Articles | Volume 20, issue 11
Atmos. Chem. Phys., 20, 6991–7019, 2020
https://doi.org/10.5194/acp-20-6991-2020

Special issue: The Modular Earth Submodel System (MESSy) (ACP/GMD inter-journal...

Atmos. Chem. Phys., 20, 6991–7019, 2020
https://doi.org/10.5194/acp-20-6991-2020

Research article 12 Jun 2020

Research article | 12 Jun 2020

Quantifying uncertainties of climate signals in chemistry climate models related to the 11-year solar cycle – Part 1: Annual mean response in heating rates, temperature, and ozone

Markus Kunze et al.

Related authors

Slow feedbacks resulting from strongly enhanced atmospheric methane mixing ratios in a chemistry–climate model with mixed-layer ocean
Laura Stecher, Franziska Winterstein, Martin Dameris, Patrick Jöckel, Michael Ponater, and Markus Kunze
Atmos. Chem. Phys., 21, 731–754, https://doi.org/10.5194/acp-21-731-2021,https://doi.org/10.5194/acp-21-731-2021, 2021
Short summary
The response of mesospheric H2O and CO to solar irradiance variability in models and observations
Arseniy Karagodin-Doyennel, Eugene Rozanov, Ales Kuchar, William Ball, Pavle Arsenovic, Ellis Remsberg, Patrick Jöckel, Markus Kunze, David A. Plummer, Andrea Stenke, Daniel Marsh, Doug Kinnison, and Thomas Peter
Atmos. Chem. Phys., 21, 201–216, https://doi.org/10.5194/acp-21-201-2021,https://doi.org/10.5194/acp-21-201-2021, 2021
Short summary
Projecting ozone hole recovery using an ensemble of chemistry–climate models weighted by model performance and independence
Matt Amos, Paul J. Young, J. Scott Hosking, Jean-François Lamarque, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Douglas Kinnison, Ole Kirner, Markus Kunze, Marion Marchand, David A. Plummer, David Saint-Martin, Kengo Sudo, Simone Tilmes, and Yousuke Yamashita
Atmos. Chem. Phys., 20, 9961–9977, https://doi.org/10.5194/acp-20-9961-2020,https://doi.org/10.5194/acp-20-9961-2020, 2020
Short summary
The representation of solar cycle signals in stratospheric ozone – Part 2: Analysis of global models
Amanda C. Maycock, Katja Matthes, Susann Tegtmeier, Hauke Schmidt, Rémi Thiéblemont, Lon Hood, Hideharu Akiyoshi, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Oliver Kirner, Markus Kunze, Marion Marchand, Daniel R. Marsh, Martine Michou, David Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Yousuke Yamashita, and Kohei Yoshida
Atmos. Chem. Phys., 18, 11323–11343, https://doi.org/10.5194/acp-18-11323-2018,https://doi.org/10.5194/acp-18-11323-2018, 2018
Short summary
Solar forcing for CMIP6 (v3.2)
Katja Matthes, Bernd Funke, Monika E. Andersson, Luke Barnard, Jürg Beer, Paul Charbonneau, Mark A. Clilverd, Thierry Dudok de Wit, Margit Haberreiter, Aaron Hendry, Charles H. Jackman, Matthieu Kretzschmar, Tim Kruschke, Markus Kunze, Ulrike Langematz, Daniel R. Marsh, Amanda C. Maycock, Stergios Misios, Craig J. Rodger, Adam A. Scaife, Annika Seppälä, Ming Shangguan, Miriam Sinnhuber, Kleareti Tourpali, Ilya Usoskin, Max van de Kamp, Pekka T. Verronen, and Stefan Versick
Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017,https://doi.org/10.5194/gmd-10-2247-2017, 2017
Short summary

Related subject area

Subject: Radiation | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative
Kévin Lamy, Thierry Portafaix, Béatrice Josse, Colette Brogniez, Sophie Godin-Beekmann, Hassan Bencherif, Laura Revell, Hideharu Akiyoshi, Slimane Bekki, Michaela I. Hegglin, Patrick Jöckel, Oliver Kirner, Ben Liley, Virginie Marecal, Olaf Morgenstern, Andrea Stenke, Guang Zeng, N. Luke Abraham, Alexander T. Archibald, Neil Butchart, Martyn P. Chipperfield, Glauco Di Genova, Makoto Deushi, Sandip S. Dhomse, Rong-Ming Hu, Douglas Kinnison, Michael Kotkamp, Richard McKenzie, Martine Michou, Fiona M. O'Connor, Luke D. Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Eugene Rozanov, David Saint-Martin, Kengo Sudo, Taichu Y. Tanaka, Daniele Visioni, and Kohei Yoshida
Atmos. Chem. Phys., 19, 10087–10110, https://doi.org/10.5194/acp-19-10087-2019,https://doi.org/10.5194/acp-19-10087-2019, 2019
Short summary
Effects of Arctic stratospheric ozone changes on spring precipitation in the northwestern United States
Xuan Ma, Fei Xie, Jianping Li, Xinlong Zheng, Wenshou Tian, Ruiqiang Ding, Cheng Sun, and Jiankai Zhang
Atmos. Chem. Phys., 19, 861–875, https://doi.org/10.5194/acp-19-861-2019,https://doi.org/10.5194/acp-19-861-2019, 2019
Key drivers of ozone change and its radiative forcing over the 21st century
Fernando Iglesias-Suarez, Douglas E. Kinnison, Alexandru Rap, Amanda C. Maycock, Oliver Wild, and Paul J. Young
Atmos. Chem. Phys., 18, 6121–6139, https://doi.org/10.5194/acp-18-6121-2018,https://doi.org/10.5194/acp-18-6121-2018, 2018
Short summary
Implications of potential future grand solar minimum for ozone layer and climate
Pavle Arsenovic, Eugene Rozanov, Julien Anet, Andrea Stenke, Werner Schmutz, and Thomas Peter
Atmos. Chem. Phys., 18, 3469–3483, https://doi.org/10.5194/acp-18-3469-2018,https://doi.org/10.5194/acp-18-3469-2018, 2018
Short summary
Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model
W. H. Swartz, R. S. Stolarski, L. D. Oman, E. L. Fleming, and C. H. Jackman
Atmos. Chem. Phys., 12, 5937–5948, https://doi.org/10.5194/acp-12-5937-2012,https://doi.org/10.5194/acp-12-5937-2012, 2012

Cited articles

Ball, W. T., Unruh, Y. C., Krivova, N., Solanki, S. K., and Harder, J. W.: Solar irradiance variability : a six-year comparison between SORCE observations and the SATIRE model, Astro. Astrophys., 530, A71, https://doi.org/10.1051/0004-6361/201016189, 2011. a
Ball, W. T., Krivova, N. A., Unruh, Y. C., Haigh, J. D., and Solanki, S. K.: A New SATIRE-S Spectral Solar Irradiance Reconstruction for Solar Cycles 21–23 and Its Implications for Stratospheric Ozone, J. Atmos. Sci., 71, 4086–4101, https://doi.org/10.1175/JAS-D-13-0241.1, 2014. a
Ball, W. T., Haigh, J. D., Rozanov, E. V., Kuchar, A., Sukhodolov, T., Tummon, F., Shapiro, A. V., and Schmutz, W.: High solar cycle spectral variations inconsistent with stratospheric ozone observations, Nat. Geosci., 9, 206–209, https://doi.org/10.1038/ngeo2640, 2016. a
Ball, W. T., Alsing, J., Staehelin, J., Davis, S. M., Froidevaux, L., and Peter, T.: Stratospheric ozone trends for 1985–2018: sensitivity to recent large variability, Atmos. Chem. Phys., 19, 12731–12748, https://doi.org/10.5194/acp-19-12731-2019, 2019. a
Beig, G., Fadnavis, S., Schmidt, H., and Brasseur, G. P.: Inter-comparison of 11-year solar cycle response in mesospheric ozone and temperature obtained by HALOE satellite data and HAMMONIA model, J. Geophys. Res.-Atmos., 117, D00P10, https://doi.org/10.1029/2011JD015697, 2012. a
Download
Short summary
Modelling the response of the atmosphere and its constituents to 11-year solar variations is subject to a certain uncertainty arising from the solar irradiance data set used in the chemistry–climate model (CCM) and the applied CCM itself. This study reveals significant influences from both sources on the variations in the solar response in the stratosphere and mesosphere. However, there are also regions where the random, unexplained part of the variations in the solar response is largest.
Altmetrics
Final-revised paper
Preprint