions being seasonally ice free during two recent decades. This has implications for the coming decades as the thinning of Arctic sea ice continues.
Ioana Ivanciu, Katja Matthes, Sebastian Wahl, Jan Harlaß, and Arne Biastoch
Atmos. Chem. Phys., 21, 5777–5806, https://doi.org/10.5194/acp-21-5777-2021, https://doi.org/10.5194/acp-21-5777-2021, 2021
Short summary
Short summary
The Antarctic ozone hole has driven substantial dynamical changes in the Southern Hemisphere atmosphere over the past decades. This study separates the historical impacts of ozone depletion from those of rising levels of greenhouse gases and investigates how these impacts are captured in two types of climate models: one using interactive atmospheric chemistry and one prescribing the CMIP6 ozone field. The effects of ozone depletion are more pronounced in the model with interactive chemistry.
Laura Stecher, Franziska Winterstein, Martin Dameris, Patrick Jöckel, Michael Ponater, and Markus Kunze
Atmos. Chem. Phys., 21, 731–754, https://doi.org/10.5194/acp-21-731-2021, https://doi.org/10.5194/acp-21-731-2021, 2021
Short summary
Short summary
This study investigates the impact of strongly increased atmospheric methane mixing ratios on the Earth's climate. An interactive model system including atmospheric dynamics, chemistry, and a mixed-layer ocean model is used to analyse the effect of doubled and quintupled methane mixing ratios. We assess feedbacks on atmospheric chemistry and changes in the stratospheric circulation, focusing on the impact of tropospheric warming, and their relevance for the model's climate sensitivity.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Ales Kuchar, William Ball, Pavle Arsenovic, Ellis Remsberg, Patrick Jöckel, Markus Kunze, David A. Plummer, Andrea Stenke, Daniel Marsh, Doug Kinnison, and Thomas Peter
Atmos. Chem. Phys., 21, 201–216, https://doi.org/10.5194/acp-21-201-2021, https://doi.org/10.5194/acp-21-201-2021, 2021
Short summary
Short summary
The solar signal in the mesospheric H2O and CO was extracted from the CCMI-1 model simulations and satellite observations using multiple linear regression (MLR) analysis. MLR analysis shows a pronounced and statistically robust solar signal in both H2O and CO. The model results show a general agreement with observations reproducing a negative/positive solar signal in H2O/CO. The pattern of the solar signal varies among the considered models, reflecting some differences in the model setup.
Sabine Haase, Jaika Fricke, Tim Kruschke, Sebastian Wahl, and Katja Matthes
Atmos. Chem. Phys., 20, 14043–14061, https://doi.org/10.5194/acp-20-14043-2020, https://doi.org/10.5194/acp-20-14043-2020, 2020
Short summary
Short summary
Ozone depletion over Antarctica was shown to influence the tropospheric jet in the Southern Hemisphere. We investigate the atmospheric response to ozone depletion comparing climate model ensembles with interactive and prescribed ozone fields. We show that allowing feedbacks between ozone chemistry and model physics as well as including asymmetries in ozone leads to a strengthened ozone depletion signature in the stratosphere but does not significantly affect the tropospheric jet position.
Robin Pilch Kedzierski, Katja Matthes, and Karl Bumke
Atmos. Chem. Phys., 20, 11569–11592, https://doi.org/10.5194/acp-20-11569-2020, https://doi.org/10.5194/acp-20-11569-2020, 2020
Short summary
Short summary
Rossby wave packet (RWP) dynamics are crucial for weather forecasting, climate change projections and stratosphere–troposphere interactions. Our study is a first attempt to describe RWP behavior in the UTLS with global coverage directly from observations, using GNSS-RO data. Our novel results show an interesting relation of RWP vertical propagation with sudden stratospheric warmings and provide very useful information to improve RWP diagnostics in models and reanalysis.
Matt Amos, Paul J. Young, J. Scott Hosking, Jean-François Lamarque, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Douglas Kinnison, Ole Kirner, Markus Kunze, Marion Marchand, David A. Plummer, David Saint-Martin, Kengo Sudo, Simone Tilmes, and Yousuke Yamashita
Atmos. Chem. Phys., 20, 9961–9977, https://doi.org/10.5194/acp-20-9961-2020, https://doi.org/10.5194/acp-20-9961-2020, 2020
Short summary
Short summary
We present an updated projection of Antarctic ozone hole recovery using an ensemble of chemistry–climate models. To do so, we employ a method, more advanced and skilful than the current multi-model mean standard, which is applicable to other ensemble analyses. It calculates the performance and similarity of the models, which we then use to weight the model. Calculating model similarity allows us to account for models which are constructed from similar components.
Julian Krüger, Robin Pilch Kedzierski, Karl Bumke, and Katja Matthes
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2020-32, https://doi.org/10.5194/wcd-2020-32, 2020
Revised manuscript not accepted
Short summary
Short summary
Motivated by the European heat wave occurrences of 2015 and 2018, this study evaluates the influence of cold North Atlantic SST anomalies on European heat waves by using the ERA-5 reanalysis product. Our findings show that widespread cold North Atlantic SST anomalies may be a precursor for a persistent jet stream pattern and are thus important for the onset of high European temperatures.
Haiyan Li, Robin Pilch Kedzierski, and Katja Matthes
Atmos. Chem. Phys., 20, 6541–6561, https://doi.org/10.5194/acp-20-6541-2020, https://doi.org/10.5194/acp-20-6541-2020, 2020
Short summary
Short summary
The QBO westerly phase was reversed by an unexpected easterly jet near 40 hPa and the westerly zonal wind lasted an unusually long time at 20 hPa during winter 2015/16. We find that quasi-stationary Rossby wave W1 and faster Rossby wave W2 propagating from the northern extratropics and a locally generated Rossby wave W3 were important contributors to the easterly jet at 40 hPa. Our results suggest that the unusual zonal wind structure at 20 hPa could be caused by enhanced Kelvin wave activity.
Katja Matthes, Arne Biastoch, Sebastian Wahl, Jan Harlaß, Torge Martin, Tim Brücher, Annika Drews, Dana Ehlert, Klaus Getzlaff, Fritz Krüger, Willi Rath, Markus Scheinert, Franziska U. Schwarzkopf, Tobias Bayr, Hauke Schmidt, and Wonsun Park
Geosci. Model Dev., 13, 2533–2568, https://doi.org/10.5194/gmd-13-2533-2020, https://doi.org/10.5194/gmd-13-2533-2020, 2020
Short summary
Short summary
A new Earth system model, the Flexible Ocean and Climate Infrastructure (FOCI), is introduced, consisting of a high-top atmosphere, an ocean model, sea-ice and land surface model components. A unique feature of FOCI is the ability to explicitly resolve small-scale oceanic features, for example, the Agulhas Current and the Gulf Stream. It allows to study the evolution of the climate system on regional and seasonal to (multi)decadal scales and bridges the gap to coarse-resolution climate models.
Blanca Ayarzagüena, Froila M. Palmeiro, David Barriopedro, Natalia Calvo, Ulrike Langematz, and Kiyotaka Shibata
Atmos. Chem. Phys., 19, 9469–9484, https://doi.org/10.5194/acp-19-9469-2019, https://doi.org/10.5194/acp-19-9469-2019, 2019
Short summary
Short summary
Sudden stratospheric warmings (SSWs) are abrupt rises in the wintertime polar stratosphere that also affect the troposphere. Their study is hampered by the limited observations in the stratosphere and mostly relies on reanalyses, i.e., models that include observations. Here we compare the representation of SSWs by the most used reanalyses. SSW results are consistent across reanalyses but some differences are found, in particular before the satellite era.
Sabine Haase and Katja Matthes
Atmos. Chem. Phys., 19, 3417–3432, https://doi.org/10.5194/acp-19-3417-2019, https://doi.org/10.5194/acp-19-3417-2019, 2019
Short summary
Short summary
The Antarctic ozone hole influences surface climate in the Southern Hemisphere. Recent studies have shown that stratospheric ozone depletion in the Arctic can also affect the surface. We evaluate the importance of the direct and indirect representation of ozone variability in a climate model for this surface response. We show that allowing feedbacks between ozone chemistry, radiation, and dynamics enhances and prolongs the surface response to Northern Hemisphere spring ozone depletion.
Stefan Bender, Miriam Sinnhuber, Patrick J. Espy, and John P. Burrows
Atmos. Chem. Phys., 19, 2135–2147, https://doi.org/10.5194/acp-19-2135-2019, https://doi.org/10.5194/acp-19-2135-2019, 2019
Short summary
Short summary
We present an empirical model for nitric oxide (NO) in the mesosphere (60–90 km) derived from SCIAMACHY limb scan data. Our model relates the daily (longitudinally) averaged NO number densities from SCIAMACHY as a function of geomagnetic latitude to the solar Lyman-alpha and the geomagnetic AE indices. We use a non-linear regression model, incorporating a finite and seasonally varying lifetime for the geomagnetically induced NO.
Tilo Fytterer, Christian von Savigny, Martin Mlynczak, and Miriam Sinnhuber
Atmos. Chem. Phys., 19, 1835–1851, https://doi.org/10.5194/acp-19-1835-2019, https://doi.org/10.5194/acp-19-1835-2019, 2019
Short summary
Short summary
A model was developed to derive night-time atomic oxygen (O(3P)) and atomic hydrogen (H) from satellite observations in the altitude region between 75 km and 100 km. Comparisons between the
best-fit modeland the measurements suggest that chemical reactions involving O2 and O(3P) might occur differently than is usually assumed in literature. This considerably affects the derived abundances of O(3P) and H, which in turn might influence air temperature and winds of the whole atmosphere.
Amanda C. Maycock, Katja Matthes, Susann Tegtmeier, Hauke Schmidt, Rémi Thiéblemont, Lon Hood, Hideharu Akiyoshi, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Oliver Kirner, Markus Kunze, Marion Marchand, Daniel R. Marsh, Martine Michou, David Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Yousuke Yamashita, and Kohei Yoshida
Atmos. Chem. Phys., 18, 11323–11343, https://doi.org/10.5194/acp-18-11323-2018, https://doi.org/10.5194/acp-18-11323-2018, 2018
Short summary
Short summary
The 11-year solar cycle is an important driver of climate variability. Changes in incoming solar ultraviolet radiation affect atmospheric ozone, which in turn influences atmospheric temperatures. Constraining the impact of the solar cycle on ozone is therefore important for understanding climate variability. This study examines the representation of the solar influence on ozone in numerical models used to simulate past and future climate. We highlight important differences among model datasets.
Blanca Ayarzagüena, Lorenzo M. Polvani, Ulrike Langematz, Hideharu Akiyoshi, Slimane Bekki, Neal Butchart, Martin Dameris, Makoto Deushi, Steven C. Hardiman, Patrick Jöckel, Andrew Klekociuk, Marion Marchand, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke D. Oman, David A. Plummer, Laura Revell, Eugene Rozanov, David Saint-Martin, John Scinocca, Andrea Stenke, Kane Stone, Yousuke Yamashita, Kohei Yoshida, and Guang Zeng
Atmos. Chem. Phys., 18, 11277–11287, https://doi.org/10.5194/acp-18-11277-2018, https://doi.org/10.5194/acp-18-11277-2018, 2018
Short summary
Short summary
Stratospheric sudden warmings (SSWs) are natural major disruptions of the polar stratospheric circulation that also affect surface weather. In the literature there are conflicting claims as to whether SSWs will change in the future. The confusion comes from studies using different models and methods. Here we settle the question by analysing 12 models with a consistent methodology, to show that no robust changes in frequency and other features are expected over the 21st century.
Sandip S. Dhomse, Douglas Kinnison, Martyn P. Chipperfield, Ross J. Salawitch, Irene Cionni, Michaela I. Hegglin, N. Luke Abraham, Hideharu Akiyoshi, Alex T. Archibald, Ewa M. Bednarz, Slimane Bekki, Peter Braesicke, Neal Butchart, Martin Dameris, Makoto Deushi, Stacey Frith, Steven C. Hardiman, Birgit Hassler, Larry W. Horowitz, Rong-Ming Hu, Patrick Jöckel, Beatrice Josse, Oliver Kirner, Stefanie Kremser, Ulrike Langematz, Jared Lewis, Marion Marchand, Meiyun Lin, Eva Mancini, Virginie Marécal, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Laura E. Revell, Eugene Rozanov, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 18, 8409–8438, https://doi.org/10.5194/acp-18-8409-2018, https://doi.org/10.5194/acp-18-8409-2018, 2018
Short summary
Short summary
We analyse simulations from the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion by anthropogenic chlorine and bromine. The simulations from 20 models project that global column ozone will return to 1980 values in 2047 (uncertainty range 2042–2052). Return dates in other regions vary depending on factors related to climate change and importance of chlorine and bromine. Column ozone in the tropics may continue to decline.
Stefanie Meul, Ulrike Langematz, Philipp Kröger, Sophie Oberländer-Hayn, and Patrick Jöckel
Atmos. Chem. Phys., 18, 7721–7738, https://doi.org/10.5194/acp-18-7721-2018, https://doi.org/10.5194/acp-18-7721-2018, 2018
Short summary
Short summary
Using a chemistry--climate model future changes in the stratosphere-to-troposphere ozone mass flux, their drivers, and the future distribution of stratospheric ozone in the troposphere are investigated. In an extreme greenhouse gas (GHG) scenario, the global influx of stratospheric ozone into the troposphere is projected to grow between 2000 and 2100 by 53%. The increase is due to the recovery of stratospheric ozone owing to declining halogens and GHG induced circulation and temperature changes.
Vered Silverman, Nili Harnik, Katja Matthes, Sandro W. Lubis, and Sebastian Wahl
Atmos. Chem. Phys., 18, 6637–6659, https://doi.org/10.5194/acp-18-6637-2018, https://doi.org/10.5194/acp-18-6637-2018, 2018
Short summary
Short summary
This study provides a quantified and mechanistic understanding of the radiative effects of ozone waves on the NH stratosphere. In particular, we find these effects to influence the seasonal evolution of the midlatitude QBO signal (Holton–Tan effect), which is important for getting realistic dynamical interactions in climate models. We also provide a synoptic view on the evolution of the seasonal development of the Holton–Tan effect by looking at the life cycle of upward-propagating waves.
Stefan Liersch, Julia Tecklenburg, Henning Rust, Andreas Dobler, Madlen Fischer, Tim Kruschke, Hagen Koch, and Fred Fokko Hattermann
Hydrol. Earth Syst. Sci., 22, 2163–2185, https://doi.org/10.5194/hess-22-2163-2018, https://doi.org/10.5194/hess-22-2163-2018, 2018
Short summary
Short summary
Application-oriented regional impact studies require accurate simulations of future climate variables and water availability. We analyse the quality of global and regional climate projections and discuss potentials of correction methods that partly overcome this quality issue. The model ensemble used in this study projects increasing average annual discharges and a shift in seasonal patterns, with decreasing discharges in June and July and increasing discharges from August to November.
Miriam Sinnhuber, Uwe Berger, Bernd Funke, Holger Nieder, Thomas Reddmann, Gabriele Stiller, Stefan Versick, Thomas von Clarmann, and Jan Maik Wissing
Atmos. Chem. Phys., 18, 1115–1147, https://doi.org/10.5194/acp-18-1115-2018, https://doi.org/10.5194/acp-18-1115-2018, 2018
Short summary
Short summary
Results from global models are used to analyze the impact of energetic particle precipitation on the middle atmosphere (10–80 km). Model results agree well with observations, and show strong enhancements of NOy, long-lasting ozone loss, and a net heating in the uppermost stratosphere (~35–45 km) during polar winter which changes sign in spring. Energetic particle precipitation therefore has the potential to impact atmospheric dynamics, starting from a warmer winter-time upper stratosphere.
Amirmahdi Zarboo, Stefan Bender, John P. Burrows, Johannes Orphal, and Miriam Sinnhuber
Atmos. Meas. Tech., 11, 473–487, https://doi.org/10.5194/amt-11-473-2018, https://doi.org/10.5194/amt-11-473-2018, 2018
Short summary
Short summary
We present the retrieved volume emission rates (VERs) from the airglow of both the daytime and twilight O2(1Σ) band and O2(1Δ) band emissions in the mesosphere and lower thermosphere (MLT). We have investigated the daily mean latitudinal distributions and the time series of the retrieved VER in the altitude range from 53 to 149 km. These observations provide information about the chemistry and dynamics and can be used to infer ozone, solar heating rates, and temperature in the MLT.
Gabriele P. Stiller, Federico Fierli, Felix Ploeger, Chiara Cagnazzo, Bernd Funke, Florian J. Haenel, Thomas Reddmann, Martin Riese, and Thomas von Clarmann
Atmos. Chem. Phys., 17, 11177–11192, https://doi.org/10.5194/acp-17-11177-2017, https://doi.org/10.5194/acp-17-11177-2017, 2017
Short summary
Short summary
The discrepancy between modelled and observed 25-year trends of the strength of the stratospheric Brewer–Dobson circulation (BDC) is still not resolved. With our paper we trace the observed hemispheric dipole structure of age of air trends back to natural variability in shorter-term (decadal) time frames. Beyond this we demonstrate that after correction for the decadal natural variability the remaining trend for the first decade of the 21st century is consistent with model simulations.
Michael Weimer, Jennifer Schröter, Johannes Eckstein, Konrad Deetz, Marco Neumaier, Garlich Fischbeck, Lu Hu, Dylan B. Millet, Daniel Rieger, Heike Vogel, Bernhard Vogel, Thomas Reddmann, Oliver Kirner, Roland Ruhnke, and Peter Braesicke
Geosci. Model Dev., 10, 2471–2494, https://doi.org/10.5194/gmd-10-2471-2017, https://doi.org/10.5194/gmd-10-2471-2017, 2017
Short summary
Short summary
In this paper, the recently developed module for trace gas emissions in the online coupled modelling framework ICON-ART for atmospheric chemistry is presented. Algorithms for offline and online calculation of the emissions are described. The module is validated with ground-based as well as airborne measurements of acetone. It is shown that the module performs well and allows the simulation of annual cycles of emission-driven trace gases.
Katja Matthes, Bernd Funke, Monika E. Andersson, Luke Barnard, Jürg Beer, Paul Charbonneau, Mark A. Clilverd, Thierry Dudok de Wit, Margit Haberreiter, Aaron Hendry, Charles H. Jackman, Matthieu Kretzschmar, Tim Kruschke, Markus Kunze, Ulrike Langematz, Daniel R. Marsh, Amanda C. Maycock, Stergios Misios, Craig J. Rodger, Adam A. Scaife, Annika Seppälä, Ming Shangguan, Miriam Sinnhuber, Kleareti Tourpali, Ilya Usoskin, Max van de Kamp, Pekka T. Verronen, and Stefan Versick
Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, https://doi.org/10.5194/gmd-10-2247-2017, 2017
Short summary
Short summary
The solar forcing dataset for climate model experiments performed for the upcoming IPCC report is described. This dataset provides the radiative and particle input of solar variability on a daily basis from 1850 through to 2300. With this dataset a better representation of natural climate variability with respect to the output of the Sun is provided which provides the most sophisticated and comprehensive respresentation of solar variability that has been used in climate model simulations so far.
Robin Pilch Kedzierski, Katja Matthes, and Karl Bumke
Atmos. Chem. Phys., 17, 4093–4114, https://doi.org/10.5194/acp-17-4093-2017, https://doi.org/10.5194/acp-17-4093-2017, 2017
Bernd Funke, William Ball, Stefan Bender, Angela Gardini, V. Lynn Harvey, Alyn Lambert, Manuel López-Puertas, Daniel R. Marsh, Katharina Meraner, Holger Nieder, Sanna-Mari Päivärinta, Kristell Pérot, Cora E. Randall, Thomas Reddmann, Eugene Rozanov, Hauke Schmidt, Annika Seppälä, Miriam Sinnhuber, Timofei Sukhodolov, Gabriele P. Stiller, Natalia D. Tsvetkova, Pekka T. Verronen, Stefan Versick, Thomas von Clarmann, Kaley A. Walker, and Vladimir Yushkov
Atmos. Chem. Phys., 17, 3573–3604, https://doi.org/10.5194/acp-17-3573-2017, https://doi.org/10.5194/acp-17-3573-2017, 2017
Short summary
Short summary
Simulations from eight atmospheric models have been compared to tracer and temperature observations from seven satellite instruments in order to evaluate the energetic particle indirect effect (EPP IE) during the perturbed northern hemispheric (NH) winter 2008/2009. Models are capable to reproduce the EPP IE in dynamically and geomagnetically quiescent NH winter conditions. The results emphasize the need for model improvements in the dynamical representation of elevated stratopause events.
Sandro W. Lubis, Vered Silverman, Katja Matthes, Nili Harnik, Nour-Eddine Omrani, and Sebastian Wahl
Atmos. Chem. Phys., 17, 2437–2458, https://doi.org/10.5194/acp-17-2437-2017, https://doi.org/10.5194/acp-17-2437-2017, 2017
Short summary
Short summary
Downward wave coupling (DWC) events impact high-latitude stratospheric ozone in two ways: (1) reduced dynamical transport of ozone from low to high latitudes during individual events and (2) enhanced springtime chemical destruction of ozone via the cumulative impact of DWC events on polar stratospheric temperatures. The results presented here broaden the scope of the impact of wave–mean flow interaction on stratospheric ozone by highlighting the key role of wave reflection.
Stefan Bender, Miriam Sinnhuber, Martin Langowski, and John P. Burrows
Atmos. Meas. Tech., 10, 209–220, https://doi.org/10.5194/amt-10-209-2017, https://doi.org/10.5194/amt-10-209-2017, 2017
Short summary
Short summary
We present the retrieval of NO number densities from 60 km to 85 km from measurements of SCIAMACHY/Envisat in its nominal limb mode (0–91 km). We derive the densities from the NO gamma bands (230–300 nm). Using prior input reduces the incorrect attribution of NO from the lower thermosphere. The SCIAMACHY nominal limb scans provide almost 10 years of daily NO data in this altitude range, a unique data record to constrain NO in the mesosphere for testing and validating chemistry climate models.
Ulrike Langematz, Franziska Schmidt, Markus Kunze, Gregory E. Bodeker, and Peter Braesicke
Atmos. Chem. Phys., 16, 15619–15627, https://doi.org/10.5194/acp-16-15619-2016, https://doi.org/10.5194/acp-16-15619-2016, 2016
Short summary
Short summary
The extent of anthropogenically driven Antarctic ozone depletion prior to 1980 is examined using transient chemistry–climate model simulations from 1960 to 2000 with prescribed changes of ozone depleting substances in conjunction with observations. All models show a long-term, halogen-induced negative trend in Antarctic ozone from 1960 to 1980, ranging between 26 and 50 % of the total anthropogenic ozone depletion from 1960 to 2000. A stronger ozone decline of 56 % was estimated from observation.
Tobias Pardowitz, Robert Osinski, Tim Kruschke, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 16, 2391–2402, https://doi.org/10.5194/nhess-16-2391-2016, https://doi.org/10.5194/nhess-16-2391-2016, 2016
Short summary
Short summary
This paper describes an approach to derive probabilistic predictions of local winter storm damage occurrences. Such predictions are subject to large uncertainty due to meteorological forecast uncertainty and uncertainties in modelling weather impacts. The paper aims to quantify these uncertainties and demonstrate that valuable predictions can be made on the district level several days ahead.
Kunihiko Kodera, Rémi Thiéblemont, Seiji Yukimoto, and Katja Matthes
Atmos. Chem. Phys., 16, 12925–12944, https://doi.org/10.5194/acp-16-12925-2016, https://doi.org/10.5194/acp-16-12925-2016, 2016
Short summary
Short summary
The spatial structure of the solar cycle signals on the Earth's surface is analysed to identify the mechanisms. Both tropical and extratropical solar surface signals can result from circulation changes in the upper stratosphere through (i) a downward migration of wave zonal mean flow interactions and (ii) changes in the stratospheric mean meridional circulation. Amplification of the solar signal also occurs through interaction with the ocean.
Nathan P. Gillett, Hideo Shiogama, Bernd Funke, Gabriele Hegerl, Reto Knutti, Katja Matthes, Benjamin D. Santer, Daithi Stone, and Claudia Tebaldi
Geosci. Model Dev., 9, 3685–3697, https://doi.org/10.5194/gmd-9-3685-2016, https://doi.org/10.5194/gmd-9-3685-2016, 2016
Short summary
Short summary
Detection and attribution of climate change is the process of determining the causes of observed climate changes, which has underpinned key conclusions on the role of human influence on climate in the reports of the Intergovernmental Panel on Climate Change (IPCC). This paper describes a coordinated set of climate model experiments that will form part of the Sixth Coupled Model Intercomparison Project and will support improved attribution of climate change in the next IPCC report.
Robin Pilch Kedzierski, Katja Matthes, and Karl Bumke
Atmos. Chem. Phys., 16, 11617–11633, https://doi.org/10.5194/acp-16-11617-2016, https://doi.org/10.5194/acp-16-11617-2016, 2016
Short summary
Short summary
This study provides a detailed overview of the daily variability of the tropopause inversion layer (TIL) in the tropics, where TIL research had focused little. The vertical and horizontal structures of this atmospheric layer are described and linked to near-tropopause horizontal wind divergence, the QBO and especially to equatorial waves. Our results increase the knowledge about the observed properties of the tropical TIL, mainly using satellite GPS radio-occultation measurements.
Amanda C. Maycock, Katja Matthes, Susann Tegtmeier, Rémi Thiéblemont, and Lon Hood
Atmos. Chem. Phys., 16, 10021–10043, https://doi.org/10.5194/acp-16-10021-2016, https://doi.org/10.5194/acp-16-10021-2016, 2016
Short summary
Short summary
The impact of changes in incoming solar radiation on stratospheric ozone has important impacts on the atmosphere. Understanding this ozone response is crucial for constraining how solar activity affects climate. This study analyses the solar ozone response (SOR) in satellite datasets and shows that there are substantial differences in the magnitude and spatial structure across different records. In particular, the SOR in the new SAGE v7.0 mixing ratio data is smaller than in the previous v6.2.
Ming Shangguan, Katja Matthes, Wuke Wang, and Tae-Kwon Wee
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-248, https://doi.org/10.5194/amt-2016-248, 2016
Revised manuscript has not been submitted
Short summary
Short summary
A first validation of the COSMIC Radio Occultation (RO) water vapor data in the upper troposphere and lower stratosphere (UTLS) are presented in this paper. The COSMIC water vapor shows a good agreement with the Microwave limb Sounder (MLS) in both the spatial distribution and the seasonal to interannual variations. It is very valuable for studying the water vapor in the UTLS, thanks to its global coverage, all- weather aptitude and high vertical resolution.
Markus Kunze, Peter Braesicke, Ulrike Langematz, and Gabriele Stiller
Atmos. Chem. Phys., 16, 8695–8714, https://doi.org/10.5194/acp-16-8695-2016, https://doi.org/10.5194/acp-16-8695-2016, 2016
Khalil Karami, Peter Braesicke, Miriam Sinnhuber, and Stefan Versick
Atmos. Chem. Phys., 16, 8447–8460, https://doi.org/10.5194/acp-16-8447-2016, https://doi.org/10.5194/acp-16-8447-2016, 2016
Short summary
Short summary
We introduce a diagnostic tool to assess in a climatological framework the optimal propagation conditions for stationary planetary waves. Analyzing 50 winters using NCEP/NCAR reanalysis data we demonstrate several problematic features of the refractive index of Rossby waves. We introduced the Rossby waves membership value function to calculate the optimal propagation conditions for Rossby waves. Sensitivity of our diagnostic tool to strong and weak vortex regimes are examined.
Simone Dietmüller, Patrick Jöckel, Holger Tost, Markus Kunze, Catrin Gellhorn, Sabine Brinkop, Christine Frömming, Michael Ponater, Benedikt Steil, Axel Lauer, and Johannes Hendricks
Geosci. Model Dev., 9, 2209–2222, https://doi.org/10.5194/gmd-9-2209-2016, https://doi.org/10.5194/gmd-9-2209-2016, 2016
Short summary
Short summary
Four new radiation related submodels (RAD, AEROPT, CLOUDOPT, and ORBIT) are available within the MESSy framework now. They are largely based on the original radiation scheme of ECHAM5. RAD simulates radiative transfer, AEROPT calculates aerosol optical properties, CLOUDOPT calculates cloud optical properties, and ORBIT is responsible for Earth orbit calculations. Multiple diagnostic calls of the radiation routine are possible, so radiative forcing can be calculated during the model simulation.
Patrick Jöckel, Holger Tost, Andrea Pozzer, Markus Kunze, Oliver Kirner, Carl A. M. Brenninkmeijer, Sabine Brinkop, Duy S. Cai, Christoph Dyroff, Johannes Eckstein, Franziska Frank, Hella Garny, Klaus-Dirk Gottschaldt, Phoebe Graf, Volker Grewe, Astrid Kerkweg, Bastian Kern, Sigrun Matthes, Mariano Mertens, Stefanie Meul, Marco Neumaier, Matthias Nützel, Sophie Oberländer-Hayn, Roland Ruhnke, Theresa Runde, Rolf Sander, Dieter Scharffe, and Andreas Zahn
Geosci. Model Dev., 9, 1153–1200, https://doi.org/10.5194/gmd-9-1153-2016, https://doi.org/10.5194/gmd-9-1153-2016, 2016
Short summary
Short summary
With an advanced numerical global chemistry climate model (CCM) we performed several detailed
combined hind-cast and projection simulations of the period 1950 to 2100 to assess the
past, present, and potential future dynamical and chemical state of the Earth atmosphere.
The manuscript documents the model and the various applied model set-ups and provides
a first evaluation of the simulation results from a global perspective as a quality check of the data.
M. P. Langowski, C. von Savigny, J. P. Burrows, V. V. Rozanov, T. Dunker, U.-P. Hoppe, M. Sinnhuber, and A. C. Aikin
Atmos. Meas. Tech., 9, 295–311, https://doi.org/10.5194/amt-9-295-2016, https://doi.org/10.5194/amt-9-295-2016, 2016
Short summary
Short summary
An algorithm has been developed for the retrieval of sodium atom (Na) number density on a latitude and altitude grid from SCIAMACHY limb measurements of the Na resonance fluorescence (multiannual means 2008–2012). The Na layer peaks at 90 to 93 km altitude and has a FWHM of 5 to 15 km. A summer minimum in peak density and width is observed at high latitudes. At low latitudes, a semiannual oscillation is found. The results are compared with other measurements and models and agree well with these.
F. J. Haenel, G. P. Stiller, T. von Clarmann, B. Funke, E. Eckert, N. Glatthor, U. Grabowski, S. Kellmann, M. Kiefer, A. Linden, and T. Reddmann
Atmos. Chem. Phys., 15, 13161–13176, https://doi.org/10.5194/acp-15-13161-2015, https://doi.org/10.5194/acp-15-13161-2015, 2015
Short summary
Short summary
Stratospheric circulation is thought to change as a consequence of climate change. Empirical evidence, however, is sparse. In this paper we present latitude- and altitude-resolved trends of the mean age of stratospheric air as derived from SF6 measurements performed by the MIPAS satellite instrument. The mean of the age of stratospheric air is a measure of the intensity of the Brewer-Dobson circulation. In this paper we discuss differences with respect to a preceding analysis by Stiller et al.
K. Karami, P. Braesicke, M. Kunze, U. Langematz, M. Sinnhuber, and S. Versick
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-33283-2015, https://doi.org/10.5194/acpd-15-33283-2015, 2015
Revised manuscript has not been submitted
S. Bender, M. Sinnhuber, T. von Clarmann, G. Stiller, B. Funke, M. López-Puertas, J. Urban, K. Pérot, K. A. Walker, and J. P. Burrows
Atmos. Meas. Tech., 8, 4171–4195, https://doi.org/10.5194/amt-8-4171-2015, https://doi.org/10.5194/amt-8-4171-2015, 2015
Short summary
Short summary
We compare the nitric oxide (NO) daily zonal mean number density data sets in the mesosphere and lower thermosphere (MLT, 60km to 150km) from four instruments: ACE-FTS (2004--2010), MIPAS (2005--2012), SCIAMACHY (2008--2012), and SMR (2003--2012). We find that these data sets from different instruments consistently constrain NO in the MLT. Thus, they offer reliable forcing inputs for climate and chemistry climate models as an initial step to include solar and geomagnetic activity.
S. Meul, S. Oberländer-Hayn, J. Abalichin, and U. Langematz
Atmos. Chem. Phys., 15, 6897–6911, https://doi.org/10.5194/acp-15-6897-2015, https://doi.org/10.5194/acp-15-6897-2015, 2015
Short summary
Short summary
The attribution of stratospheric ozone (O3) loss in the recent past to increasing ozone depleting substances (ODSs) and greenhouse gases (GHGs) is important to verify the success of the Montreal Protocol. So far, nonlinearity in the O3 response to ODS and GHG changes has been mostly neglected. In this study we explicitly account for nonlinear O3 changes and aim to clarify their relevance in the past. We show that both O3 chemistry and transport are significantly affected by nonlinearity.
W. Wang, K. Matthes, and T. Schmidt
Atmos. Chem. Phys., 15, 5815–5826, https://doi.org/10.5194/acp-15-5815-2015, https://doi.org/10.5194/acp-15-5815-2015, 2015
T. Fytterer, M. G. Mlynczak, H. Nieder, K. Pérot, M. Sinnhuber, G. Stiller, and J. Urban
Atmos. Chem. Phys., 15, 3327–3338, https://doi.org/10.5194/acp-15-3327-2015, https://doi.org/10.5194/acp-15-3327-2015, 2015
Short summary
Short summary
Energetic particles from the sun produce NOx (=N+NO+NO2) in the mesosphere/lower thermosphere. The NOx can be transported downward in the stratosphere during polar winter where NOx eventually depletes O3. This entire chain is the so-called energetic particle precipitation (EPP) indirect effect.
Here we show downward propagating negative stratospheric O3 anomalies during Antarctic polar winter. The O3 anomalies are caused by geomagnetic activity and show strong hints of the EPP indirect effect.
M. P. Langowski, C. von Savigny, J. P. Burrows, W. Feng, J. M. C. Plane, D. R. Marsh, D. Janches, M. Sinnhuber, A. C. Aikin, and P. Liebing
Atmos. Chem. Phys., 15, 273–295, https://doi.org/10.5194/acp-15-273-2015, https://doi.org/10.5194/acp-15-273-2015, 2015
Short summary
Short summary
Global concentration fields of Mg and Mg+ in the Earth's upper mesosphere and lower thermosphere (70-150km) are presented. These are retrieved from SCIAMACHY/Envisat satellite grating spectrometer measurements in limb viewing geometry between 2008 and 2012.
These were compared with WACCM-Mg model results and a large fraction of the available measurement results for these species, and an interpretation of the results is done. The variation of these species during NLC presence is discussed.
M. Sinnhuber, B. Funke, T. von Clarmann, M. Lopez-Puertas, G. P. Stiller, and A. Seppälä
Atmos. Chem. Phys., 14, 7681–7692, https://doi.org/10.5194/acp-14-7681-2014, https://doi.org/10.5194/acp-14-7681-2014, 2014
F. Friederich, M. Sinnhuber, B. Funke, T. von Clarmann, and J. Orphal
Atmos. Chem. Phys., 14, 4055–4064, https://doi.org/10.5194/acp-14-4055-2014, https://doi.org/10.5194/acp-14-4055-2014, 2014
S. Meul, U. Langematz, S. Oberländer, H. Garny, and P. Jöckel
Atmos. Chem. Phys., 14, 2959–2971, https://doi.org/10.5194/acp-14-2959-2014, https://doi.org/10.5194/acp-14-2959-2014, 2014
M. Langowski, M. Sinnhuber, A. C. Aikin, C. von Savigny, and J. P. Burrows
Atmos. Meas. Tech., 7, 29–48, https://doi.org/10.5194/amt-7-29-2014, https://doi.org/10.5194/amt-7-29-2014, 2014
S. Bender, M. Sinnhuber, J. P. Burrows, M. Langowski, B. Funke, and M. López-Puertas
Atmos. Meas. Tech., 6, 2521–2531, https://doi.org/10.5194/amt-6-2521-2013, https://doi.org/10.5194/amt-6-2521-2013, 2013
I. Ermolli, K. Matthes, T. Dudok de Wit, N. A. Krivova, K. Tourpali, M. Weber, Y. C. Unruh, L. Gray, U. Langematz, P. Pilewskie, E. Rozanov, W. Schmutz, A. Shapiro, S. K. Solanki, and T. N. Woods
Atmos. Chem. Phys., 13, 3945–3977, https://doi.org/10.5194/acp-13-3945-2013, https://doi.org/10.5194/acp-13-3945-2013, 2013
F. Friederich, T. von Clarmann, B. Funke, H. Nieder, J. Orphal, M. Sinnhuber, G. P. Stiller, and J. M. Wissing
Atmos. Chem. Phys., 13, 2531–2539, https://doi.org/10.5194/acp-13-2531-2013, https://doi.org/10.5194/acp-13-2531-2013, 2013
Related subject area
Subject: Radiation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Comment on “An approach to sulfate geoengineering with surface emissions of carbonyl sulfide” by Quaglia et al. (2022)
The climate impact of hydrogen-powered hypersonic transport
Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative
Effects of Arctic stratospheric ozone changes on spring precipitation in the northwestern United States
Key drivers of ozone change and its radiative forcing over the 21st century
Implications of potential future grand solar minimum for ozone layer and climate
Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model
Marc von Hobe, Christoph Brühl, Sinikka T. Lennartz, Mary E. Whelan, and Aleya Kaushik
Atmos. Chem. Phys., 23, 6591–6598, https://doi.org/10.5194/acp-23-6591-2023, https://doi.org/10.5194/acp-23-6591-2023, 2023
Short summary
Short summary
Carbonyl sulfide plays a role in the climate system as a greenhouse gas and as the major non-volcanic precursor of particles reflecting sunlight. Here, we comment on a proposal to increase the number of particles by emitting extra carbonyl sulfide at the surface. We show that the balance between aerosol cooling and greenhouse gas warming may not be as favorable as suggested and also that much of the carbonyl sulfide emissions will actually be taken up by the biosphere and the oceans.
Johannes Pletzer, Didier Hauglustaine, Yann Cohen, Patrick Jöckel, and Volker Grewe
Atmos. Chem. Phys., 22, 14323–14354, https://doi.org/10.5194/acp-22-14323-2022, https://doi.org/10.5194/acp-22-14323-2022, 2022
Short summary
Short summary
Very fast aircraft can travel long distances in extremely short times and can fly at high altitudes (15 to 35 km). These aircraft emit water vapour, nitrogen oxides, and hydrogen. Water vapour emissions remain for months to several years at these altitudes and have an important impact on temperature. We investigate two aircraft fleets flying at 26 and 35 km. Ozone is depleted more, and the water vapour perturbation and temperature change are larger for the aircraft flying at 35 km.
Kévin Lamy, Thierry Portafaix, Béatrice Josse, Colette Brogniez, Sophie Godin-Beekmann, Hassan Bencherif, Laura Revell, Hideharu Akiyoshi, Slimane Bekki, Michaela I. Hegglin, Patrick Jöckel, Oliver Kirner, Ben Liley, Virginie Marecal, Olaf Morgenstern, Andrea Stenke, Guang Zeng, N. Luke Abraham, Alexander T. Archibald, Neil Butchart, Martyn P. Chipperfield, Glauco Di Genova, Makoto Deushi, Sandip S. Dhomse, Rong-Ming Hu, Douglas Kinnison, Michael Kotkamp, Richard McKenzie, Martine Michou, Fiona M. O'Connor, Luke D. Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Eugene Rozanov, David Saint-Martin, Kengo Sudo, Taichu Y. Tanaka, Daniele Visioni, and Kohei Yoshida
Atmos. Chem. Phys., 19, 10087–10110, https://doi.org/10.5194/acp-19-10087-2019, https://doi.org/10.5194/acp-19-10087-2019, 2019
Short summary
Short summary
In this study, we simulate the ultraviolet radiation evolution during the 21st century on Earth's surface using the output from several numerical models which participated in the Chemistry-Climate Model Initiative. We present four possible futures which depend on greenhouse gases emissions. The role of ozone-depleting substances, greenhouse gases and aerosols are investigated. Our results emphasize the important role of aerosols for future ultraviolet radiation in the Northern Hemisphere.
Xuan Ma, Fei Xie, Jianping Li, Xinlong Zheng, Wenshou Tian, Ruiqiang Ding, Cheng Sun, and Jiankai Zhang
Atmos. Chem. Phys., 19, 861–875, https://doi.org/10.5194/acp-19-861-2019, https://doi.org/10.5194/acp-19-861-2019, 2019
Fernando Iglesias-Suarez, Douglas E. Kinnison, Alexandru Rap, Amanda C. Maycock, Oliver Wild, and Paul J. Young
Atmos. Chem. Phys., 18, 6121–6139, https://doi.org/10.5194/acp-18-6121-2018, https://doi.org/10.5194/acp-18-6121-2018, 2018
Short summary
Short summary
This study explores future ozone radiative forcing (RF) and the relative contribution due to different drivers. Climate-induced ozone RF is largely the result of the interplay between lightning-produced ozone and enhanced ozone destruction in a warmer and wetter atmosphere. These results demonstrate the importance of stratospheric–tropospheric interactions and the stratosphere as a key region controlling a large fraction of the tropospheric ozone RF.
Pavle Arsenovic, Eugene Rozanov, Julien Anet, Andrea Stenke, Werner Schmutz, and Thomas Peter
Atmos. Chem. Phys., 18, 3469–3483, https://doi.org/10.5194/acp-18-3469-2018, https://doi.org/10.5194/acp-18-3469-2018, 2018
Short summary
Short summary
Global warming will persist in the 21st century, even if the solar activity undergoes an unusually strong and long decline. Decreased ozone production caused by reduction of solar activity and change of atmospheric dynamics due to the global warming might result in further thinning of the tropical ozone layer. Globally, total ozone would not recover to the pre-ozone hole values as long as the decline of solar activity lasts. This may let more ultra-violet radiation reach the Earth's surface.
W. H. Swartz, R. S. Stolarski, L. D. Oman, E. L. Fleming, and C. H. Jackman
Atmos. Chem. Phys., 12, 5937–5948, https://doi.org/10.5194/acp-12-5937-2012, https://doi.org/10.5194/acp-12-5937-2012, 2012
Cited articles
Ball, W. T., Unruh, Y. C., Krivova, N., Solanki, S. K., and Harder, J. W.:
Solar irradiance variability : a six-year comparison between SORCE
observations and the SATIRE model, Astro. Astrophys., 530, A71,
https://doi.org/10.1051/0004-6361/201016189, 2011. a
Ball, W. T., Krivova, N. A., Unruh, Y. C., Haigh, J. D., and Solanki, S. K.: A
New SATIRE-S Spectral Solar Irradiance Reconstruction for Solar Cycles 21–23
and Its Implications for Stratospheric Ozone, J. Atmos. Sci., 71,
4086–4101, https://doi.org/10.1175/JAS-D-13-0241.1, 2014. a
Ball, W. T., Haigh, J. D., Rozanov, E. V., Kuchar, A., Sukhodolov, T., Tummon,
F., Shapiro, A. V., and Schmutz, W.: High solar cycle spectral variations
inconsistent with stratospheric ozone observations, Nat. Geosci., 9,
206–209, https://doi.org/10.1038/ngeo2640, 2016. a
Ball, W. T., Alsing, J., Staehelin, J., Davis, S. M., Froidevaux, L., and Peter, T.: Stratospheric ozone trends for 1985–2018: sensitivity to recent large variability, Atmos. Chem. Phys., 19, 12731–12748, https://doi.org/10.5194/acp-19-12731-2019, 2019. a
Beig, G., Fadnavis, S., Schmidt, H., and Brasseur, G. P.: Inter-comparison of
11-year solar cycle response in mesospheric ozone and temperature obtained by
HALOE satellite data and HAMMONIA model, J. Geophys. Res.-Atmos., 117, D00P10,
https://doi.org/10.1029/2011JD015697, 2012. a
Coddington, O., Lean, J. L., Pilewskie, P., Snow, M., and Lindholm, D.: A
Solar Irradiance Climate Data Record, B. Am. Meteorol. Soc., 97,
1265–1282, https://doi.org/10.1175/BAMS-D-14-00265.1, 2016. a, b, c
Coddington, O., Lean, J., Pilewskie, P., Snow, M., Richard, E., Kopp, G.,
Lindholm, C., DeLand, M., Marchenko, S., Haberreiter, M., and Baranyi, T.:
Solar Irradiance Variability: Comparisons of Models and Measurements, Earth
Space Sci., 34, 2019EA000693, https://doi.org/10.1029/2019EA000693, 2019. a
Collins, W. D.: A global signature of enhanced shortwave absorption by
clouds, J. Geophys. Res.-Atmos., 103, 31669–31679,
https://doi.org/10.1029/1998JD200022, 1998. a
Dietmüller, S., Jöckel, P., Tost, H., Kunze, M., Gellhorn, C., Brinkop, S., Frömming, C., Ponater, M., Steil, B., Lauer, A., and Hendricks, J.: A new radiation infrastructure for the Modular Earth Submodel System (MESSy, based on version 2.51), Geosci. Model Dev., 9, 2209–2222, https://doi.org/10.5194/gmd-9-2209-2016, 2016. a
Ermolli, I., Matthes, K., Dudok de Wit, T., Krivova, N. A., Tourpali, K.,
Weber, M., Unruh, Y. C., Gray, L., Langematz, U., Pilewskie, P., Rozanov, E.,
Schmutz, W., Shapiro, A., Solanki, S. K., and Woods, T. N.: Recent
variability of the solar spectral irradiance and its impact on climate
modelling, Atmos. Chem. Phys., 13, 3945–3977,
https://doi.org/10.5194/acp-13-3945-2013, 2013. a, b, c, d
Evin, G., Hingray, B., Blanchet, J., Eckert, N., Morin, S., and Verfaillie, D.:
Partitioning Uncertainty Components of an Incomplete Ensemble of Climate
Projections Using Data Augmentation, J. Climate, 32, 2423–2440,
https://doi.org/10.1175/JCLI-D-18-0606.1, 2019. a
Farman, J. C., Gardiner, B. G., and Shanklin, J. D.: Large losses of total
ozone in Antarctica reveal seasonal ClOx/NOx interaction, Nature, 315,
207–210, https://doi.org/10.1038/315207a0, 1985. a
Forster, P. M., Fomichev, V. I., Rozanov, E., Cagnazzo, C., Jonsson, A. I.,
Langematz, U., Fomin, B., Iacono, M. J., Mayer, B., Mlawer, E., Myhre, G.,
Portmann, R. W., Akiyoshi, H., Falaleeva, V., Gillett, N., Karpechko, A., Li,
J., Lemennais, P., Morgenstern, O., Oberländer, S., Sigmond, M., and
Shibata, K.: Evaluation of radiation scheme performance within chemistry
climate models, J. Geophys. Res.-Atmos., 116, D10302, https://doi.org/10.1029/2010JD015361,
2011. a
Fouquart, Y. and Bonnel, B.: Computations of solar heating of the Earth's
atmosphere: A new parameterization, Beitr. Phys. Atmos., 53, 35–62, 1980. a
Frame, T. and Gray, L. J.: The 11-yr solar cycle in ERA-40 data: An update to
2008, J. Climate, 23, 2213–2222, https://doi.org/10.1175/2009JCLI3150.1, 2010. a
Funke, B., López-Puertas, M., Stiller, G. P., Versick, S., and von Clarmann, T.: A semi-empirical model for mesospheric and stratospheric NOy produced by energetic particle precipitation, Atmos. Chem. Phys., 16, 8667–8693, https://doi.org/10.5194/acp-16-8667-2016, 2016. a
Garcia, R. R., Solomon, S., Roble, R. G., and Rusch, D. W.: A numerical
response of the middle atmosphere to the 11-year solar cycle, Planet. Space
Sci., 32, 411–423, https://doi.org/10.1016/0032-0633(84)90121-1, 1984. a, b
Garcia, R. R., Smith, A. K., Kinnison, D. E., de la Cámara, Á., and
Murphy, D. J.: Modification of the Gravity Wave Parameterization in the
Whole Atmosphere Community Climate Model: Motivation and Results, J. Atmos.
Sci., 74, 275–291, https://doi.org/10.1175/JAS-D-16-0104.1, 2017. a
Geinitz, S., Furrer, R., and Sain, S. R.: Bayesian multilevel analysis of
variance for relative comparison across sources of global climate model
variability, Int. J. Climatol., 35, 433–443,
https://doi.org/10.1002/joc.3991, 2015. a
Giorgetta, M. A. and Bengtsson, L.: Potential role of the quasi-biennial
oscillation in the stratosphere-troposphere exchange as found in water vapor
in general circulation model experiments, J. Geophys. Res.-Atmos., 104,
6003–6019, https://doi.org/10.1029/1998JD200112, 1999. a
Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K.,
Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl,
G. A., Shindell, D., van Geel, B., and White, W.: Solar influences on
climate, Rev. Geophys., 48, RG4001, https://doi.org/10.1029/2009RG000282, 2010. a
Gray, L. J., Scaife, A. A., Mitchell, D. M., Osprey, S., Ineson, S., Hardiman,
S., Butchart, N., Knight, J., Sutton, R., and Kodera, K.: A lagged response
to the 11 year solar cycle in observed winter Atlantic/European weather
patterns, J. Geophys. Res.-Atmos., 118, 13405–13420,
https://doi.org/10.1002/2013JD020062, 2013. a
Haberreiter, M., Schöll, M., Dudok de Wit, T., Kretzschmar, M., Misios,
S., Tourpali, K., and Schmutz, W.: A new observational solar irradiance
composite, J. Geophys. Res.-Space, 122, 5910–5930,
https://doi.org/10.1002/2016JA023492, 2017. a
Haigh, J. D.: The role of stratospheric ozone in modulating the solar
radiative forcing of climate, Nature, 370, 544–546, https://doi.org/10.1038/370544a0,
1994. a, b
Haigh, J. D., Winning, A. R., Toumi, R., and Harder, J. W.: An influence of
solar spectral variations on radiative forcing of climate, Nature, 467,
696–699, https://doi.org/10.1038/nature09426, 2010. a
Hersbach, H., De Rosnay, P., Bell, B., Schepers, D., Simmons, A., Soci, C.,
Abdalla, S., Balmaseda, A., Balsamo, G., Bechtold, P., Berrisford, P.,
Bidlot, J., De Boisséson, E., Bonavita, M., Browne, P., Buizza, R.,
Dahlgren, P., Dee, D., Dragani, R., Diamantakis, M., Flemming, J., Forbes,
R., Geer, A., Haiden, T., Hólm, E., Haimberger, L., Hogan, R.,
Horányi, A., Janisková, M., Laloyaux, P., Lopez, P.,
Muñoz-Sabater, J., Peubey, C., Radu, R., Richardson, D., Thépaut,
J.-N., Vitart, F., Yang, X., Zsótér, E., and Zuo, H.:
Operational global reanalysis: progress, future directions and synergies
with NWP including updates on the ERA5 production status, Tech. Rep. 8th
October, ECWWF, https://doi.org/10.21957/tkic6g3wm, 2018. a
Hood, L. L.: The solar cycle variation of total ozone: Dynamical forcing in
the lower stratosphere, J. Geophys. Res.-Atmos., 102, 1355–1370,
https://doi.org/10.1029/96JD00210, 1997. a, b, c
Hood, L. L. and Soukharev, B. E.: Solar induced variations of odd nitrogen:
Multiple regression analysis of UARS HALOE data, Geophys. Res. Lett., 33,
101029, https://doi.org/10.1029/2006GL028122, 2006. a
Hood, L. L., Misios, S., Mitchell, D. M., Rozanov, E., Gray, L. J., Tourpali,
K., Matthes, K., Schmidt, H., Chiodo, G., Thiéblemont, R., Shindell, D.,
and Krivolutsky, A.: Solar signals in CMIP-5 simulations: the ozone
response, Q. J. Roy. Meteorol. Soc., 141, 2670–2689, https://doi.org/10.1002/qj.2553,
2015. a, b
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner,
P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb,
W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P.,
Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl,
J., and Marshall, S.: The Community Earth System Model: A Framework for
Collaborative Research, B. Am. Meteorol. Soc., 94, 1339–1360,
https://doi.org/10.1175/BAMS-D-12-00121.1, 2013. a
Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede, H., Baumgaertner, A., Gromov, S., and Kern, B.: Development cycle 2 of the Modular Earth Submodel System (MESSy2), Geosci. Model Dev., 3, 717–752, https://doi.org/10.5194/gmd-3-717-2010, 2010. a
Jöckel, P., Tost, H., Pozzer, A., Kunze, M., Kirner, O., Brenninkmeijer, C. A. M., Brinkop, S., Cai, D. S., Dyroff, C., Eckstein, J., Frank, F., Garny, H., Gottschaldt, K.-D., Graf, P., Grewe, V., Kerkweg, A., Kern, B., Matthes, S., Mertens, M., Meul, S., Neumaier, M., Nützel, M., Oberländer-Hayn, S., Ruhnke, R., Runde, T., Sander, R., Scharffe, D., and Zahn, A.: Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version 2.51, Geosci. Model Dev., 9, 1153–1200, https://doi.org/10.5194/gmd-9-1153-2016, 2016. a, b, c
Kinnison, D. E., Brasseur, G. P., Walters, S., Garcia, R. R., Marsh, D. R.,
Sassi, F., Harvey, V. L., Randall, C. E., Emmons, L., Lamarque, J. F., Hess,
P., Orlando, J. J., Tie, X. X., Randel, W., Pan, L. L., Gettelman, A.,
Granier, C., Diehl, T., Niemeier, U., and Simmons, A. J.: Sensitivity of
chemical tracers to meteorological parameters in the MOZART-3 chemical
transport model, J. Geophys. Res.-Atmos., 112, 1–24,
https://doi.org/10.1029/2006JD007879, 2007. a
Kodera, K. and Kuroda, Y.: Dynamical response to the solar cycle, J. Geophys.
Res., 107, 4749, https://doi.org/10.1029/2002JD002224, 2002. a
Kopp, G. and Lean, J. L.: A new, lower value of total solar irradiance:
Evidence and climate significance, Geophys. Res. Lett., 38,
L01706, https://doi.org/10.1029/2010GL045777, 2011. a, b
Koppers, G. A. A. and Murtagh, D. P.: Model studies of the influence of O2
photodissociation parameterizations in the Schumann-Runge bands on ozone
related photolysis in the upper atmosphere, Ann. Geophys., 14, 68–79,
https://doi.org/10.1007/s00585-996-0068-9, 1996. a
Krivova, N. A., Solanki, S. K., Wenzler, T., and Podlipnik, B.: Reconstruction
of solar UV irradiance since 1974, J. Geophys. Res., 114, D00I04,
https://doi.org/10.1029/2009JD012375, 2009. a, b
Krivova, N. A., Vieira, L. E. A., and Solanki, S. K.: Reconstruction of solar
spectral irradiance since the Maunder minimum, J. Geophys. Res.-Space
115, A12112, https://doi.org/10.1029/2010JA015431, 2010. a, b
Kruschke, T., Kunze, M., Matthes, K., Langematz, U., Sinnhuber, M., Reddmann, T., Versick, S., and Funke, B.: Quantifying uncertainties of climate signals related to the 11 year solar cycle – Part II: Dynamical impacts of irradiance and auroral forcing, in preparation, 2020. a
Kunze, M., Godolt, M., Langematz, U., Grenfell, J., Hamann-Reinus, A., and
Rauer, H.: Investigating the early Earth faint young Sun problem with a
general circulation model, Planet. Space Sci., 98, 77–92,
https://doi.org/10.1016/j.pss.2013.09.011, 2014. a
Labitzke, K.: Sunspots, the QBO, and the stratospheric temperature in the
north polar region, Geophys. Res. Lett., 14, 535–537, 1987. a
Labitzke, K. and van Loon, H.: Associations between the 11-year solar cycle,
the QBO and the atmosphere. Part I: The troposphere and stratosphere in the
northern hemisphere winter, J. Atmos. Sol.-Terr. Phys., 50, 197–206,
1988. a
Lean, J., Rottman, G., Kyle, H. L., Woods, T., Hickey, J., and Puga, L.:
Detection and parameterization of variations in solar mid- and
near-ultraviolet radiation, J. Geophys. Res., 102, 29939–29956,
https://doi.org/10.1029/97JD02092, 1997. a
Lean, J. L.: Evolution of the Sun's spectral irradiance since the Maunder
Minimum, Geophys. Res. Lett., 27, 2425–2428, https://doi.org/10.1029/2000GL000043,
2000. a, b, c
Lean, J. L., Cook, J., Marquette, W., and Johannesson, A.: Magnetic Sources of
the Solar Irradiance Cycle, Astrophys. J., 492, 390–401,
https://doi.org/10.1086/305015,
1998. a
Manney, G. L., Santee, M. L., Rex, M., Livesey, N. J., Pitts, M. C., Veefkind,
P., Nash, E. R., Wohltmann, I., Lehmann, R., Froidevaux, L., Poole, L. R.,
Schoeberl, M. R., Haffner, D. P., Davies, J., Dorokhov, V., Gernandt, H.,
Johnson, B., Kivi, R., Kyrö, E., Larsen, N., Levelt, P. F., Makshtas,
A., McElroy, C. T., Nakajima, H., Parrondo, M. C., Tarasick, D. W., von der
Gathen, P., Walker, K. A., and Zinoviev, N. S.: Unprecedented Arctic ozone
loss in 2011, Nature, 478, 469–475, https://doi.org/10.1038/nature10556, 2011. a
Marsh, D. R., Solomon, S. C., and Reynolds, A. E.: Empirical model of nitric
oxide in the lower thermosphere, J. Geophys. Res.-Space, 109, A07301, https://doi.org/10.1029/2003JA010199, 2004. a
Marsh, D. R., Garcia, R. R., Kinnison, D. E., Boville, B. A., Sassi, F.,
Solomon, S. C., and Matthes, K.: Modeling the whole atmosphere response to
solar cycle changes in radiative and geomagnetic forcing, J.
Geophys. Res., 112, D23306, https://doi.org/10.1029/2006JD008306, 2007. a
Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J.-F., Calvo, N., and
Polvani, L. M.: Climate Change from 1850 to 2005 Simulated in CESM1(WACCM),
J. Climate, 26, 7372–7391, https://doi.org/10.1175/JCLI-D-12-00558.1, 2013. a, b
Matthes, K., Langematz, U., Gray, L. L., Kodera, K., and Labitzke, K.:
Improved 11-year solar signal in the Freie Universität Berlin Climate
Middle Atmosphere Model (FUB-CMAM), J. Geophys. Res.-Atmos., 109, D06101,
https://doi.org/10.1029/2003JD004012, 2004. a
Matthes, K., Marsh, D. R., Garcia, R. R., Kinnison, D. E., Sassi, F., and
Walters, S.: Role of the QBO in modulating the influence of the 11 year
solar cycle on the atmosphere using constant forcings, J. Geophys. Res.-Atmos., 115, d18110, https://doi.org/10.1029/2009JD013020, 2010. a
Matthes, K., Funke, B., Andersson, M. E., Barnard, L., Beer, J., Charbonneau, P., Clilverd, M. A., Dudok de Wit, T., Haberreiter, M., Hendry, A., Jackman, C. H., Kretzschmar, M., Kruschke, T., Kunze, M., Langematz, U., Marsh, D. R., Maycock, A. C., Misios, S., Rodger, C. J., Scaife, A. A., Seppälä, A., Shangguan, M., Sinnhuber, M., Tourpali, K., Usoskin, I., van de Kamp, M., Verronen, P. T., and Versick, S.: Solar forcing for CMIP6 (v3.2), Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, 2017. a, b, c, d
Maycock, A. C., Matthes, K., Tegtmeier, S., Thiéblemont, R., and Hood, L.: The representation of solar cycle signals in stratospheric ozone – Part 1: A comparison of recently updated satellite observations, Atmos. Chem. Phys., 16, 10021–10043, https://doi.org/10.5194/acp-16-10021-2016, 2016. a
McCormack, J. P. and Hood, L. L.: Apparent solar cycle variations of upper
stratospheric ozone and temperature: Latitude and seasonal dependences, J.
Geophys. Res.-Atmos., 101, 20933–20944, https://doi.org/10.1029/96JD01817, 1996. a
Meehl, G. A., Arblaster, J. M., Matthes, K., Sassi, F., and van Loon, H.:
Amplifying the Pacific Climate System Response to a Small 11-Year Solar
Cycle Forcing, Science, 325, 1114–1118, https://doi.org/10.1126/science.1172872,
2009. a
Meftah, M., Damé, L., Bolsée, D., Hauchecorne, A., Pereira, N.,
Sluse, D., Cessateur, G., Irbah, A., Bureau, J., Weber, M., Bramstedt, K.,
Hilbig, T., Thiéblemont, R., Marchand, M., Lefèvre, F.,
Sarkissian, A., and Bekki, S.: SOLAR-ISS: A new reference spectrum based on
SOLAR/SOLSPEC observations, Astron. Astrophys., 611, A1,
https://doi.org/10.1051/0004-6361/201731316, 2018. a, b
Meftah, M., Damé, L., Bolsée, D., Pereira, N., Snow, M., Weber, M.,
Bramstedt, K., Hilbig, T., Cessateur, G., Boudjella, M.-Y., Marchand, M.,
Lefèvre, F., Thiéblemont, R., Sarkissian, A., Hauchecorne, A.,
Keckhut, P., and Bekki, S.: A New Version of the SOLAR-ISS Spectrum Covering
the 165–3000 nm Spectral Region, Solar Phys., 295, 14,
https://doi.org/10.1007/s11207-019-1571-y, 2020. a, b
Merkel, A., Harder, J. W., Marsh, D. R., Smith, A. K., Fontenla, J. M., and
Woods, T. N.: The impact of solar spectral irradiance variability on middle
atmospheric ozone, Geophys. Res. Lett., 38, 1–6,
https://doi.org/10.1029/2011GL047561, 2011. a, b
Minschwaner, K. and Siskind, D. E.: A new calculation of nitric oxide
photolysis in the stratosphere, mesosphere, and lower thermosphere, J.
Geophys. Res.-Atmos., 98, 20401, https://doi.org/10.1029/93JD02007, 1993. a
Misios, S., Mitchell, D. M., Gray, L. J., Tourpali, K., Matthes, K., Hood, L.,
Schmidt, H., Chiodo, G., Thiéblemont, R., Rozanov, E., and Krivolutsky,
A.: Solar signals in CMIP-5 Simulations: Effects of Atmosphere–ocean
Coupling, Q. J. Roy. Meteor. Soc., 142, 928–941, https://doi.org/10.1002/qj.2695, 2015. a
Mitchell, D. M., Misios, S., Gray, L. J., Tourpali, K., Matthes, K., Hood, L.,
Schmidt, H., Chiodo, G., Thiéblemont, R., Rozanov, E., Shindell, D., and
Krivolutsky, A.: Solar signals in CMIP-5 simulations: the stratospheric
pathway, Q. J. Roy. Meteor. Soc., 141, 2390–2403, https://doi.org/10.1002/qj.2530,
2015. a, b
Naujokat, B.: An update of the observed Quasi-Biennial Oscillation of the
stratospheric winds over the tropics, J. Atmos. Sci., 43, 1873–1877, 1986. a
Neale, R. B., Richter, J., Park, S., Lauritzen, P. H., Vavrus, S. J., Rasch,
P. J., and Zhang, M.: The Mean Climate of the Community Atmosphere Model
(CAM4) in Forced SST and Fully Coupled Experiments, J. Climate, 26,
5150–5168, https://doi.org/10.1175/JCLI-D-12-00236.1, 2013. a
Nissen, K. M., Matthes, K., Langematz, U., and Mayer, B.: Towards a better representation of the solar cycle in general circulation models, Atmos. Chem. Phys., 7, 5391–5400, https://doi.org/10.5194/acp-7-5391-2007, 2007. a, b
Oberländer, S., Langematz, U., Matthes, K., Kunze, M., Kubin, A., Harder, J.,
Krivova, N. A., Solanki, S. K., Pagaran, J., and Weber, M.: The influence of
spectral solar irradiance data on stratospheric heating rates during the 11
year solar cycle, Geophys. Res. Lett., 39, L01801, https://doi.org/10.1029/2011GL049539,
2012. a
Randel, W., Smith, K., Austin, J., Barnett, J., Claud, C., Gillett, N.,
Keckhut, P., Langematz, U., Lin, R., Long, C., Mearsm, C., Miller, A., Nash,
J., Seidel, D., Thompson, D., Wu, F., and Yoden, S.: An update of
stratospheric temperature trends, J. Geophys. Res., 114, D02107,
https://doi.org/10.1029/2005JD006744, 2009. a
Randel, W. J. and Wu, F.: A stratospheric ozone profile data set for
1979–2005: Variability, trends, and comparisons with column ozone data, J.
Geophys. Res., 112, D06313, https://doi.org/10.1029/2006JD007339, 2007. a, b
Remsberg, E., Russell, J. M., Gordley, L. L., Gille, J. C., and Bailey, P. L.:
Implications of the Stratospheric Water Vapor Distribution as Determined
from the Nimbus 7 LIMS Experiment, J. Atmos. Sci., 41, 2934–2948,
https://doi.org/10.1175/1520-0469(1984)041<2934:IOTSWV>2.0.CO;2, 1984. a
Remsberg, E., Damadeo, R., Natarajan, M., and Bhatt, P.: Observed Responses of
Mesospheric Water Vapor to Solar Cycle and Dynamical Forcings, J. Geophys.
Res.-Atmos., 123, 3830–3843, https://doi.org/10.1002/2017JD028029, 2018. a
Rex, M., Salawitch, R. J., Harris, N. R. P., von der Gathen, P., Braathen,
G. O., Schulz, A., Deckelmann, H., Chipperfield, M., Sinnhuber, B.-M.,
Reimer, E., Alfier, R., Bevilacqua, R., Hoppel, K., Fromm, M., Lumpe, J.,
Küllmann, H., Kleinböhl, A., Bremer, H., von König, M.,
Künzi, K., Toohey, D., Vömel, H., Richard, E., Aikin, K., Jost,
H., Greenblatt, J. B., Loewenstein, M., Podolske, J. R., Webster, C. R.,
Flesch, G. J., Scott, D. C., Herman, R. L., Elkins, J. W., Ray, E. A., Moore,
F. L., Hurst, D. F., Romashkin, P., Toon, G. C., Sen, B., Margitan, J. J.,
Wennberg, P., Neuber, R., Allart, M., Bojkov, B. R., Claude, H., Davies, J.,
Davies, W., De Backer, H., Dier, H., Dorokhov, V., Fast, H., Kondo, Y.,
Kyrö, E., Litynska, Z., Mikkelsen, I. S., Molyneux, M. J., Moran, E.,
Nagai, T., Nakane, H., Parrondo, C., Ravegnani, F., Skrivankova, P., Viatte,
P., and Yushkov, V.: Chemical depletion of Arctic ozone in winter
1999/2000, J. Geophys. Res., 107, 8276, https://doi.org/10.1029/2001JD000533, 2002. a
Roble, R. G. and Ridley, E. C.: An auroral model for the NCAR thermosphere
general circulation model (TGCM), Ann. Geophys., 6, 369–383, 1987. a
Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta,
Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A., Schlese,
U., Schulzweida, U., and Tompkins, A.: The atmospheric general circulation
model ECHAM5, Part I, Tech. Rep. No. 349, Max-Planck-Institut für
Meteorologie, Hamburg, 2003. a
Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kornblueh,
L., Manzini, E., Schlese, U., and Schulzweida, U.: Sensitivity of Simulated
Climate to Horizontal and Vertical Resolution in the ECHAM5 Atmosphere
Model, J. Climate, 19, 3771–3791, https://doi.org/10.1175/JCLI3824.1, 2006. a
Sander, R., Baumgaertner, A., Gromov, S., Harder, H., Jöckel, P., Kerkweg, A., Kubistin, D., Regelin, E., Riede, H., Sandu, A., Taraborrelli, D., Tost, H., and Xie, Z.-Q.: The atmospheric chemistry box model CAABA/MECCA-3.0, Geosci. Model Dev., 4, 373–380, https://doi.org/10.5194/gmd-4-373-2011, 2011. a
Sander, R., Jöckel, P., Kirner, O., Kunert, A. T., Landgraf, J., and Pozzer, A.: The photolysis module JVAL-14, compatible with the MESSy standard, and the JVal PreProcessor (JVPP), Geosci. Model Dev., 7, 2653–2662, https://doi.org/10.5194/gmd-7-2653-2014, 2014. a
Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R.,
Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K.,
Orkin, V. L., and Wine, P. H.: Chemical Kinetics and Photochemical Data for
Use in Atmospheric Studies, Tech. Rep. Evaluation No. 17, JPL Publication
10-6, Jet Propulsion Laboratory, Pasadena, 2011. a
Schieferdecker, T., Lossow, S., Stiller, G. P., and von Clarmann, T.: Is there a solar signal in lower stratospheric water vapour?, Atmos. Chem. Phys., 15, 9851–9863, https://doi.org/10.5194/acp-15-9851-2015, 2015. a
Seinfeld, J. and Pandis, S.: Atmospheric Chemistry and Physics: From Air
Pollution to Climate Change, John Wiley & Sons Inc., Hoboken, New Jersey,
USA, 2nd Edn., 2006. a
Shapiro, A. V., Rozanov, E., Egorova, T., Shapiro, A. I., Peter, T., and
Schmutz, W.: Sensitivity of the Earth's middle atmosphere to short-term
solar variability and its dependence on the choice of solar irradiance data
set, J. Atmos. Sol.-Terr. Phys., 73, 348–355,
https://doi.org/10.1016/j.jastp.2010.02.011, 2011. a
Sinnhuber, M. and Funke, B.: Energetic electron precipitation into the
atmosphere, in: The Dynamic Loss of Earth's Radiation Belts, pp. 279–321,
Elsevier, https://doi.org/10.1016/B978-0-12-813371-2.00009-3, 2020. a
Sinnhuber, M., Berger, U., Funke, B., Nieder, H., Reddmann, T., Stiller, G., Versick, S., von Clarmann, T., and Wissing, J. M.: NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002–2010, Atmos. Chem. Phys., 18, 1115–1147, https://doi.org/10.5194/acp-18-1115-2018, 2018. a
Snow, M., Weber, M., Machol, J., Viereck, R., and Richard, E.: Comparison of
Magnesium II core-to-wing ratio observations during solar minimum 23/24,
J. Space Weather Spac., 4, A04,
https://doi.org/10.1051/swsc/2014001, 2014. a
Solanki, S. K., Schüssler, M., and Fligge, M.: Evolution of the Sun's
large-scale magnetic field since the Maunder minimum, Nature, 408, 445–447,
https://doi.org/10.1038/35044027, 2000. a
Solomon, S. C. and Qian, L.: Solar extreme-ultraviolet irradiance for general
circulation models, J. Geophys. Res., 110, A10306,
https://doi.org/10.1029/2005JA011160, 2005. a
Soukharev, B. E. and Hood, L. L.: Solar cycle variation of stratospheric
ozone: Multiple regression analysis of long-term satellite data sets and
comparisons with models, J. Geophys. Res.-Atmos., 111, 1–18,
https://doi.org/10.1029/2006JD007107, 2006. a, b
Sukhodolov, T., Rozanov, E., Ball, W. T., Bais, A., Tourpali, K., Shapiro,
A. I., Telford, P., Smyshlyaev, S., Fomin, B., Sander, R., Bossay, S., Bekki,
S., Marchand, M., Chipperfield, M. P., Dhomse, S., Haigh, J. D., Peter, T.,
and Schmutz, W.: Evaluation of simulated photolysis rates and their response
to solar irradiance variability, J. Geophys. Res.-Atmos., 121, 6066–6084,
https://doi.org/10.1002/2015JD024277, 2016. a
Swartz, W. H., Stolarski, R. S., Oman, L. D., Fleming, E. L., and Jackman, C. H.: Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model, Atmos. Chem. Phys., 12, 5937–5948, https://doi.org/10.5194/acp-12-5937-2012, 2012. a
Thuillier, G., Hersé, M., Simon, P. C., Labs, D., Mandel, H., Gillotay,
D., and Foujols, T.: The Visible Solar Spectral Irradiance from 350 to 850
nm As Measured by the SOLSPEC Spectrometer During the ATLAS I Mission, Sol.
Phys., 177, 41–61, https://doi.org/10.1023/A:1004953215589, 1998. a
Thuillier, G., Floyd, L., Woods, T., Cebula, R., Hilsenrath, E., Hersé, M.,
and Labs, D.: Solar irradiance reference spectra for two solar active levels,
Adv. Space Res., 34, 256–261, https://doi.org/10.1016/j.asr.2002.12.004, 2004.
a, b, c
Unruh, Y. C., Solanki, S. K., and Fligge, M.: The spectral dependence of
facular contrast and solar irradiance variations, Astron. Astrophys., 345,
635–642, 1999. a
van Loon, H., Meehl, G. A., and Shea, D. J.: Coupled air-sea response to solar
forcing in the Pacific region during northern winter, J. Geophys. Res.-Atmos., 112, 1–8, https://doi.org/10.1029/2006JD007378, 2007. a
von Storch, H. and Zwiers, F. W.: Statistical Analysis in Climate Research,
Cambridge University Press, https://doi.org/10.1017/CBO9780511612336, 1999. a, b
Wang, Y., Lean, J. L., and Sheeley Jr., N. R.: Modeling the Sun's Magnetic
Field and Irradiance since 1713, Astrophys. J., 625, 522–538,
https://doi.org/10.1086/429689, 2005. a
Yeo, K. L., Krivova, N. A., Solanki, S. K., and Glassmeier, K. H.:
Reconstruction of total and spectral solar irradiance from 1974 to 2013
based on KPVT, SoHO/MDI, and SDO/HMI observations, Astron. Astrophys., 570, A85,
https://doi.org/10.1051/0004-6361/201423628, 2014. a, b, c
Yeo, K. L., Ball, W. T., Krivova, N. A., Solanki, S. K., Unruh, Y. C., and
Morrill, J.: UV solar irradiance in observations and the NRLSSI and SATIRE-S
models, J. Geophys. Res.-Space, 120, 6055–6070, 2015JA021277, https://doi.org/10.1002/2015JA021277,
2015. a, b
Zerefos, C. S., Tourpali, K., Bojkov, B. R., Balis, D. S., Rognerund, B., and
Isaksen, I. S. A.: Solar activity-total column ozone relationships:
Observations and model studies with heterogeneous chemistry, J. Geophys.
Res.-Atmos., 102, 1561–1569, https://doi.org/10.1029/96JD02395, 1997. a
Zhong, W., Osprey, S. M., Gray, L. J., and Haigh, J. D.: Influence of the
prescribed solar spectrum on calculations of atmospheric temperature,
Geophys. Res. Lett., 35, L22813, https://doi.org/10.1029/2008GL035993, 2008. a
Short summary
Modelling the response of the atmosphere and its constituents to 11-year solar variations is subject to a certain uncertainty arising from the solar irradiance data set used in the chemistry–climate model (CCM) and the applied CCM itself.
This study reveals significant influences from both sources on the variations in the solar response in the stratosphere and mesosphere.
However, there are also regions where the random, unexplained part of the variations in the solar response is largest.
Modelling the response of the atmosphere and its constituents to 11-year solar variations is...
Altmetrics
Final-revised paper
Preprint