Articles | Volume 20, issue 11
https://doi.org/10.5194/acp-20-6991-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-6991-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying uncertainties of climate signals in chemistry climate models related to the 11-year solar cycle – Part 1: Annual mean response in heating rates, temperature, and ozone
Markus Kunze
CORRESPONDING AUTHOR
Institut für Meteorologie, Freie Universität Berlin, 12165 Berlin, Germany
Tim Kruschke
Swedish Meteorological and Hydrological Institute – Rossby Centre, Norrköping, Sweden
Ulrike Langematz
Institut für Meteorologie, Freie Universität Berlin, 12165 Berlin, Germany
Miriam Sinnhuber
Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
Thomas Reddmann
Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
Katja Matthes
Research Division Ocean Circulation and Climate,
GEOMAR Helmholtz Centre for Ocean Research, 24105 Kiel, Germany
Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
Related authors
Markus Kunze, Christoph Zülicke, Tarique A. Siddiqui, Claudia C. Stephan, Yosuke Yamazaki, Claudia Stolle, Sebastian Borchert, and Hauke Schmidt
Geosci. Model Dev., 18, 3359–3385, https://doi.org/10.5194/gmd-18-3359-2025, https://doi.org/10.5194/gmd-18-3359-2025, 2025
Short summary
Short summary
We present the Icosahedral Nonhydrostatic (ICON) general circulation model with an upper-atmospheric extension with the physics package for numerical weather prediction (UA-ICON(NWP)). We optimized the parameters for the gravity wave parameterizations and achieved realistic modeling of the thermal and dynamic states of the mesopause regions. UA-ICON(NWP) now shows a realistic frequency of major sudden stratospheric warmings and well-represented solar tides in temperature.
Matthias Nützel, Laura Stecher, Patrick Jöckel, Franziska Winterstein, Martin Dameris, Michael Ponater, Phoebe Graf, and Markus Kunze
Geosci. Model Dev., 17, 5821–5849, https://doi.org/10.5194/gmd-17-5821-2024, https://doi.org/10.5194/gmd-17-5821-2024, 2024
Short summary
Short summary
We extended the infrastructure of our modelling system to enable the use of an additional radiation scheme. After calibrating the model setups to the old and the new radiation scheme, we find that the simulation with the new scheme shows considerable improvements, e.g. concerning the cold-point temperature and stratospheric water vapour. Furthermore, perturbations of radiative fluxes associated with greenhouse gas changes, e.g. of methane, tend to be improved when the new scheme is employed.
Laura Stecher, Franziska Winterstein, Martin Dameris, Patrick Jöckel, Michael Ponater, and Markus Kunze
Atmos. Chem. Phys., 21, 731–754, https://doi.org/10.5194/acp-21-731-2021, https://doi.org/10.5194/acp-21-731-2021, 2021
Short summary
Short summary
This study investigates the impact of strongly increased atmospheric methane mixing ratios on the Earth's climate. An interactive model system including atmospheric dynamics, chemistry, and a mixed-layer ocean model is used to analyse the effect of doubled and quintupled methane mixing ratios. We assess feedbacks on atmospheric chemistry and changes in the stratospheric circulation, focusing on the impact of tropospheric warming, and their relevance for the model's climate sensitivity.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Ales Kuchar, William Ball, Pavle Arsenovic, Ellis Remsberg, Patrick Jöckel, Markus Kunze, David A. Plummer, Andrea Stenke, Daniel Marsh, Doug Kinnison, and Thomas Peter
Atmos. Chem. Phys., 21, 201–216, https://doi.org/10.5194/acp-21-201-2021, https://doi.org/10.5194/acp-21-201-2021, 2021
Short summary
Short summary
The solar signal in the mesospheric H2O and CO was extracted from the CCMI-1 model simulations and satellite observations using multiple linear regression (MLR) analysis. MLR analysis shows a pronounced and statistically robust solar signal in both H2O and CO. The model results show a general agreement with observations reproducing a negative/positive solar signal in H2O/CO. The pattern of the solar signal varies among the considered models, reflecting some differences in the model setup.
Miriam Sinnhuber, Christina Arras, Stefan Bender, Bernd Funke, Hanli Liu, Daniel R. Marsh, Thomas Reddmann, Eugene Rozanov, Timofei Sukhodolov, Monika E. Szelag, and Jan Maik Wissing
Atmos. Chem. Phys., 25, 14719–14734, https://doi.org/10.5194/acp-25-14719-2025, https://doi.org/10.5194/acp-25-14719-2025, 2025
Short summary
Short summary
Nitric oxide in the upper atmosphere varies with solar activity. Observations show that this starts a chain of processes affecting the ozone layer and climate system. This is often underestimated in models. We compare five models which show large differences in simulated NO. Analysis of these discrepancies identify two processes which interact with each other: the balance between atomic and molecular oxygen in the thermosphere, and a poleward - downward transport in the winter thermosphere.
Maryam Ramezani Ziarani, Miriam Sinnhuber, Thomas Reddmann, Bernd Funke, Stefan Bender, and Michael Prather
Geosci. Model Dev., 18, 7891–7905, https://doi.org/10.5194/gmd-18-7891-2025, https://doi.org/10.5194/gmd-18-7891-2025, 2025
Short summary
Short summary
Our study aims to present a new method for incorporating top-down solar forcing into stratospheric ozone relying on linearized ozone scheme. The addition of geomagnetic forcing led to significant ozone losses in the polar upper stratosphere of both hemispheres due to the catalytic cycles involving NOy. In addition to the particle precipitation effect, accounting for solar UV variability in the ICON-ART model leads to the changes in ozone in the tropical stratosphere.
Gholam Ali Hoshyaripour, Andreas Baer, Sascha Bierbauer, Julia Bruckert, Dominik Brunner, Jochen Foerstner, Arash Hamzehloo, Valentin Hanft, Corina Keller, Martina Klose, Pankaj Kumar, Patrick Ludwig, Enrico Metzner, Lisa Muth, Andreas Pauling, Nikolas Porz, Thomas Reddmann, Luca Reißig, Roland Ruhnke, Khompat Satitkovitchai, Axel Seifert, Miriam Sinnhuber, Michael Steiner, Stefan Versick, Heike Vogel, Michael Weimer, Sven Werchner, and Corinna Hoose
EGUsphere, https://doi.org/10.5194/egusphere-2025-3400, https://doi.org/10.5194/egusphere-2025-3400, 2025
Short summary
Short summary
This paper presents recent advances in ICON-ART, a modeling system that simulates atmospheric composition—such as gases and particles—and their interactions with weather and climate. By integrating updated chemistry, emissions, and aerosol processes, ICON-ART enables detailed, scale-spanning simulations. It supports both scientific research and operational forecasts, contributing to improved air quality and climate predictions.
Sarah Vervalcke, Quentin Errera, Simon Chabrillat, Marc Op de beeck, Thomas Reddmann, Gabriele Stiller, Roland Eichinger, and Emmanuel Mahieu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3597, https://doi.org/10.5194/egusphere-2025-3597, 2025
Short summary
Short summary
This study presents three simulations of atmospheric chemistry with the BASCOE model, driven by different meteorological data sets. These simulations include newly implemented SF6 chemistry, useful for stratospheric transport studies. Results compare well with satellite observations. The lifetime of six trace gases is computed and agrees with the literature, but SF6 shows larger sensitivity to the choice of meteorology. The lifetime of SF6 ranges from 1900 to 2600 years.
Laura Schaffer, Andreas Boesch, Johanna Baehr, and Tim Kruschke
Nat. Hazards Earth Syst. Sci., 25, 2081–2096, https://doi.org/10.5194/nhess-25-2081-2025, https://doi.org/10.5194/nhess-25-2081-2025, 2025
Short summary
Short summary
We developed a simple and effective model to predict storm surges in the German Bight, using wind data and a multiple linear regression approach. Trained on historical data from 1959 to 2022, our storm surge model demonstrates high predictive skill and performs as well as more complex models, despite its simplicity. It can predict both moderate and extreme storm surges, making it a valuable tool for future climate change studies.
Mehdi Pasha Karami, Torben Koenigk, Shiyu Wang, René Navarro Labastida, Tim Kruschke, Aude Carreric, Pablo Ortega, Klaus Wyser, Ramon Fuentes Franco, Agatha M. de Boer, Marie Sicard, and Aitor Aldama Campino
EGUsphere, https://doi.org/10.5194/egusphere-2025-2653, https://doi.org/10.5194/egusphere-2025-2653, 2025
Short summary
Short summary
This study uses a high-resolution global climate model to simulate future climate, focusing on the Arctic and North Atlantic. The model captures observed sea ice loss and Atlantic circulation trends, projecting a nearly ice-free Arctic by 2040. It introduces a new method to quantify deep water formation, revealing how different ocean regions contribute to the weakening of overturning circulation in a warming climate.
Markus Kunze, Christoph Zülicke, Tarique A. Siddiqui, Claudia C. Stephan, Yosuke Yamazaki, Claudia Stolle, Sebastian Borchert, and Hauke Schmidt
Geosci. Model Dev., 18, 3359–3385, https://doi.org/10.5194/gmd-18-3359-2025, https://doi.org/10.5194/gmd-18-3359-2025, 2025
Short summary
Short summary
We present the Icosahedral Nonhydrostatic (ICON) general circulation model with an upper-atmospheric extension with the physics package for numerical weather prediction (UA-ICON(NWP)). We optimized the parameters for the gravity wave parameterizations and achieved realistic modeling of the thermal and dynamic states of the mesopause regions. UA-ICON(NWP) now shows a realistic frequency of major sudden stratospheric warmings and well-represented solar tides in temperature.
Wenjuan Huo, Tobias Spiegl, Sebastian Wahl, Katja Matthes, Ulrike Langematz, Holger Pohlmann, and Jürgen Kröger
Atmos. Chem. Phys., 25, 2589–2612, https://doi.org/10.5194/acp-25-2589-2025, https://doi.org/10.5194/acp-25-2589-2025, 2025
Short summary
Short summary
Uncertainties of the solar signals in the middle atmosphere are assessed based on large ensemble simulations with multiple climate models. Our results demonstrate that the 11-year solar signals in the shortwave heating rate, temperature, and ozone anomalies are significant and robust. The simulated dynamical responses are model-dependent, and solar imprints in the polar night jet are influenced by biases in the model used.
Anja Lindenthal, Claudia Hinrichs, Simon Jandt-Scheelke, Tim Kruschke, Priidik Lagemaa, Eefke M. van der Lee, Ilja Maljutenko, Helen E. Morrison, Tabea R. Panteleit, and Urmas Raudsepp
State Planet, 4-osr8, 16, https://doi.org/10.5194/sp-4-osr8-16-2024, https://doi.org/10.5194/sp-4-osr8-16-2024, 2024
Short summary
Short summary
In 2022, large parts of the Baltic Sea experienced the third-warmest to warmest summer and autumn temperatures since 1997 and several marine heatwaves (MHWs). Using remote sensing, reanalysis, and in situ data, this study characterizes regional differences in MHW properties in the Baltic Sea in 2022. Furthermore, it presents an analysis of long-term trends and the relationship between atmospheric warming and MHW occurrences, including their propagation into deeper layers.
Matthias Nützel, Laura Stecher, Patrick Jöckel, Franziska Winterstein, Martin Dameris, Michael Ponater, Phoebe Graf, and Markus Kunze
Geosci. Model Dev., 17, 5821–5849, https://doi.org/10.5194/gmd-17-5821-2024, https://doi.org/10.5194/gmd-17-5821-2024, 2024
Short summary
Short summary
We extended the infrastructure of our modelling system to enable the use of an additional radiation scheme. After calibrating the model setups to the old and the new radiation scheme, we find that the simulation with the new scheme shows considerable improvements, e.g. concerning the cold-point temperature and stratospheric water vapour. Furthermore, perturbations of radiative fluxes associated with greenhouse gas changes, e.g. of methane, tend to be improved when the new scheme is employed.
Tabea Rahm, Robin Pilch Kedzierski, Martje Hänsch, and Katja Matthes
EGUsphere, https://doi.org/10.5194/egusphere-2024-667, https://doi.org/10.5194/egusphere-2024-667, 2024
Preprint archived
Short summary
Short summary
Sudden Stratospheric Warmings (SSWs) are extreme wintertime events that can impact surface weather. However, a distinct surface response is not observed for every SSW. Here, we classify SSWs that do and do not impact the troposphere in ERA5 reanalysis data. In addition, we evaluate the effects of two kinds of waves: planetary and synoptic-scale. Our findings emphasize that the lower stratosphere and synoptic-scale waves play crucial roles in coupling the SSW signal to the surface.
Bernd Funke, Thierry Dudok de Wit, Ilaria Ermolli, Margit Haberreiter, Doug Kinnison, Daniel Marsh, Hilde Nesse, Annika Seppälä, Miriam Sinnhuber, and Ilya Usoskin
Geosci. Model Dev., 17, 1217–1227, https://doi.org/10.5194/gmd-17-1217-2024, https://doi.org/10.5194/gmd-17-1217-2024, 2024
Short summary
Short summary
We outline a road map for the preparation of a solar forcing dataset for the upcoming Phase 7 of the Coupled Model Intercomparison Project (CMIP7), considering the latest scientific advances made in the reconstruction of solar forcing and in the understanding of climate response while also addressing the issues that were raised during CMIP6.
Monali Borthakur, Miriam Sinnhuber, Alexandra Laeng, Thomas Reddmann, Peter Braesicke, Gabriele Stiller, Thomas von Clarmann, Bernd Funke, Ilya Usoskin, Jan Maik Wissing, and Olesya Yakovchuk
Atmos. Chem. Phys., 23, 12985–13013, https://doi.org/10.5194/acp-23-12985-2023, https://doi.org/10.5194/acp-23-12985-2023, 2023
Short summary
Short summary
Reduced ozone levels resulting from ozone depletion mean more exposure to UV radiation, which has various effects on human health. We analysed solar events to see what influence it has on the chemistry of Earth's atmosphere and how this atmospheric chemistry change can affect the ozone. To do this, we used an atmospheric model considering only chemistry and compared it with satellite data. The focus was mainly on the contribution of chlorine, and we found about 10 %–20 % ozone loss due to that.
Tobias C. Spiegl, Ulrike Langematz, Holger Pohlmann, and Jürgen Kröger
Weather Clim. Dynam., 4, 789–807, https://doi.org/10.5194/wcd-4-789-2023, https://doi.org/10.5194/wcd-4-789-2023, 2023
Short summary
Short summary
We investigate the role of the solar cycle in atmospheric domains with the Max Plank Institute Earth System Model in high resolution (MPI-ESM-HR). We focus on the tropical upper stratosphere, Northern Hemisphere (NH) winter dynamics and potential surface imprints. We found robust solar signals at the tropical stratopause and a weak dynamical response in the NH during winter. However, we cannot confirm the importance of the 11-year solar cycle for decadal variability in the troposphere.
Thomas Reddmann, Miriam Sinnhuber, Jan Maik Wissing, Olesya Yakovchuk, and Ilya Usoskin
Atmos. Chem. Phys., 23, 6989–7000, https://doi.org/10.5194/acp-23-6989-2023, https://doi.org/10.5194/acp-23-6989-2023, 2023
Short summary
Short summary
Recent analyses of isotopic records of ice cores and sediments have shown that very strong explosions may occur on the Sun, perhaps about one such explosion every 1000 years. Such explosions pose a real threat to humankind. It is therefore of great interest to study the impact of such explosions on Earth. We analyzed how the explosions would affect the chemistry of the middle atmosphere and show that the related ozone loss is not dramatic and that the atmosphere will recover within 1 year.
Gerald Wetzel, Michael Höpfner, Hermann Oelhaf, Felix Friedl-Vallon, Anne Kleinert, Guido Maucher, Miriam Sinnhuber, Janna Abalichin, Angelika Dehn, and Piera Raspollini
Atmos. Meas. Tech., 15, 6669–6704, https://doi.org/10.5194/amt-15-6669-2022, https://doi.org/10.5194/amt-15-6669-2022, 2022
Short summary
Short summary
Satellite measurements of stratospheric trace gases are essential for monitoring distributions and trends of these species on a global scale. Here, we compare the final MIPAS ESA Level 2 version 8 data (temperature and trace gases) with measurements obtained with the balloon version of MIPAS in terms of data agreement of both sensors, including combined errors. For most gases, we find a 5 % to 20 % agreement of the retrieved vertical profiles of both MIPAS instruments in the lower stratosphere.
Annika Drews, Wenjuan Huo, Katja Matthes, Kunihiko Kodera, and Tim Kruschke
Atmos. Chem. Phys., 22, 7893–7904, https://doi.org/10.5194/acp-22-7893-2022, https://doi.org/10.5194/acp-22-7893-2022, 2022
Short summary
Short summary
Solar irradiance varies with a period of approximately 11 years. Using a unique large chemistry–climate model dataset, we investigate the solar surface signal in the North Atlantic and European region and find that it changes over time, depending on the strength of the solar cycle. For the first time, we estimate the potential predictability associated with including realistic solar forcing in a model. These results may improve seasonal to decadal predictions of European climate.
Irina Mironova, Miriam Sinnhuber, Galina Bazilevskaya, Mark Clilverd, Bernd Funke, Vladimir Makhmutov, Eugene Rozanov, Michelle L. Santee, Timofei Sukhodolov, and Thomas Ulich
Atmos. Chem. Phys., 22, 6703–6716, https://doi.org/10.5194/acp-22-6703-2022, https://doi.org/10.5194/acp-22-6703-2022, 2022
Short summary
Short summary
From balloon measurements, we detected unprecedented, extremely powerful, electron precipitation over the middle latitudes. The robustness of this event is confirmed by satellite observations of electron fluxes and chemical composition, as well as by ground-based observations of the radio signal propagation. The applied chemistry–climate model shows the almost complete destruction of ozone in the mesosphere over the region where high-energy electrons were observed.
Ioana Ivanciu, Katja Matthes, Arne Biastoch, Sebastian Wahl, and Jan Harlaß
Weather Clim. Dynam., 3, 139–171, https://doi.org/10.5194/wcd-3-139-2022, https://doi.org/10.5194/wcd-3-139-2022, 2022
Short summary
Short summary
Greenhouse gas concentrations continue to increase, while the Antarctic ozone hole is expected to recover during the twenty-first century. We separate the effects of ozone recovery and of greenhouse gases on the Southern Hemisphere atmospheric and oceanic circulation, and we find that ozone recovery is generally reducing the impact of greenhouse gases, with the exception of certain regions of the stratosphere during spring, where the two effects reinforce each other.
Sheena Loeffel, Roland Eichinger, Hella Garny, Thomas Reddmann, Frauke Fritsch, Stefan Versick, Gabriele Stiller, and Florian Haenel
Atmos. Chem. Phys., 22, 1175–1193, https://doi.org/10.5194/acp-22-1175-2022, https://doi.org/10.5194/acp-22-1175-2022, 2022
Short summary
Short summary
SF6-derived trends of stratospheric AoA from observations and model simulations disagree in sign. SF6 experiences chemical degradation, which we explicitly integrate in a global climate model. In our simulations, the AoA trend changes sign when SF6 sinks are considered; thus, the process has the potential to reconcile simulated with observed AoA trends. We show that the positive AoA trend is due to the SF6 sinks themselves and provide a first approach for a correction to account for SF6 loss.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Klaus Wyser, Torben Koenigk, Uwe Fladrich, Ramon Fuentes-Franco, Mehdi Pasha Karami, and Tim Kruschke
Geosci. Model Dev., 14, 4781–4796, https://doi.org/10.5194/gmd-14-4781-2021, https://doi.org/10.5194/gmd-14-4781-2021, 2021
Short summary
Short summary
This paper describes the large ensemble done by SMHI with the EC-Earth3 climate model. The ensemble comprises 50 realizations for each of the historical experiments after 1970 and four different future projections for CMIP6. We describe the creation of the initial states for the ensemble and the reduced set of output variables. A first look at the results illustrates the changes in the climate during this century and puts them in relation to the uncertainty from the model's internal variability.
Tian Tian, Shuting Yang, Mehdi Pasha Karami, François Massonnet, Tim Kruschke, and Torben Koenigk
Geosci. Model Dev., 14, 4283–4305, https://doi.org/10.5194/gmd-14-4283-2021, https://doi.org/10.5194/gmd-14-4283-2021, 2021
Short summary
Short summary
Three decadal prediction experiments with EC-Earth3 are performed to investigate the impact of ocean, sea ice concentration and thickness initialization, respectively. We find that the persistence of perennial thick ice in the central Arctic can affect the sea ice predictability in its adjacent waters via advection process or wind, despite those regions being seasonally ice free during two recent decades. This has implications for the coming decades as the thinning of Arctic sea ice continues.
Ioana Ivanciu, Katja Matthes, Sebastian Wahl, Jan Harlaß, and Arne Biastoch
Atmos. Chem. Phys., 21, 5777–5806, https://doi.org/10.5194/acp-21-5777-2021, https://doi.org/10.5194/acp-21-5777-2021, 2021
Short summary
Short summary
The Antarctic ozone hole has driven substantial dynamical changes in the Southern Hemisphere atmosphere over the past decades. This study separates the historical impacts of ozone depletion from those of rising levels of greenhouse gases and investigates how these impacts are captured in two types of climate models: one using interactive atmospheric chemistry and one prescribing the CMIP6 ozone field. The effects of ozone depletion are more pronounced in the model with interactive chemistry.
Laura Stecher, Franziska Winterstein, Martin Dameris, Patrick Jöckel, Michael Ponater, and Markus Kunze
Atmos. Chem. Phys., 21, 731–754, https://doi.org/10.5194/acp-21-731-2021, https://doi.org/10.5194/acp-21-731-2021, 2021
Short summary
Short summary
This study investigates the impact of strongly increased atmospheric methane mixing ratios on the Earth's climate. An interactive model system including atmospheric dynamics, chemistry, and a mixed-layer ocean model is used to analyse the effect of doubled and quintupled methane mixing ratios. We assess feedbacks on atmospheric chemistry and changes in the stratospheric circulation, focusing on the impact of tropospheric warming, and their relevance for the model's climate sensitivity.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Ales Kuchar, William Ball, Pavle Arsenovic, Ellis Remsberg, Patrick Jöckel, Markus Kunze, David A. Plummer, Andrea Stenke, Daniel Marsh, Doug Kinnison, and Thomas Peter
Atmos. Chem. Phys., 21, 201–216, https://doi.org/10.5194/acp-21-201-2021, https://doi.org/10.5194/acp-21-201-2021, 2021
Short summary
Short summary
The solar signal in the mesospheric H2O and CO was extracted from the CCMI-1 model simulations and satellite observations using multiple linear regression (MLR) analysis. MLR analysis shows a pronounced and statistically robust solar signal in both H2O and CO. The model results show a general agreement with observations reproducing a negative/positive solar signal in H2O/CO. The pattern of the solar signal varies among the considered models, reflecting some differences in the model setup.
Cited articles
Ball, W. T., Unruh, Y. C., Krivova, N., Solanki, S. K., and Harder, J. W.:
Solar irradiance variability : a six-year comparison between SORCE
observations and the SATIRE model, Astro. Astrophys., 530, A71,
https://doi.org/10.1051/0004-6361/201016189, 2011. a
Ball, W. T., Krivova, N. A., Unruh, Y. C., Haigh, J. D., and Solanki, S. K.: A
New SATIRE-S Spectral Solar Irradiance Reconstruction for Solar Cycles 21–23
and Its Implications for Stratospheric Ozone, J. Atmos. Sci., 71,
4086–4101, https://doi.org/10.1175/JAS-D-13-0241.1, 2014. a
Ball, W. T., Haigh, J. D., Rozanov, E. V., Kuchar, A., Sukhodolov, T., Tummon,
F., Shapiro, A. V., and Schmutz, W.: High solar cycle spectral variations
inconsistent with stratospheric ozone observations, Nat. Geosci., 9,
206–209, https://doi.org/10.1038/ngeo2640, 2016. a
Ball, W. T., Alsing, J., Staehelin, J., Davis, S. M., Froidevaux, L., and Peter, T.: Stratospheric ozone trends for 1985–2018: sensitivity to recent large variability, Atmos. Chem. Phys., 19, 12731–12748, https://doi.org/10.5194/acp-19-12731-2019, 2019. a
Beig, G., Fadnavis, S., Schmidt, H., and Brasseur, G. P.: Inter-comparison of
11-year solar cycle response in mesospheric ozone and temperature obtained by
HALOE satellite data and HAMMONIA model, J. Geophys. Res.-Atmos., 117, D00P10,
https://doi.org/10.1029/2011JD015697, 2012. a
Coddington, O., Lean, J. L., Pilewskie, P., Snow, M., and Lindholm, D.: A
Solar Irradiance Climate Data Record, B. Am. Meteorol. Soc., 97,
1265–1282, https://doi.org/10.1175/BAMS-D-14-00265.1, 2016. a, b, c
Coddington, O., Lean, J., Pilewskie, P., Snow, M., Richard, E., Kopp, G.,
Lindholm, C., DeLand, M., Marchenko, S., Haberreiter, M., and Baranyi, T.:
Solar Irradiance Variability: Comparisons of Models and Measurements, Earth
Space Sci., 34, 2019EA000693, https://doi.org/10.1029/2019EA000693, 2019. a
Collins, W. D.: A global signature of enhanced shortwave absorption by
clouds, J. Geophys. Res.-Atmos., 103, 31669–31679,
https://doi.org/10.1029/1998JD200022, 1998. a
Dietmüller, S., Jöckel, P., Tost, H., Kunze, M., Gellhorn, C., Brinkop, S., Frömming, C., Ponater, M., Steil, B., Lauer, A., and Hendricks, J.: A new radiation infrastructure for the Modular Earth Submodel System (MESSy, based on version 2.51), Geosci. Model Dev., 9, 2209–2222, https://doi.org/10.5194/gmd-9-2209-2016, 2016. a
Ermolli, I., Matthes, K., Dudok de Wit, T., Krivova, N. A., Tourpali, K.,
Weber, M., Unruh, Y. C., Gray, L., Langematz, U., Pilewskie, P., Rozanov, E.,
Schmutz, W., Shapiro, A., Solanki, S. K., and Woods, T. N.: Recent
variability of the solar spectral irradiance and its impact on climate
modelling, Atmos. Chem. Phys., 13, 3945–3977,
https://doi.org/10.5194/acp-13-3945-2013, 2013. a, b, c, d
Evin, G., Hingray, B., Blanchet, J., Eckert, N., Morin, S., and Verfaillie, D.:
Partitioning Uncertainty Components of an Incomplete Ensemble of Climate
Projections Using Data Augmentation, J. Climate, 32, 2423–2440,
https://doi.org/10.1175/JCLI-D-18-0606.1, 2019. a
Farman, J. C., Gardiner, B. G., and Shanklin, J. D.: Large losses of total
ozone in Antarctica reveal seasonal ClOx/NOx interaction, Nature, 315,
207–210, https://doi.org/10.1038/315207a0, 1985. a
Forster, P. M., Fomichev, V. I., Rozanov, E., Cagnazzo, C., Jonsson, A. I.,
Langematz, U., Fomin, B., Iacono, M. J., Mayer, B., Mlawer, E., Myhre, G.,
Portmann, R. W., Akiyoshi, H., Falaleeva, V., Gillett, N., Karpechko, A., Li,
J., Lemennais, P., Morgenstern, O., Oberländer, S., Sigmond, M., and
Shibata, K.: Evaluation of radiation scheme performance within chemistry
climate models, J. Geophys. Res.-Atmos., 116, D10302, https://doi.org/10.1029/2010JD015361,
2011. a
Fouquart, Y. and Bonnel, B.: Computations of solar heating of the Earth's
atmosphere: A new parameterization, Beitr. Phys. Atmos., 53, 35–62, 1980. a
Frame, T. and Gray, L. J.: The 11-yr solar cycle in ERA-40 data: An update to
2008, J. Climate, 23, 2213–2222, https://doi.org/10.1175/2009JCLI3150.1, 2010. a
Funke, B., López-Puertas, M., Stiller, G. P., Versick, S., and von Clarmann, T.: A semi-empirical model for mesospheric and stratospheric NOy produced by energetic particle precipitation, Atmos. Chem. Phys., 16, 8667–8693, https://doi.org/10.5194/acp-16-8667-2016, 2016. a
Garcia, R. R., Solomon, S., Roble, R. G., and Rusch, D. W.: A numerical
response of the middle atmosphere to the 11-year solar cycle, Planet. Space
Sci., 32, 411–423, https://doi.org/10.1016/0032-0633(84)90121-1, 1984. a, b
Garcia, R. R., Smith, A. K., Kinnison, D. E., de la Cámara, Á., and
Murphy, D. J.: Modification of the Gravity Wave Parameterization in the
Whole Atmosphere Community Climate Model: Motivation and Results, J. Atmos.
Sci., 74, 275–291, https://doi.org/10.1175/JAS-D-16-0104.1, 2017. a
Geinitz, S., Furrer, R., and Sain, S. R.: Bayesian multilevel analysis of
variance for relative comparison across sources of global climate model
variability, Int. J. Climatol., 35, 433–443,
https://doi.org/10.1002/joc.3991, 2015. a
Giorgetta, M. A. and Bengtsson, L.: Potential role of the quasi-biennial
oscillation in the stratosphere-troposphere exchange as found in water vapor
in general circulation model experiments, J. Geophys. Res.-Atmos., 104,
6003–6019, https://doi.org/10.1029/1998JD200112, 1999. a
Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K.,
Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl,
G. A., Shindell, D., van Geel, B., and White, W.: Solar influences on
climate, Rev. Geophys., 48, RG4001, https://doi.org/10.1029/2009RG000282, 2010. a
Gray, L. J., Scaife, A. A., Mitchell, D. M., Osprey, S., Ineson, S., Hardiman,
S., Butchart, N., Knight, J., Sutton, R., and Kodera, K.: A lagged response
to the 11 year solar cycle in observed winter Atlantic/European weather
patterns, J. Geophys. Res.-Atmos., 118, 13405–13420,
https://doi.org/10.1002/2013JD020062, 2013. a
Haberreiter, M., Schöll, M., Dudok de Wit, T., Kretzschmar, M., Misios,
S., Tourpali, K., and Schmutz, W.: A new observational solar irradiance
composite, J. Geophys. Res.-Space, 122, 5910–5930,
https://doi.org/10.1002/2016JA023492, 2017. a
Haigh, J. D.: The role of stratospheric ozone in modulating the solar
radiative forcing of climate, Nature, 370, 544–546, https://doi.org/10.1038/370544a0,
1994. a, b
Haigh, J. D., Winning, A. R., Toumi, R., and Harder, J. W.: An influence of
solar spectral variations on radiative forcing of climate, Nature, 467,
696–699, https://doi.org/10.1038/nature09426, 2010. a
Hersbach, H., De Rosnay, P., Bell, B., Schepers, D., Simmons, A., Soci, C.,
Abdalla, S., Balmaseda, A., Balsamo, G., Bechtold, P., Berrisford, P.,
Bidlot, J., De Boisséson, E., Bonavita, M., Browne, P., Buizza, R.,
Dahlgren, P., Dee, D., Dragani, R., Diamantakis, M., Flemming, J., Forbes,
R., Geer, A., Haiden, T., Hólm, E., Haimberger, L., Hogan, R.,
Horányi, A., Janisková, M., Laloyaux, P., Lopez, P.,
Muñoz-Sabater, J., Peubey, C., Radu, R., Richardson, D., Thépaut,
J.-N., Vitart, F., Yang, X., Zsótér, E., and Zuo, H.:
Operational global reanalysis: progress, future directions and synergies
with NWP including updates on the ERA5 production status, Tech. Rep. 8th
October, ECWWF, https://doi.org/10.21957/tkic6g3wm, 2018. a
Hood, L. L.: The solar cycle variation of total ozone: Dynamical forcing in
the lower stratosphere, J. Geophys. Res.-Atmos., 102, 1355–1370,
https://doi.org/10.1029/96JD00210, 1997. a, b, c
Hood, L. L. and Soukharev, B. E.: Solar induced variations of odd nitrogen:
Multiple regression analysis of UARS HALOE data, Geophys. Res. Lett., 33,
101029, https://doi.org/10.1029/2006GL028122, 2006. a
Hood, L. L., Misios, S., Mitchell, D. M., Rozanov, E., Gray, L. J., Tourpali,
K., Matthes, K., Schmidt, H., Chiodo, G., Thiéblemont, R., Shindell, D.,
and Krivolutsky, A.: Solar signals in CMIP-5 simulations: the ozone
response, Q. J. Roy. Meteorol. Soc., 141, 2670–2689, https://doi.org/10.1002/qj.2553,
2015. a, b
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner,
P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb,
W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P.,
Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl,
J., and Marshall, S.: The Community Earth System Model: A Framework for
Collaborative Research, B. Am. Meteorol. Soc., 94, 1339–1360,
https://doi.org/10.1175/BAMS-D-12-00121.1, 2013. a
Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede, H., Baumgaertner, A., Gromov, S., and Kern, B.: Development cycle 2 of the Modular Earth Submodel System (MESSy2), Geosci. Model Dev., 3, 717–752, https://doi.org/10.5194/gmd-3-717-2010, 2010. a
Jöckel, P., Tost, H., Pozzer, A., Kunze, M., Kirner, O., Brenninkmeijer, C. A. M., Brinkop, S., Cai, D. S., Dyroff, C., Eckstein, J., Frank, F., Garny, H., Gottschaldt, K.-D., Graf, P., Grewe, V., Kerkweg, A., Kern, B., Matthes, S., Mertens, M., Meul, S., Neumaier, M., Nützel, M., Oberländer-Hayn, S., Ruhnke, R., Runde, T., Sander, R., Scharffe, D., and Zahn, A.: Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version 2.51, Geosci. Model Dev., 9, 1153–1200, https://doi.org/10.5194/gmd-9-1153-2016, 2016. a, b, c
Kinnison, D. E., Brasseur, G. P., Walters, S., Garcia, R. R., Marsh, D. R.,
Sassi, F., Harvey, V. L., Randall, C. E., Emmons, L., Lamarque, J. F., Hess,
P., Orlando, J. J., Tie, X. X., Randel, W., Pan, L. L., Gettelman, A.,
Granier, C., Diehl, T., Niemeier, U., and Simmons, A. J.: Sensitivity of
chemical tracers to meteorological parameters in the MOZART-3 chemical
transport model, J. Geophys. Res.-Atmos., 112, 1–24,
https://doi.org/10.1029/2006JD007879, 2007. a
Kodera, K. and Kuroda, Y.: Dynamical response to the solar cycle, J. Geophys.
Res., 107, 4749, https://doi.org/10.1029/2002JD002224, 2002. a
Kopp, G. and Lean, J. L.: A new, lower value of total solar irradiance:
Evidence and climate significance, Geophys. Res. Lett., 38,
L01706, https://doi.org/10.1029/2010GL045777, 2011. a, b
Koppers, G. A. A. and Murtagh, D. P.: Model studies of the influence of O2
photodissociation parameterizations in the Schumann-Runge bands on ozone
related photolysis in the upper atmosphere, Ann. Geophys., 14, 68–79,
https://doi.org/10.1007/s00585-996-0068-9, 1996. a
Krivova, N. A., Solanki, S. K., Wenzler, T., and Podlipnik, B.: Reconstruction
of solar UV irradiance since 1974, J. Geophys. Res., 114, D00I04,
https://doi.org/10.1029/2009JD012375, 2009. a, b
Krivova, N. A., Vieira, L. E. A., and Solanki, S. K.: Reconstruction of solar
spectral irradiance since the Maunder minimum, J. Geophys. Res.-Space
115, A12112, https://doi.org/10.1029/2010JA015431, 2010. a, b
Kruschke, T., Kunze, M., Matthes, K., Langematz, U., Sinnhuber, M., Reddmann, T., Versick, S., and Funke, B.: Quantifying uncertainties of climate signals related to the 11 year solar cycle – Part II: Dynamical impacts of irradiance and auroral forcing, in preparation, 2020. a
Kunze, M., Godolt, M., Langematz, U., Grenfell, J., Hamann-Reinus, A., and
Rauer, H.: Investigating the early Earth faint young Sun problem with a
general circulation model, Planet. Space Sci., 98, 77–92,
https://doi.org/10.1016/j.pss.2013.09.011, 2014. a
Labitzke, K.: Sunspots, the QBO, and the stratospheric temperature in the
north polar region, Geophys. Res. Lett., 14, 535–537, 1987. a
Labitzke, K. and van Loon, H.: Associations between the 11-year solar cycle,
the QBO and the atmosphere. Part I: The troposphere and stratosphere in the
northern hemisphere winter, J. Atmos. Sol.-Terr. Phys., 50, 197–206,
1988. a
Lean, J., Rottman, G., Kyle, H. L., Woods, T., Hickey, J., and Puga, L.:
Detection and parameterization of variations in solar mid- and
near-ultraviolet radiation, J. Geophys. Res., 102, 29939–29956,
https://doi.org/10.1029/97JD02092, 1997. a
Lean, J. L.: Evolution of the Sun's spectral irradiance since the Maunder
Minimum, Geophys. Res. Lett., 27, 2425–2428, https://doi.org/10.1029/2000GL000043,
2000. a, b, c
Lean, J. L., Cook, J., Marquette, W., and Johannesson, A.: Magnetic Sources of
the Solar Irradiance Cycle, Astrophys. J., 492, 390–401,
https://doi.org/10.1086/305015,
1998. a
Manney, G. L., Santee, M. L., Rex, M., Livesey, N. J., Pitts, M. C., Veefkind,
P., Nash, E. R., Wohltmann, I., Lehmann, R., Froidevaux, L., Poole, L. R.,
Schoeberl, M. R., Haffner, D. P., Davies, J., Dorokhov, V., Gernandt, H.,
Johnson, B., Kivi, R., Kyrö, E., Larsen, N., Levelt, P. F., Makshtas,
A., McElroy, C. T., Nakajima, H., Parrondo, M. C., Tarasick, D. W., von der
Gathen, P., Walker, K. A., and Zinoviev, N. S.: Unprecedented Arctic ozone
loss in 2011, Nature, 478, 469–475, https://doi.org/10.1038/nature10556, 2011. a
Marsh, D. R., Solomon, S. C., and Reynolds, A. E.: Empirical model of nitric
oxide in the lower thermosphere, J. Geophys. Res.-Space, 109, A07301, https://doi.org/10.1029/2003JA010199, 2004. a
Marsh, D. R., Garcia, R. R., Kinnison, D. E., Boville, B. A., Sassi, F.,
Solomon, S. C., and Matthes, K.: Modeling the whole atmosphere response to
solar cycle changes in radiative and geomagnetic forcing, J.
Geophys. Res., 112, D23306, https://doi.org/10.1029/2006JD008306, 2007. a
Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J.-F., Calvo, N., and
Polvani, L. M.: Climate Change from 1850 to 2005 Simulated in CESM1(WACCM),
J. Climate, 26, 7372–7391, https://doi.org/10.1175/JCLI-D-12-00558.1, 2013. a, b
Matthes, K., Langematz, U., Gray, L. L., Kodera, K., and Labitzke, K.:
Improved 11-year solar signal in the Freie Universität Berlin Climate
Middle Atmosphere Model (FUB-CMAM), J. Geophys. Res.-Atmos., 109, D06101,
https://doi.org/10.1029/2003JD004012, 2004. a
Matthes, K., Marsh, D. R., Garcia, R. R., Kinnison, D. E., Sassi, F., and
Walters, S.: Role of the QBO in modulating the influence of the 11 year
solar cycle on the atmosphere using constant forcings, J. Geophys. Res.-Atmos., 115, d18110, https://doi.org/10.1029/2009JD013020, 2010. a
Matthes, K., Funke, B., Andersson, M. E., Barnard, L., Beer, J., Charbonneau, P., Clilverd, M. A., Dudok de Wit, T., Haberreiter, M., Hendry, A., Jackman, C. H., Kretzschmar, M., Kruschke, T., Kunze, M., Langematz, U., Marsh, D. R., Maycock, A. C., Misios, S., Rodger, C. J., Scaife, A. A., Seppälä, A., Shangguan, M., Sinnhuber, M., Tourpali, K., Usoskin, I., van de Kamp, M., Verronen, P. T., and Versick, S.: Solar forcing for CMIP6 (v3.2), Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, 2017. a, b, c, d
Maycock, A. C., Matthes, K., Tegtmeier, S., Thiéblemont, R., and Hood, L.: The representation of solar cycle signals in stratospheric ozone – Part 1: A comparison of recently updated satellite observations, Atmos. Chem. Phys., 16, 10021–10043, https://doi.org/10.5194/acp-16-10021-2016, 2016. a
McCormack, J. P. and Hood, L. L.: Apparent solar cycle variations of upper
stratospheric ozone and temperature: Latitude and seasonal dependences, J.
Geophys. Res.-Atmos., 101, 20933–20944, https://doi.org/10.1029/96JD01817, 1996. a
Meehl, G. A., Arblaster, J. M., Matthes, K., Sassi, F., and van Loon, H.:
Amplifying the Pacific Climate System Response to a Small 11-Year Solar
Cycle Forcing, Science, 325, 1114–1118, https://doi.org/10.1126/science.1172872,
2009. a
Meftah, M., Damé, L., Bolsée, D., Hauchecorne, A., Pereira, N.,
Sluse, D., Cessateur, G., Irbah, A., Bureau, J., Weber, M., Bramstedt, K.,
Hilbig, T., Thiéblemont, R., Marchand, M., Lefèvre, F.,
Sarkissian, A., and Bekki, S.: SOLAR-ISS: A new reference spectrum based on
SOLAR/SOLSPEC observations, Astron. Astrophys., 611, A1,
https://doi.org/10.1051/0004-6361/201731316, 2018. a, b
Meftah, M., Damé, L., Bolsée, D., Pereira, N., Snow, M., Weber, M.,
Bramstedt, K., Hilbig, T., Cessateur, G., Boudjella, M.-Y., Marchand, M.,
Lefèvre, F., Thiéblemont, R., Sarkissian, A., Hauchecorne, A.,
Keckhut, P., and Bekki, S.: A New Version of the SOLAR-ISS Spectrum Covering
the 165–3000 nm Spectral Region, Solar Phys., 295, 14,
https://doi.org/10.1007/s11207-019-1571-y, 2020. a, b
Merkel, A., Harder, J. W., Marsh, D. R., Smith, A. K., Fontenla, J. M., and
Woods, T. N.: The impact of solar spectral irradiance variability on middle
atmospheric ozone, Geophys. Res. Lett., 38, 1–6,
https://doi.org/10.1029/2011GL047561, 2011. a, b
Minschwaner, K. and Siskind, D. E.: A new calculation of nitric oxide
photolysis in the stratosphere, mesosphere, and lower thermosphere, J.
Geophys. Res.-Atmos., 98, 20401, https://doi.org/10.1029/93JD02007, 1993. a
Misios, S., Mitchell, D. M., Gray, L. J., Tourpali, K., Matthes, K., Hood, L.,
Schmidt, H., Chiodo, G., Thiéblemont, R., Rozanov, E., and Krivolutsky,
A.: Solar signals in CMIP-5 Simulations: Effects of Atmosphere–ocean
Coupling, Q. J. Roy. Meteor. Soc., 142, 928–941, https://doi.org/10.1002/qj.2695, 2015. a
Mitchell, D. M., Misios, S., Gray, L. J., Tourpali, K., Matthes, K., Hood, L.,
Schmidt, H., Chiodo, G., Thiéblemont, R., Rozanov, E., Shindell, D., and
Krivolutsky, A.: Solar signals in CMIP-5 simulations: the stratospheric
pathway, Q. J. Roy. Meteor. Soc., 141, 2390–2403, https://doi.org/10.1002/qj.2530,
2015. a, b
Naujokat, B.: An update of the observed Quasi-Biennial Oscillation of the
stratospheric winds over the tropics, J. Atmos. Sci., 43, 1873–1877, 1986. a
Neale, R. B., Richter, J., Park, S., Lauritzen, P. H., Vavrus, S. J., Rasch,
P. J., and Zhang, M.: The Mean Climate of the Community Atmosphere Model
(CAM4) in Forced SST and Fully Coupled Experiments, J. Climate, 26,
5150–5168, https://doi.org/10.1175/JCLI-D-12-00236.1, 2013. a
Nissen, K. M., Matthes, K., Langematz, U., and Mayer, B.: Towards a better representation of the solar cycle in general circulation models, Atmos. Chem. Phys., 7, 5391–5400, https://doi.org/10.5194/acp-7-5391-2007, 2007. a, b
Oberländer, S., Langematz, U., Matthes, K., Kunze, M., Kubin, A., Harder, J.,
Krivova, N. A., Solanki, S. K., Pagaran, J., and Weber, M.: The influence of
spectral solar irradiance data on stratospheric heating rates during the 11
year solar cycle, Geophys. Res. Lett., 39, L01801, https://doi.org/10.1029/2011GL049539,
2012. a
Randel, W., Smith, K., Austin, J., Barnett, J., Claud, C., Gillett, N.,
Keckhut, P., Langematz, U., Lin, R., Long, C., Mearsm, C., Miller, A., Nash,
J., Seidel, D., Thompson, D., Wu, F., and Yoden, S.: An update of
stratospheric temperature trends, J. Geophys. Res., 114, D02107,
https://doi.org/10.1029/2005JD006744, 2009. a
Randel, W. J. and Wu, F.: A stratospheric ozone profile data set for
1979–2005: Variability, trends, and comparisons with column ozone data, J.
Geophys. Res., 112, D06313, https://doi.org/10.1029/2006JD007339, 2007. a, b
Remsberg, E., Russell, J. M., Gordley, L. L., Gille, J. C., and Bailey, P. L.:
Implications of the Stratospheric Water Vapor Distribution as Determined
from the Nimbus 7 LIMS Experiment, J. Atmos. Sci., 41, 2934–2948,
https://doi.org/10.1175/1520-0469(1984)041<2934:IOTSWV>2.0.CO;2, 1984. a
Remsberg, E., Damadeo, R., Natarajan, M., and Bhatt, P.: Observed Responses of
Mesospheric Water Vapor to Solar Cycle and Dynamical Forcings, J. Geophys.
Res.-Atmos., 123, 3830–3843, https://doi.org/10.1002/2017JD028029, 2018. a
Rex, M., Salawitch, R. J., Harris, N. R. P., von der Gathen, P., Braathen,
G. O., Schulz, A., Deckelmann, H., Chipperfield, M., Sinnhuber, B.-M.,
Reimer, E., Alfier, R., Bevilacqua, R., Hoppel, K., Fromm, M., Lumpe, J.,
Küllmann, H., Kleinböhl, A., Bremer, H., von König, M.,
Künzi, K., Toohey, D., Vömel, H., Richard, E., Aikin, K., Jost,
H., Greenblatt, J. B., Loewenstein, M., Podolske, J. R., Webster, C. R.,
Flesch, G. J., Scott, D. C., Herman, R. L., Elkins, J. W., Ray, E. A., Moore,
F. L., Hurst, D. F., Romashkin, P., Toon, G. C., Sen, B., Margitan, J. J.,
Wennberg, P., Neuber, R., Allart, M., Bojkov, B. R., Claude, H., Davies, J.,
Davies, W., De Backer, H., Dier, H., Dorokhov, V., Fast, H., Kondo, Y.,
Kyrö, E., Litynska, Z., Mikkelsen, I. S., Molyneux, M. J., Moran, E.,
Nagai, T., Nakane, H., Parrondo, C., Ravegnani, F., Skrivankova, P., Viatte,
P., and Yushkov, V.: Chemical depletion of Arctic ozone in winter
1999/2000, J. Geophys. Res., 107, 8276, https://doi.org/10.1029/2001JD000533, 2002. a
Roble, R. G. and Ridley, E. C.: An auroral model for the NCAR thermosphere
general circulation model (TGCM), Ann. Geophys., 6, 369–383, 1987. a
Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta,
Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A., Schlese,
U., Schulzweida, U., and Tompkins, A.: The atmospheric general circulation
model ECHAM5, Part I, Tech. Rep. No. 349, Max-Planck-Institut für
Meteorologie, Hamburg, 2003. a
Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kornblueh,
L., Manzini, E., Schlese, U., and Schulzweida, U.: Sensitivity of Simulated
Climate to Horizontal and Vertical Resolution in the ECHAM5 Atmosphere
Model, J. Climate, 19, 3771–3791, https://doi.org/10.1175/JCLI3824.1, 2006. a
Sander, R., Baumgaertner, A., Gromov, S., Harder, H., Jöckel, P., Kerkweg, A., Kubistin, D., Regelin, E., Riede, H., Sandu, A., Taraborrelli, D., Tost, H., and Xie, Z.-Q.: The atmospheric chemistry box model CAABA/MECCA-3.0, Geosci. Model Dev., 4, 373–380, https://doi.org/10.5194/gmd-4-373-2011, 2011. a
Sander, R., Jöckel, P., Kirner, O., Kunert, A. T., Landgraf, J., and Pozzer, A.: The photolysis module JVAL-14, compatible with the MESSy standard, and the JVal PreProcessor (JVPP), Geosci. Model Dev., 7, 2653–2662, https://doi.org/10.5194/gmd-7-2653-2014, 2014. a
Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R.,
Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K.,
Orkin, V. L., and Wine, P. H.: Chemical Kinetics and Photochemical Data for
Use in Atmospheric Studies, Tech. Rep. Evaluation No. 17, JPL Publication
10-6, Jet Propulsion Laboratory, Pasadena, 2011. a
Schieferdecker, T., Lossow, S., Stiller, G. P., and von Clarmann, T.: Is there a solar signal in lower stratospheric water vapour?, Atmos. Chem. Phys., 15, 9851–9863, https://doi.org/10.5194/acp-15-9851-2015, 2015. a
Seinfeld, J. and Pandis, S.: Atmospheric Chemistry and Physics: From Air
Pollution to Climate Change, John Wiley & Sons Inc., Hoboken, New Jersey,
USA, 2nd Edn., 2006. a
Shapiro, A. V., Rozanov, E., Egorova, T., Shapiro, A. I., Peter, T., and
Schmutz, W.: Sensitivity of the Earth's middle atmosphere to short-term
solar variability and its dependence on the choice of solar irradiance data
set, J. Atmos. Sol.-Terr. Phys., 73, 348–355,
https://doi.org/10.1016/j.jastp.2010.02.011, 2011. a
Sinnhuber, M. and Funke, B.: Energetic electron precipitation into the
atmosphere, in: The Dynamic Loss of Earth's Radiation Belts, pp. 279–321,
Elsevier, https://doi.org/10.1016/B978-0-12-813371-2.00009-3, 2020. a
Sinnhuber, M., Berger, U., Funke, B., Nieder, H., Reddmann, T., Stiller, G., Versick, S., von Clarmann, T., and Wissing, J. M.: NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002–2010, Atmos. Chem. Phys., 18, 1115–1147, https://doi.org/10.5194/acp-18-1115-2018, 2018. a
Snow, M., Weber, M., Machol, J., Viereck, R., and Richard, E.: Comparison of
Magnesium II core-to-wing ratio observations during solar minimum 23/24,
J. Space Weather Spac., 4, A04,
https://doi.org/10.1051/swsc/2014001, 2014. a
Solanki, S. K., Schüssler, M., and Fligge, M.: Evolution of the Sun's
large-scale magnetic field since the Maunder minimum, Nature, 408, 445–447,
https://doi.org/10.1038/35044027, 2000. a
Solomon, S. C. and Qian, L.: Solar extreme-ultraviolet irradiance for general
circulation models, J. Geophys. Res., 110, A10306,
https://doi.org/10.1029/2005JA011160, 2005. a
Soukharev, B. E. and Hood, L. L.: Solar cycle variation of stratospheric
ozone: Multiple regression analysis of long-term satellite data sets and
comparisons with models, J. Geophys. Res.-Atmos., 111, 1–18,
https://doi.org/10.1029/2006JD007107, 2006. a, b
Sukhodolov, T., Rozanov, E., Ball, W. T., Bais, A., Tourpali, K., Shapiro,
A. I., Telford, P., Smyshlyaev, S., Fomin, B., Sander, R., Bossay, S., Bekki,
S., Marchand, M., Chipperfield, M. P., Dhomse, S., Haigh, J. D., Peter, T.,
and Schmutz, W.: Evaluation of simulated photolysis rates and their response
to solar irradiance variability, J. Geophys. Res.-Atmos., 121, 6066–6084,
https://doi.org/10.1002/2015JD024277, 2016. a
Swartz, W. H., Stolarski, R. S., Oman, L. D., Fleming, E. L., and Jackman, C. H.: Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model, Atmos. Chem. Phys., 12, 5937–5948, https://doi.org/10.5194/acp-12-5937-2012, 2012. a
Thuillier, G., Hersé, M., Simon, P. C., Labs, D., Mandel, H., Gillotay,
D., and Foujols, T.: The Visible Solar Spectral Irradiance from 350 to 850
nm As Measured by the SOLSPEC Spectrometer During the ATLAS I Mission, Sol.
Phys., 177, 41–61, https://doi.org/10.1023/A:1004953215589, 1998. a
Thuillier, G., Floyd, L., Woods, T., Cebula, R., Hilsenrath, E., Hersé, M.,
and Labs, D.: Solar irradiance reference spectra for two solar active levels,
Adv. Space Res., 34, 256–261, https://doi.org/10.1016/j.asr.2002.12.004, 2004.
a, b, c
Unruh, Y. C., Solanki, S. K., and Fligge, M.: The spectral dependence of
facular contrast and solar irradiance variations, Astron. Astrophys., 345,
635–642, 1999. a
van Loon, H., Meehl, G. A., and Shea, D. J.: Coupled air-sea response to solar
forcing in the Pacific region during northern winter, J. Geophys. Res.-Atmos., 112, 1–8, https://doi.org/10.1029/2006JD007378, 2007. a
von Storch, H. and Zwiers, F. W.: Statistical Analysis in Climate Research,
Cambridge University Press, https://doi.org/10.1017/CBO9780511612336, 1999. a, b
Wang, Y., Lean, J. L., and Sheeley Jr., N. R.: Modeling the Sun's Magnetic
Field and Irradiance since 1713, Astrophys. J., 625, 522–538,
https://doi.org/10.1086/429689, 2005. a
Yeo, K. L., Krivova, N. A., Solanki, S. K., and Glassmeier, K. H.:
Reconstruction of total and spectral solar irradiance from 1974 to 2013
based on KPVT, SoHO/MDI, and SDO/HMI observations, Astron. Astrophys., 570, A85,
https://doi.org/10.1051/0004-6361/201423628, 2014. a, b, c
Yeo, K. L., Ball, W. T., Krivova, N. A., Solanki, S. K., Unruh, Y. C., and
Morrill, J.: UV solar irradiance in observations and the NRLSSI and SATIRE-S
models, J. Geophys. Res.-Space, 120, 6055–6070, 2015JA021277, https://doi.org/10.1002/2015JA021277,
2015. a, b
Zerefos, C. S., Tourpali, K., Bojkov, B. R., Balis, D. S., Rognerund, B., and
Isaksen, I. S. A.: Solar activity-total column ozone relationships:
Observations and model studies with heterogeneous chemistry, J. Geophys.
Res.-Atmos., 102, 1561–1569, https://doi.org/10.1029/96JD02395, 1997. a
Zhong, W., Osprey, S. M., Gray, L. J., and Haigh, J. D.: Influence of the
prescribed solar spectrum on calculations of atmospheric temperature,
Geophys. Res. Lett., 35, L22813, https://doi.org/10.1029/2008GL035993, 2008. a
Short summary
Modelling the response of the atmosphere and its constituents to 11-year solar variations is subject to a certain uncertainty arising from the solar irradiance data set used in the chemistry–climate model (CCM) and the applied CCM itself.
This study reveals significant influences from both sources on the variations in the solar response in the stratosphere and mesosphere.
However, there are also regions where the random, unexplained part of the variations in the solar response is largest.
Modelling the response of the atmosphere and its constituents to 11-year solar variations is...
Altmetrics
Final-revised paper
Preprint