

Supplement of

Quantifying uncertainties of climate signals in chemistry climate models related to the 11-year solar cycle – Part 1: Annual mean response in heating rates, temperature, and ozone

Markus Kunze et al.

Correspondence to: Markus Kunze (markus.kunze@met.fu-berlin.de)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Table S1: Solar cycle spectral solar irradiance (SSI) variations for Solar Cycles indicated in the first row relative to ATLAS3 (ΔSSI) in % and relative contribution of SSI changes to the TSI change ($\frac{\Delta SSI}{\Delta TSI}$) in % for the Lyman- α (121.5 nm), Far-UV (121–200 nm), Herzberg continuum/Hartley bands (201–242 nm), Hartley-/Huggings-bands (243–380 nm) and visible (381–780 nm) spectral ranges.

Time period	SSI dataset	$\begin{vmatrix} 121.5\\ \Delta SSI \end{vmatrix}$	5 nm $\frac{\Delta SSI}{\Delta TSI}$	121-20 ΔSSI	$\begin{array}{c} 00 \text{ nm} \\ \frac{\Delta SSI}{\Delta TSI} \end{array}$	201-2 ΔSSI	$\frac{\Delta 2 \text{ nm}}{\Delta TSI}$	243-3 ΔSS	$\frac{380 \text{ nm}}{I \frac{\Delta SSI}{\Delta TSI}}$	381-2 ΔSS_{2}	780 nm I $\frac{\Delta SSI}{\Delta TSI}$
Cycle 21 descent Max:Dec.1979 Min:Sep.1986	NRLSSI1 NRLSSI2 SATIRE-T SATIRE-S CMIP6	45.602 51.609 47.283 47.178 49.405	0.214 0.228 0.199 0.281 0.250	11.373 11.668 10.081 9.907 10.788	0.913 0.882 0.724 1.008 0.932	3.599 3.360 3.445 2.987 3.175	4.300 3.778 3.684 4.523 4.080	0.311 0.402 0.592 0.477 0.440	20.748 25.251 35.363 40.368 31.585	0.109 0.095 0.106 0.069 0.082	55.521 45.247 48.028 44.130 44.785
Cycle 22 ascent Max:Nov.1989 Min:Sep.1986	NRLSSI1 NRLSSI2 SATIRE-T SATIRE-S CMIP6	50.740 56.657 44.322 59.989 58.338	0.250 0.273 0.247 0.331 0.300	12.673 12.808 9.454 12.634 12.722	1.067 1.053 0.899 1.191 1.117	3.994 3.668 3.235 3.756 3.715	5.006 4.488 4.580 5.269 4.855	0.319 0.407 0.529 0.576 0.492	22.315 27.845 41.801 45.149 35.938	0.104 0.081 0.075 0.070 0.076	55.470 42.196 45.107 41.540 42.139
Cycle 22 descent-2 Max:Nov.1989 Min:Nov.1994	NRLSSI1 NRLSSI2 SATIRE-T SATIRE-S CMIP6	44.286 50.377 35.572 57.481 53.943	0.266 0.291 0.297 0.329 0.309	11.067 11.388 7.576 12.090 11.741	1.137 1.125 1.081 1.183 1.149	3.482 3.257 2.583 3.601 3.431	5.324 4.788 5.486 5.244 4.997	0.268 0.354 0.407 0.552 0.453	22.913 29.039 48.288 44.874 36.855	0.084 0.066 0.047 0.068 0.068	54.902 41.415 42.340 42.130 41.856
Cycle 22 descent Max:Nov.1989 Min:Jun.1996	NRLSSI1 NRLSSI2 SATIRE-T SATIRE-S CMIP6	49.420 53.857 46.024 64.121 59.005	0.250 0.279 0.233 0.304 0.291	12.343 12.175 9.820 13.546 12.862	1.066 1.078 0.848 1.096 1.083	3.890 3.485 3.363 4.044 3.767	4.999 4.594 4.321 4.869 4.722	0.311 0.384 0.557 0.629 0.507	22.306 28.299 39.972 42.293 35.494	0.102 0.075 0.085 0.085 0.080	55.503 42.076 46.134 43.436 42.850
Cycle 23 ascent Max:Mar.2000 Min:Jun.1996	NRLSSI1 NRLSSI2 SATIRE-T SATIRE-S CMIP6	40.457 42.445 27.988 49.546 46.007	0.286 0.360 0.383 0.473 0.407	10.116 9.594 5.989 10.446 10.021	1.223 1.388 1.399 1.704 1.514	3.177 2.730 2.066 3.041 2.887	5.716 5.879 7.180 7.380 6.492	0.237 0.274 0.312 0.439 0.357	23.772 32.971 60.660 59.580 44.849	0.070 0.040 0.025 0.034 0.037	53.692 36.438 37.320 35.442 35.713

Table S2: Solar cycle SSI variations for the average of the five Solar Cycle amplitudes of Table S1 relative to ATLAS3 (ΔSSI) in % and relative contribution of SSI changes to the TSI change ($\frac{\Delta SSI}{\Delta TSI}$) in % for the Lyman- α (121.5 nm), Far-UV (121–200 nm), Herzberg continuum/Hartley bands (201–242 nm), Hartley-/Huggings-bands (243–380 nm) and visible (381–780 nm) spectral ranges. \pm 95% CI indicates the confidence interval.

Time period	SSI dataset	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		121–200 nm $\Delta SSI \frac{\Delta SSI}{\Delta TSI}$		$\frac{201-242 \text{ nm}}{\Delta SSI \frac{\Delta SSI}{\Delta TSI}}$		$\begin{array}{c} 243-380 \text{ nm} \\ \Delta SSI \underline{\Delta SSI} \\ \overline{\Delta TSI} \end{array}$		$\frac{381-780 \text{ nm}}{\Delta SSI \frac{\Delta SSI}{\Delta TSI}}$	
Average	NRLSSI1	46.101	0.253	11.514	1.081	3.628	5.069	0.289	22.411	0.094	55.018
	± 95% CI	4.576	0.029	1.138	0.127	0.363	0.578	0.039	1.228	0.018	0.871
Cycle	NRLSSI2	50.989	0.286	11.527	1.105	3.300	4.705	0.364	28.681	0.071	41.474
	± 95% CI	5.931	0.053	1.341	0.203	0.393	0.843	0.061	3.098	0.023	3.533
	SATIRE-T	40.238	0.272	8.584	0.990	2.938	5.050	0.479	45.217	0.067	43.786
	± 95% CI	9.150	0.079	1.945	0.291	0.660	1.504	0.129	10.883	0.035	4.617
	SATIRE-S	55.663	0.344	11.725	1.236	3.486	5.457	0.535	46.453	0.065	41.335
	± 95% CI	7.910	0.084	1.685	0.302	0.510	1.241	0.085	8.435	0.021	3.832
	CMIP6	53.340	0.311	11.627	1.159	3.395	5.029	0.450	36.944	0.069	41.468
	± 95% CI	6.249	0.065	1.362	0.239	0.411	0.988	0.065	5.392	0.020	3.792

Figure S1: As Figure 4 in the main text, but without the simulations using the SATIRE-T SSI data set. Left column: Percentage of signal variance (square of white contours of left figures) explained by systematic differences between forcing SSI data sets ($R_{a,B}$ Equation A11, blue shading). The white contours indicate levels of explained variance larger than the range of shading. Middle column: as left column but for systematic differences between CCMs ($R_{a,A}$ Equation A11). Right column: as left column but for signal variance explained by the interaction of the CCM and the SSI data set treatments ($R_{a,AB}$ Equation A12). The grey hatching masks areas where the ratio of explained variance does not pass a test for statistical significance (p > 5 %).

Figure S2: Annual mean 11–year solar cycle response (shaded) and signal variance (white contours) in terms of the solar response annual standard deviation for (a) $O({}^{3}P)$, (b) $O({}^{1}D)$, (c) NO_{y} , (d) HO_{x} , and (e) $H_{2}O$ mixing ratios. Solar signal derived as ensemble mean over both models and all SSI data sets; solar minimum SSI based on ATLAS3 reference state. The grey hatching masks areas where the solar cycle response does not pass a test for statistical significance (p > 5 %).

Figure S3: Percentage of solar cycle response variance (square of white contours in Figure 2) explained for (a) $O(^{3}P)$, (b) $O(^{1}D)$, (c) NO_{y} , (d) HO_{x} , and (e) $H_{2}O$ mixing ratios. Left column: explained by systematic differences between forcing SSI data sets ($R_{a,B}$ Equation A11, blue shading). The white contours indicate levels of explained variance larger than the range of shading. Middle column: as left column but for systematic differences between CCMs ($R_{a,A}$ Equation A11). Right column: as left column but for signal variance explained by the interaction of the CCM and the SSI data set treatments ($R_{a,AB}$ Equation A12). The grey hatching masks areas where the ratio of explained variance does not pass a test for statistical significance (p > 5 %).

Figure S4: January mean differences for EMAC (ensemble mean) minus WACCM (ensemble mean) (shaded) of (a) shortwave heating rates, (b) temperature, (c) ozone mixing ratios, (d) atomic oxygen $(O(^{3}P))$, (e) HO_x, and (f) NO_y. The ensemble mean for both CCMs consists of the solar minimum reference simulation (included 5 times in the ensemble mean) and the 5 simulations for the solar maximum. Grey hatching masks areas where differences does not pass a test for statistical significance (p > 5 %).

Figure S5: July mean differences for EMAC (ensemble mean) minus WACCM (ensemble mean) (shaded) of (a) shortwave heating rates, (b) temperature, (c) ozone mixing ratios, (d) atomic oxygen $(O(^{3}P))$, (e) HO_x, and (f) NO_y. The ensemble mean for both CCMs consists of the solar minimum reference simulation (included 5 times in the ensemble mean) and the 5 simulations for the solar maximum. Grey hatching masks areas where differences does not pass a test for statistical significance (p > 5 %).

		E	MAC	WACCM					
Hemisphere	Season	Correlation	Δ TCO/100 m	Correlation	Δ TCO/100 m				
NH	Anm	0.82	$6.08 {\pm} 0.37$	0.68	$6.11 {\pm} 0.57$				
	JFM	0.89	$6.79 {\pm} 1.05$	0.70	$5.49{\pm}1.72$				
SH	Anm	0.81	$7.49 {\pm} 0.47$	0.77	$6.06 {\pm} 0.43$				
	SON	0.92	$8.95{\pm}1.14$	0.95	$5.74 {\pm} 0.61$				
		SATIRE-T							
NH	Anm	0.81	$5.91 {\pm} 0.37$	0.69	$6.03 {\pm} 0.55$				
	JFM	0.88	$6.14{\pm}1.02$	0.87	$6.29{\pm}1.12$				
SH	Anm	0.82	$8.02 {\pm} 0.48$	0.76	$5.38 {\pm} 0.40$				
	SON	0.95	9.79±1.02	0.91	5.13±0.73				
		SATIRE-S							
NH	Anm	0.83	$6.20 {\pm} 0.36$	0.71	$5.91{\pm}0.51$				
	JFM	0.89	$6.75 {\pm} 1.05$	0.76	6.31±1.67				
SH	Anm	0.81	$7.72 {\pm} 0.48$	0.69	$5.09 {\pm} 0.46$				
	SON	0.95	9.30±0.89	0.88	$4.66{\pm}0.78$				
		NRLSSI1							
NH	Anm	0.84	$5.95 {\pm} 0.34$	0.70	$6.25 {\pm} 0.55$				
	JFM	0.90	$6.00{\pm}0.92$	0.81	$6.96{\pm}1.55$				
SH	Anm	0.82	$7.26 {\pm} 0.44$	0.76	$5.94{\pm}0.44$				
	SON	0.91	8.95±1.24	0.92	$5.35 {\pm} 0.70$				
		NRLSSI2							
NH	Anm	0.82	$6.39{\pm}0.38$	0.66	$5.84{\pm}0.57$				
	JFM	0.94	$6.48 {\pm} 0.75$	0.80	$6.81{\pm}1.58$				
SH	Anm	0.83	$7.81 {\pm} 0.45$	0.76	$5.54{\pm}0.41$				
	SON	0.94	9.63±1.10	0.94	5.42±0.61				

Table S3: Correlation of polar region $(70^{\circ}N-90^{\circ}N)$ anomalies (solar maximum – solar minimum) of total column ozone (TCO) and the layer thickness from 100 to 10 hPa. TCO change in DU per 100 m geopotential height change and the 95% confidence interval.