Articles | Volume 20, issue 4
https://doi.org/10.5194/acp-20-2623-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-2623-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Temporal variation in 129I and 127I in aerosols from Xi'an, China: influence of East Asian monsoon and heavy haze events
Luyuan Zhang
CORRESPONDING AUTHOR
State Key Laboratory of Loess and Quaternary Geology, Shaanxi Key
Laboratory of Accelerator Mass Spectrometry Technology and Application,
Xi'an AMS Center, Institute of Earth Environment CAS, Xi'an 710061, China
Center for Excellence in Quaternary Science and Global Change, Chinese
Academy of Sciences, Xi'an 710061, China
Open Studio for Oceanic-Continental Climate and Environment Changes,
Pilot National Laboratory for Marine Science and Technology (Qingdao),
Qingdao 266061, China
Xiaolin Hou
State Key Laboratory of Loess and Quaternary Geology, Shaanxi Key
Laboratory of Accelerator Mass Spectrometry Technology and Application,
Xi'an AMS Center, Institute of Earth Environment CAS, Xi'an 710061, China
Center for Excellence in Quaternary Science and Global Change, Chinese
Academy of Sciences, Xi'an 710061, China
Center for Nuclear Technologies, Technical University of Denmark,
Risø Campus, Roskilde 4000, Denmark
Open Studio for Oceanic-Continental Climate and Environment Changes,
Pilot National Laboratory for Marine Science and Technology (Qingdao),
Qingdao 266061, China
Sheng Xu
Institute of Surface-Earth System Science, Tianjin University, Tianjin
300072, China
Tian Feng
State Key Laboratory of Loess and Quaternary Geology, Shaanxi Key
Laboratory of Accelerator Mass Spectrometry Technology and Application,
Xi'an AMS Center, Institute of Earth Environment CAS, Xi'an 710061, China
Peng Cheng
State Key Laboratory of Loess and Quaternary Geology, Shaanxi Key
Laboratory of Accelerator Mass Spectrometry Technology and Application,
Xi'an AMS Center, Institute of Earth Environment CAS, Xi'an 710061, China
Yunchong Fu
State Key Laboratory of Loess and Quaternary Geology, Shaanxi Key
Laboratory of Accelerator Mass Spectrometry Technology and Application,
Xi'an AMS Center, Institute of Earth Environment CAS, Xi'an 710061, China
Ning Chen
State Key Laboratory of Loess and Quaternary Geology, Shaanxi Key
Laboratory of Accelerator Mass Spectrometry Technology and Application,
Xi'an AMS Center, Institute of Earth Environment CAS, Xi'an 710061, China
Related authors
No articles found.
Xu-Ke Liu, Yun-Chong Fu, Li Zhang, George S. Burr, Yan-Ting Bi, and Guo-Qing Zhao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-282, https://doi.org/10.5194/acp-2022-282, 2022
Revised manuscript not accepted
Short summary
Short summary
Based on the high-precision analysis of the accelerator mass spectrometer, the stratospheric air intrusion process of different intensities throughout the year was recorded for the first time with the daily resolution beryllium-10 / beryllium-7 ratio. The local weak stratospheric intrusion events in the Chinese Loess Plateau were directly detected on the ground, and it was found that these processes has a significant contribution to surface ozone.
Xingxing Liu, Youbin Sun, Jef Vandenberghe, Peng Cheng, Xu Zhang, Evan J. Gowan, Gerrit Lohmann, and Zhisheng An
Clim. Past, 16, 315–324, https://doi.org/10.5194/cp-16-315-2020, https://doi.org/10.5194/cp-16-315-2020, 2020
Short summary
Short summary
The East Asian summer monsoon and winter monsoon are anticorrelated on a centennial timescale during 16–1 ka. The centennial monsoon variability is connected to changes of both solar activity and North Atlantic cooling events during the Early Holocene. Then, North Atlantic cooling became the major forcing of events during the Late Holocene. This work presents the great challenge and potential to understand the response of the monsoon system to global climate changes in the past and the future.
Lang Liu, Naifang Bei, Jiarui Wu, Suixin Liu, Jiamao Zhou, Xia Li, Qingchuan Yang, Tian Feng, Junji Cao, Xuexi Tie, and Guohui Li
Atmos. Chem. Phys., 19, 13341–13354, https://doi.org/10.5194/acp-19-13341-2019, https://doi.org/10.5194/acp-19-13341-2019, 2019
Xin Long, Xuexi Tie, Jiamao Zhou, Wenting Dai, Xueke Li, Tian Feng, Guohui Li, Junji Cao, and Zhisheng An
Atmos. Chem. Phys., 19, 11185–11197, https://doi.org/10.5194/acp-19-11185-2019, https://doi.org/10.5194/acp-19-11185-2019, 2019
Short summary
Short summary
China is undergoing ever-increasing demand for electricity, and launched the Green Light Program (GLP), which is an effective reduction of the coal consumption for power generation. The estimated potential coal saving induced by the GLP can reach a massive value of 120–323 million tons. There was a massive resultant potential emission reduction of air pollutants, which is inherently connected to the haze formation, because the NOx and SO2 are important precursors for the formation of particles.
Jiarui Wu, Naifang Bei, Bo Hu, Suixin Liu, Meng Zhou, Qiyuan Wang, Xia Li, Lang Liu, Tian Feng, Zirui Liu, Yichen Wang, Junji Cao, Xuexi Tie, Jun Wang, Luisa T. Molina, and Guohui Li
Atmos. Chem. Phys., 19, 8703–8719, https://doi.org/10.5194/acp-19-8703-2019, https://doi.org/10.5194/acp-19-8703-2019, 2019
Short summary
Short summary
In the present study, simulations during a persistent and heavy haze pollution episode from 5 December 2015 to 4 January 2016 in the North China Plain (NCP) were performed using the WRF-Chem model to comprehensively quantify contributions of the aerosol shortwave radiative feedback (ARF) to near-surface PM2.5 mass concentrations. During the episode, the ARF deteriorates the haze pollution, increasing the near-surface PM2.5 concentration in the NCP by 10.2 μg m−3 (7.8 %) on average.
Jiarui Wu, Naifang Bei, Bo Hu, Suixin Liu, Meng Zhou, Qiyuan Wang, Xia Li, Lang Liu, Tian Feng, Zirui Liu, Yichen Wang, Junji Cao, Xuexi Tie, Jun Wang, Luisa T. Molina, and Guohui Li
Atmos. Chem. Phys., 19, 8721–8739, https://doi.org/10.5194/acp-19-8721-2019, https://doi.org/10.5194/acp-19-8721-2019, 2019
Short summary
Short summary
The near-surface PM2.5 contribution of the ALW total effect is 17.5 % in NCP, indicating that ALW plays an important role in the PM2.5 formation during the wintertime haze pollution. Moreover, the ALW-HET overwhelmingly dominates the PM2.5 enhancement due to the ALW. The ALW does not consistently enhance near-surface [PM2.5] with increasing RH. When the RH exceeds 80 %, the contribution of the ALW begins to decrease, which is caused by the high occurrence frequencies of precipitation.
Lang Liu, Jiarui Wu, Suixin Liu, Xia Li, Jiamao Zhou, Tian Feng, Yang Qian, Junji Cao, Xuexi Tie, and Guohui Li
Atmos. Chem. Phys., 19, 8189–8207, https://doi.org/10.5194/acp-19-8189-2019, https://doi.org/10.5194/acp-19-8189-2019, 2019
Tian Feng, Shuyu Zhao, Naifang Bei, Jiarui Wu, Suixin Liu, Xia Li, Lang Liu, Yang Qian, Qingchuan Yang, Yichen Wang, Weijian Zhou, Junji Cao, and Guohui Li
Atmos. Chem. Phys., 19, 7429–7443, https://doi.org/10.5194/acp-19-7429-2019, https://doi.org/10.5194/acp-19-7429-2019, 2019
Short summary
Short summary
The observed ratio of organic carbon to element carbon has increased remarkably in Beijing. Here, based on the measurements and model simulation, we show that the enhanced atmospheric oxidizing capacity is an important contributor to that increase by facilitating the aging process of organic aerosols (add oxygen). Our results indicate a ubiquitous enhancement of secondary organic aerosol formation over Beijing–Tianjin–Hebei, China, in the context of increasing oxidizing capacity.
Xin Long, Naifang Bei, Jiarui Wu, Xia Li, Tian Feng, Li Xing, Shuyu Zhao, Junji Cao, Xuexi Tie, Zhisheng An, and Guohui Li
Atmos. Chem. Phys., 18, 10869–10879, https://doi.org/10.5194/acp-18-10869-2018, https://doi.org/10.5194/acp-18-10869-2018, 2018
Xia Li, Jiarui Wu, Miriam Elser, Tian Feng, Junji Cao, Imad El-Haddad, Rujin Huang, Xuexi Tie, André S. H. Prévôt, and Guohui Li
Atmos. Chem. Phys., 18, 10675–10691, https://doi.org/10.5194/acp-18-10675-2018, https://doi.org/10.5194/acp-18-10675-2018, 2018
Jiarui Wu, Naifang Bei, Xia Li, Junji Cao, Tian Feng, Yichen Wang, Xuexi Tie, and Guohui Li
Atmos. Chem. Phys., 18, 8491–8504, https://doi.org/10.5194/acp-18-8491-2018, https://doi.org/10.5194/acp-18-8491-2018, 2018
Xin Long, Xuexi Tie, Guohui Li, Junji Cao, Tian Feng, Shuyu Zhao, Li Xing, and Zhisheng An
Atmos. Chem. Phys., 18, 6353–6366, https://doi.org/10.5194/acp-18-6353-2018, https://doi.org/10.5194/acp-18-6353-2018, 2018
Short summary
Short summary
Using satellite products of MODIS and the numerical model of WRF-DUST, we proved that the ecological restoration programs in China help to reduce the dust pollution in the NCP, providing a direct and quantified answer to the ongoing debate about the effectiveness of the national ERPs. Despite the limitations of the case study, we provide some insights into the effects of ERPs on the downwind area, where heavy haze often occurs due to anthropogenic air pollutants.
Naifang Bei, Jiarui Wu, Miriam Elser, Tian Feng, Junji Cao, Imad El-Haddad, Xia Li, Rujin Huang, Zhengqiang Li, Xin Long, Li Xing, Shuyu Zhao, Xuexi Tie, André S. H. Prévôt, and Guohui Li
Atmos. Chem. Phys., 17, 14579–14591, https://doi.org/10.5194/acp-17-14579-2017, https://doi.org/10.5194/acp-17-14579-2017, 2017
Guohui Li, Naifang Bei, Junji Cao, Rujin Huang, Jiarui Wu, Tian Feng, Yichen Wang, Suixin Liu, Qiang Zhang, Xuexi Tie, and Luisa T. Molina
Atmos. Chem. Phys., 17, 3301–3316, https://doi.org/10.5194/acp-17-3301-2017, https://doi.org/10.5194/acp-17-3301-2017, 2017
Guohui Li, Naifang Bei, Junji Cao, Jiarui Wu, Xin Long, Tian Feng, Wenting Dai, Suixin Liu, Qiang Zhang, and Xuexi Tie
Atmos. Chem. Phys., 17, 2759–2774, https://doi.org/10.5194/acp-17-2759-2017, https://doi.org/10.5194/acp-17-2759-2017, 2017
Jiarui Wu, Guohui Li, Junji Cao, Naifang Bei, Yichen Wang, Tian Feng, Rujin Huang, Suixin Liu, Qiang Zhang, and Xuexi Tie
Atmos. Chem. Phys., 17, 2035–2051, https://doi.org/10.5194/acp-17-2035-2017, https://doi.org/10.5194/acp-17-2035-2017, 2017
Tian Feng, Guohui Li, Junji Cao, Naifang Bei, Zhenxing Shen, Weijian Zhou, Suixin Liu, Ting Zhang, Yichen Wang, Ru-jin Huang, Xuexi Tie, and Luisa T. Molina
Atmos. Chem. Phys., 16, 10045–10061, https://doi.org/10.5194/acp-16-10045-2016, https://doi.org/10.5194/acp-16-10045-2016, 2016
Short summary
Short summary
The springtime organic aerosol (OA) concentrations in the Guanzhong Basin, China are simulated using the WRF-Chem model with two secondary OA (SOA) modules. Model results are verified with near-surface observations. The non-traditional SOA module significantly improves SOA simulation. Oxidation and partitioning of primary OAs is the most important pathway in SOA formation. Residential emissions are the dominant anthropogenic OA source.
Xin Long, Xuexi Tie, Junji Cao, Rujin Huang, Tian Feng, Nan Li, Suyu Zhao, Jie Tian, Guohui Li, and Qiang Zhang
Atmos. Chem. Phys., 16, 9675–9691, https://doi.org/10.5194/acp-16-9675-2016, https://doi.org/10.5194/acp-16-9675-2016, 2016
Short summary
Short summary
We studied the impact of crop field burning (CFB) on air pollution in North China Plain (NCP) using MODIS observations and the numerical model WRF-CHEM. The CFB plume emitted in southern NCP and went through a long-range transport to northern NCP. The long-range transport and the effect of mountains obviously enhanced the PM2.5 pollution in northern NCP. The prohibition of CFB should be strict not just in or around Beijing, but also on the ulterior crop growth areas of southern NCP.
Naifang Bei, Guohui Li, Ru-Jin Huang, Junji Cao, Ning Meng, Tian Feng, Suixin Liu, Ting Zhang, Qiang Zhang, and Luisa T. Molina
Atmos. Chem. Phys., 16, 7373–7387, https://doi.org/10.5194/acp-16-7373-2016, https://doi.org/10.5194/acp-16-7373-2016, 2016
Short summary
Short summary
Rapid industrialization and urbanization have caused severe air pollution in the Guanzhong basin, northwestern China with heavy haze events occurring frequently in recent winters. Due to frequent occurrence of unfavorable synoptic situations during wintertime, mitigation of emissions is the optimum approach to mitigate the air pollution in the Guanzhong basin.
Tian Feng, Naifang Bei, Ru-Jin Huang, Junji Cao, Qiang Zhang, Weijian Zhou, Xuexi Tie, Suixin Liu, Ting Zhang, Xiaoli Su, Wenfang Lei, Luisa T. Molina, and Guohui Li
Atmos. Chem. Phys., 16, 4323–4342, https://doi.org/10.5194/acp-16-4323-2016, https://doi.org/10.5194/acp-16-4323-2016, 2016
Short summary
Short summary
The occurrence of high O3 levels with high PM2.5 concentrations constitutes a dilemma for the design of O3 control strategies in Xi’an and surrounding areas. If the O3 mitigation approach decreases aerosols in the atmosphere directly or indirectly, the enhanced photolysis caused by aerosol reduction would compensate for the O3 loss. If only the PM2.5 control strategy is implemented, the O3 pollution will decrease.
Luyuan Zhang, Xiaolin Hou, and Sheng Xu
Atmos. Chem. Phys., 16, 1971–1985, https://doi.org/10.5194/acp-16-1971-2016, https://doi.org/10.5194/acp-16-1971-2016, 2016
Short summary
Short summary
Speciation analysis of long-lived anthropogenic iodine isotopes (129I) in time series Danish aerosols shows that secondary emission from heavily 129I-contaminated seawater is a major source of 129I in the Atmosphere, at least in North Europe. Iodide is the major form of water-soluble iodine, while NaOH-soluble iodine is the dominant species of iodine in aerosol, which is likely bound with organic substances. The contribution of Fukushima-derived 129I is estimated to be negligible in Europe.
Q. Y. Wang, R.-J. Huang, J. J. Cao, X. X. Tie, H. Y. Ni, Y. Q. Zhou, Y. M. Han, T. F. Hu, C. S. Zhu, T. Feng, N. Li, and J. D. Li
Atmos. Chem. Phys., 15, 13059–13069, https://doi.org/10.5194/acp-15-13059-2015, https://doi.org/10.5194/acp-15-13059-2015, 2015
Short summary
Short summary
An intensive campaign was conducted at the Qinghai-Tibetan Plateau using a ground-based single particle soot photometer and a photoacoustic extinctiometer. Significant enhancements of rBC loadings and number fraction of coated rBC were observed during the pollution episode. Biomass burning from N. India is determined to be an important potential source influencing the northeastern Qinghai-Tibetan Plateau. The rBC mixing state is important in determining absorption during the pollution episode.
P. P. Povinec, M. Aoyama, D. Biddulph, R. Breier, K. Buesseler, C. C. Chang, R. Golser, X. L. Hou, M. Ješkovský, A. J. T. Jull, J. Kaizer, M. Nakano, H. Nies, L. Palcsu, L. Papp, M. K. Pham, P. Steier, and L. Y. Zhang
Biogeosciences, 10, 5481–5496, https://doi.org/10.5194/bg-10-5481-2013, https://doi.org/10.5194/bg-10-5481-2013, 2013
Related subject area
Subject: Isotopes | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
On the potential fingerprint of the Antarctic ozone hole in ice-core nitrate isotopes: a case study based on a South Pole ice core
Quantifying the nitrogen isotope effects during photochemical equilibrium between NO and NO2: implications for δ15N in tropospheric reactive nitrogen
High time-resolved measurement of stable carbon isotope composition in water-soluble organic aerosols: method optimization and a case study during winter haze in eastern China
Dependence between the photochemical age of light aromatic hydrocarbons and the carbon isotope ratios of atmospheric nitrophenols
Evidence for a major missing source in the global chloromethane budget from stable carbon isotopes
Atmospheric Δ17O(NO3−) reveals nocturnal chemistry dominates nitrate production in Beijing haze
Mass spectrometric measurement of hydrogen isotope fractionation for the reactions of chloromethane with OH and Cl
Stable carbon isotope ratios of ambient aromatic volatile organic compounds
Kinetic isotope effects of 12CH3D + OH and 13CH3D + OH from 278 to 313 K
Investigation of post-depositional processing of nitrate in East Antarctic snow: isotopic constraints on photolytic loss, re-oxidation, and source inputs
Chlorine isotope composition in chlorofluorocarbons CFC-11, CFC-12 and CFC-113 in firn, stratospheric and tropospheric air
NOx cycle and the tropospheric ozone isotope anomaly: an experimental investigation
Fractionation of sulfur isotopes during heterogeneous oxidation of SO2 on sea salt aerosol: a new tool to investigate non-sea salt sulfate production in the marine boundary layer
Sulfur isotope fractionation during oxidation of sulfur dioxide: gas-phase oxidation by OH radicals and aqueous oxidation by H2O2, O3 and iron catalysis
Molecular hydrogen (H2) emissions and their isotopic signatures (H/D) from a motor vehicle: implications on atmospheric H2
Isotope effect in the formation of H2 from H2CO studied at the atmospheric simulation chamber SAPHIR
Pressure dependence of the deuterium isotope effect in the photolysis of formaldehyde by ultraviolet light
Yanzhi Cao, Zhuang Jiang, Becky Alexander, Jihong Cole-Dai, Joel Savarino, Joseph Erbland, and Lei Geng
Atmos. Chem. Phys., 22, 13407–13422, https://doi.org/10.5194/acp-22-13407-2022, https://doi.org/10.5194/acp-22-13407-2022, 2022
Short summary
Short summary
We investigate the potential of ice-core preserved nitrate isotopes as proxies of stratospheric ozone variability by measuring nitrate isotopes in a shallow ice core from the South Pole. The large variability in the snow accumulation rate and its slight increase after the 1970s masked any signals caused by the ozone hole. Moreover, the nitrate oxygen isotope decrease may reflect changes in the atmospheric oxidation environment in the Southern Ocean.
Jianghanyang Li, Xuan Zhang, John Orlando, Geoffrey Tyndall, and Greg Michalski
Atmos. Chem. Phys., 20, 9805–9819, https://doi.org/10.5194/acp-20-9805-2020, https://doi.org/10.5194/acp-20-9805-2020, 2020
Short summary
Short summary
Nitrogen isotopic compositions of atmospheric reactive nitrogen are widely used to infer their sources. However, the reactions between NO and NO2 strongly impact their isotopes, which was not well understood. We conducted a series of experiments in an atmospheric simulation chamber to determine the isotopic effects of (1) direct isotopic exchange between NO and NO2 and (2) the isotopic fractionations during NOx photochemistry, then developed an equation to quantify the overall isotopic effect.
Wenqi Zhang, Yan-Lin Zhang, Fang Cao, Yankun Xiang, Yuanyuan Zhang, Mengying Bao, Xiaoyan Liu, and Yu-Chi Lin
Atmos. Chem. Phys., 19, 11071–11087, https://doi.org/10.5194/acp-19-11071-2019, https://doi.org/10.5194/acp-19-11071-2019, 2019
Short summary
Short summary
A novel method to determine the concentration and the isotopes of WSOC in aerosols is established and applied in the analysis of a severe haze in eastern China. The results show that the studied site is affected by the photochemical aging, biomass burning and dust aerosols in different episodes during the sampling period. The analysis of WSOC and its isotopes offers a great potential to better understand the source emission, the atmospheric aging and the secondary production of WSOC.
Marina Saccon, Anna Kornilova, Lin Huang, and Jochen Rudolph
Atmos. Chem. Phys., 19, 5495–5509, https://doi.org/10.5194/acp-19-5495-2019, https://doi.org/10.5194/acp-19-5495-2019, 2019
Short summary
Short summary
As compound are emitted into the atmosphere, they can undergo chemical reactions to produce secondary products. This paper investigates the relations of compounds' unique chemical characteristics to the processes that formed them from emissions in the atmosphere. A model is applied to help with this investigation. The complexity of the atmosphere, including mixing of air masses and variability in precursor reactivity, is taken into consideration, and results are presented.
Enno Bahlmann, Frank Keppler, Julian Wittmer, Markus Greule, Heinz Friedrich Schöler, Richard Seifert, and Cornelius Zetzsch
Atmos. Chem. Phys., 19, 1703–1719, https://doi.org/10.5194/acp-19-1703-2019, https://doi.org/10.5194/acp-19-1703-2019, 2019
Short summary
Short summary
Chloromethane is the most important natural carrier of chlorine to the stratosphere. From a newly determined carbon isotope effect of −11.2 ‰ for the tropospheric loss of CH3Cl we derive a tropical rainforest CH3Cl source of 670 ± 200 Gg a−1, 60 % smaller than previous estimates. A revision of previous bottom-up estimates using above-ground biomass instead of rainforest area strongly supports this lower estimate. Our results suggest a large unknown tropical value of 1530 ± 200 Gg a−1.
Pengzhen He, Zhouqing Xie, Xiyuan Chi, Xiawei Yu, Shidong Fan, Hui Kang, Cheng Liu, and Haicong Zhan
Atmos. Chem. Phys., 18, 14465–14476, https://doi.org/10.5194/acp-18-14465-2018, https://doi.org/10.5194/acp-18-14465-2018, 2018
Short summary
Short summary
We present the first observations of the oxygen-17 excess of atmospheric nitrate (Δ17O(NO−3)) collected in Beijing haze to reveal the relative importance of different nitrate formation pathways. We found that nocturnal pathways (N2O5 + H2O/Cl– and NO3 + HC) dominated nitrate production during polluted days (PM2.5 ≥ 75 μg m–3), with a mean possible fraction of 56–97 %.
Frank Keppler, Enno Bahlmann, Markus Greule, Heinz Friedrich Schöler, Julian Wittmer, and Cornelius Zetzsch
Atmos. Chem. Phys., 18, 6625–6635, https://doi.org/10.5194/acp-18-6625-2018, https://doi.org/10.5194/acp-18-6625-2018, 2018
Short summary
Short summary
Chloromethane is involved in stratospheric ozone depletion, but detailed knowledge of its global budget is missing. In this study stable hydrogen isotope analyses were performed to investigate the dominant loss process for atmospheric chloromethane with photochemically produced hydroxyl radicals. The findings might have significant implications for the use of stable isotope signatures in elucidation of global chloromethane cycling.
Anna Kornilova, Lin Huang, Marina Saccon, and Jochen Rudolph
Atmos. Chem. Phys., 16, 11755–11772, https://doi.org/10.5194/acp-16-11755-2016, https://doi.org/10.5194/acp-16-11755-2016, 2016
Short summary
Short summary
The photochemical oxidation of organic compounds in the atmosphere results in the formation of important secondary pollutants such as ozone and fine particles. The extent of oxidation the organic compounds have been subjected too since there emissions is essential is key for understanding the formation of secondary pollutants. This paper demonstrates that measurements of the carbon isotope ratios allow determining the extent of photochemical processing for individual compounds.
L. M. T. Joelsson, J. A. Schmidt, E. J. K. Nilsson, T. Blunier, D. W. T. Griffith, S. Ono, and M. S. Johnson
Atmos. Chem. Phys., 16, 4439–4449, https://doi.org/10.5194/acp-16-4439-2016, https://doi.org/10.5194/acp-16-4439-2016, 2016
Short summary
Short summary
We present experimental kinetic isotope effects (KIE) for the OH oxidation of CH3D and 13CH3D and their temperature dependence. Our determination of the 13CH3D + OH KIE is novel and we find no "clumped" isotope effect within the experimental uncertainty.
G. Shi, A. M. Buffen, M. G. Hastings, C. Li, H. Ma, Y. Li, B. Sun, C. An, and S. Jiang
Atmos. Chem. Phys., 15, 9435–9453, https://doi.org/10.5194/acp-15-9435-2015, https://doi.org/10.5194/acp-15-9435-2015, 2015
Short summary
Short summary
We evaluate isotopic composition of NO3- in different environments across East Antarctica. At high snow accumulation sites, isotopic ratios are suggestive of preservation of NO3- deposition. At low accumulation sites, isotopes are sensitive to both the loss of NO3- due to photolysis and secondary formation of NO3- within the snow. The imprint of post-depositional alteration is not uniform with depth, making it difficult to predict the isotopic composition at depth from near-surface data alone.
S. J. Allin, J. C. Laube, E. Witrant, J. Kaiser, E. McKenna, P. Dennis, R. Mulvaney, E. Capron, P. Martinerie, T. Röckmann, T. Blunier, J. Schwander, P. J. Fraser, R. L. Langenfelds, and W. T. Sturges
Atmos. Chem. Phys., 15, 6867–6877, https://doi.org/10.5194/acp-15-6867-2015, https://doi.org/10.5194/acp-15-6867-2015, 2015
Short summary
Short summary
Stratospheric ozone protects life on Earth from harmful UV-B radiation. Chlorofluorocarbons (CFCs) are man-made compounds which act to destroy this barrier.
This paper presents (1) the first measurements of the stratospheric δ(37Cl) of CFCs -11 and -113; (2) the first quantification of long-term trends in the tropospheric δ(37Cl) of CFCs -11, -12 and -113.
This study provides a better understanding of source and sink processes associated with these destructive compounds.
G. Michalski, S. K. Bhattacharya, and G. Girsch
Atmos. Chem. Phys., 14, 4935–4953, https://doi.org/10.5194/acp-14-4935-2014, https://doi.org/10.5194/acp-14-4935-2014, 2014
E. Harris, B. Sinha, P. Hoppe, S. Foley, and S. Borrmann
Atmos. Chem. Phys., 12, 4619–4631, https://doi.org/10.5194/acp-12-4619-2012, https://doi.org/10.5194/acp-12-4619-2012, 2012
E. Harris, B. Sinha, P. Hoppe, J. N. Crowley, S. Ono, and S. Foley
Atmos. Chem. Phys., 12, 407–423, https://doi.org/10.5194/acp-12-407-2012, https://doi.org/10.5194/acp-12-407-2012, 2012
M. K. Vollmer, S. Walter, S. W. Bond, P. Soltic, and T. Röckmann
Atmos. Chem. Phys., 10, 5707–5718, https://doi.org/10.5194/acp-10-5707-2010, https://doi.org/10.5194/acp-10-5707-2010, 2010
T. Röckmann, S. Walter, B. Bohn, R. Wegener, H. Spahn, T. Brauers, R. Tillmann, E. Schlosser, R. Koppmann, and F. Rohrer
Atmos. Chem. Phys., 10, 5343–5357, https://doi.org/10.5194/acp-10-5343-2010, https://doi.org/10.5194/acp-10-5343-2010, 2010
E. J. K. Nilsson, V. F. Andersen, H. Skov, and M. S. Johnson
Atmos. Chem. Phys., 10, 3455–3462, https://doi.org/10.5194/acp-10-3455-2010, https://doi.org/10.5194/acp-10-3455-2010, 2010
Cited articles
An, Z., Colman, S. M., Zhou, W., Li, X., Brown, E. T., Jull, A. J. T., Cai,
Y., Huang, Y., Lu, X., Chang, H., Song, Y., Sun, Y., Xu, H., Liu, W., Jin,
Z., Liu, X., Cheng, P., Liu, Y., Ai, L., Li, X., Liu, X., Yan, L., Shi, Z.,
Wang, X., Wu, F., Qiang, X., Dong, J., Lu, F., and Xu, X.: Interplay between
the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32
ka, Scientific Reports, 2, 619, https://doi.org/10.1038/srep00619, 2012.
Ayers, G. P., Penkett, S. A., Gillett, R. W., Bandy, B., Galbally, I. E.,
Meyer, C. P., Elsworth, C. M., Bentley, S. T., and Forgan, B. W.: The annual
cycle of peroxides and ozone in marine air at Cape Grim, Tasmania, J. Atmos.
Chem., 23, 221–252, https://doi.org/10.1007/BF00055155, 1996.
Brauer, F. P., Rieck, H. G. J., and Hooper, R. L.: Particulate and gaseous atmospheric iodine concentrations, International Atomic Energy Agency (IAEA), Battelle Pacific Northwest Laboratories, Washington, USA, 1973.
Carpenter, L. J., MacDonald, S. M., Shaw, M. D., Kumar, R., Saunders, R. W.,
Parthipan, R., Wilson, J., and Plane, J. M. C.: Atmospheric iodine levels
influenced by sea surface emissions of inorganic iodine, Nat. Geosci., 6,
108–111, https://doi.org/10.1038/ngeo1687, 2013.
Cheng, N., Duan, L., Xiu, G., Zhao, M., and Qian, G.: Comparison of
atmospheric PM2.5-bounded mercury species and their correlation with bromine and iodine at coastal urban and island sites in the eastern China, Atmos. Res., 183, 17–25, https://doi.org/10.1016/j.atmosres.2016.08.009, 2017.
China Meteorological Administration: Sandstorm in northwest China and central and western Inner Mongolia, available at: http://www.cma.gov.cn/2011xwzx/2011xqxxw/2011xzytq/201704/t20170417_407699.html, last access: 10 October 2018.
Cohen, B. L.: The origin of I in soil and the 129I problem, Health
Phys., 49, 279–285, 1985.
Ding, Y. and Chan, J. C. L.: The East Asian summer monsoon: An overview,
Meteorol. Atmos. Phys., 89, 117–142, https://doi.org/10.1007/s00703-005-0125-z, 2005.
Dong, Z., Shao, Y., Qin, D., Zhang, L., Hou, X., Wei, T., Kang, S., and Qin,
X.: Insight Into Radio-Isotope 129I Deposition in Fresh Snow at a
Remote Glacier Basin of Northeast Tibetan Plateau, China, Geophys. Res.
Lett., 45, 6726–6733, https://doi.org/10.1029/2018GL078480, 2018.
Duan, D.: Concentration Characteristics of Atmospheric Particulate Matters
and Iodine in Coal-fired Area, M.S. thesis, Nanchang University, China, 2018.
Englund, E., Aldahan, A., Hou, X., Possnert, G., and Soderstrom, C.: Iodine
(I-129 and I-127) in aerosols from northern Europe, Nucl. Instrum. Meth. B,
268, 1139–1141, 2010.
Fan, Y.: Spatial distribution of 129I in Chinese surface soil and
preliminary study on the 129I chronology, PhD thesis, Institute of Earth Environment, Chinese Academy of Sciences, China, 2013.
Fan, Y., Hou, X., Zhou, W., and Liu, G.: I record of nuclear activities in
marine sediment core from Jiaozhou Bay in China, J. Environ. Radioactiv.,
154, 15–24, https://doi.org/10.1016/j.jenvrad.2016.01.008, 2016.
Fehn, U., Moran, J. E., Snyder, G. T., and Muramatsu, Y.: The initial
129I∕I ratio and the presence of “old” iodine in continental margins, Nucl. Instrum. Meth. B, 259, 496–502, 2005.
Fuge, R. and Johnson, C.: The geochemistry of iodine – a review, Environ.
Geochem. Hlth., 8, 31–54, https://doi.org/10.1007/BF02311063, 1986.
Gao, Y., Sun, M., Wu, X., Liu, Y., Guo, Y., and Wu, J.: Concentration
characteristics of bromine and iodine in aerosols in Shanghai, China, Atmos.
Environ., 44, 4298–4302, https://doi.org/10.1016/j.atmosenv.2010.05.047, 2010.
Guilderson, T. P., Tumey, S. J., Brown, T. A., and Buesseler, K. O.: The 129-iodine content of subtropical Pacific waters: impact of Fukushima and other anthropogenic 129-iodine sources, Biogeosciences, 11, 4839–4852, https://doi.org/10.5194/bg-11-4839-2014, 2014.
Hasegawa, H., Kakiuchi, H., Akata, N., Ohtsuka, Y., and Hisamatsu, S.:
Regional and global contributions of anthropogenic iodine-129 in monthly
deposition samples collected in North East Japan between 2006 and 2015, J.
Environ. Radioactiv., 171, 65–73, https://doi.org/10.1016/J.JENVRAD.2017.01.027, 2017.
He, C., Hou, X., Zhao, Y., Wang, Z., Li, H., Chen, N., Liu, Q., Zhang, L.,
Luo, M., Liang, W., Fan, Y., and Zhao, X. L.: 129I level in seawater near a nuclear power plant determined by accelerator mass spectrometer, Nucl. Instrum. Meth. A, 632, 152–156, https://doi.org/10.1016/j.nima.2010.12.182, 2011.
He, L.: Iodine concentration, chemical speciation and their distribution in
atmospheric precipitation and soil, M.S. thesis, Nanchang University, China, 2012.
Hou, X., Aldahan, A., Nielsen, S. P., Possnert, G., Hou, X., Aldahan, A.,
Nielsen, S. P., and Possnert, G.: Time Series of I-129 and I-127 Speciation
in Precipitation from Denmark, Environ. Sci. Technol., 43, 6522–6528,
https://doi.org/10.1021/es9012678, 2009.
Jabbar, T., Wallner, G., and Steier, P.: A review on 129I analysis in air, J. Environ. Radioactiv., 126, 45–54, 2013.
Jackson, D., Ibrahimi, F., Fulker, M. J., Parry, S. J., and Rackham, K.: The
effect of chemical speciation on the impact of I discharges to atmosphere
from BNFL Sellafield, Cumbria, Radioprotection, 37, 459–464, 2002.
Kadowaki, M., Katata, G., Terada, H., Suzuki, T., Hasegawa, H., Akata, N.,
and Kakiuchi, H.: Impacts of anthropogenic source from the nuclear fuel
reprocessing plants on global atmospheric iodine-129 cycle: A model
analysis, Atmos. Environ., 184, 278–291,
https://doi.org/10.1016/j.atmosenv.2018.04.044, 2018.
Küpper, F. C., Carpenter, L. J., McFiggans, G. B., Palmer, C. J., Waite,
T. J., Boneberg, E.-M., Woitsch, S., Weiller, M., Abela, R., Grolimund, D.,
Potin, P., Butler, A., Luther, G. W. 3rd, Kroneck, P. M. H., Meyer-Klaucke,
W., and Feiters, M. C.: Iodide accumulation provides kelp with an inorganic
antioxidant impacting atmospheric chemistry, P. Natl. Acad. Sci. USA,
105, 6954–6958, 2008.
Liu, D., Hou, X., Du, J., Zhang, L., and Zhou, W.: 129I and its species in the East China Sea: level, distribution, sources and tracing water masses exchange and movement, Scientific Reports, 6, 36611, https://doi.org/10.1038/srep36611, 2016.
McFiggans, G., Plane, J. M. C., Allan, B. J., Carpenter, L. J., Coe, H., and
O'Dowd, C.: A modeling study of iodine chemistry in the marine boundary
layer, J. Geophys. Res., 105, 14371–14385,
https://doi.org/10.1029/1999JD901187, 2000.
Michel, R., Daraoui, A., Gorny, M., Jakob, D., Sachse, R., Tosch, L., Nies,
H., Goroncy, I., Herrmann, J., Synal, H. A., Stocker, M., and Alfimov, V.:
Iodine-129 and iodine-127 in European seawaters and in precipitation from
Northern Germany, Sci. Total Environ., 419, 151–169, 2012.
Ministry of Environmental Protection of the People's Republic of China: Environmental radiation monitoring results of the sixth North Korean nuclear test in the northeast border and surrounding areas, available at: http://www.zhb.gov.cn/gkml/, last access: 3 November 2017.
Moran, J. E., Oktay, S. D., Santschi, P. H., and Schink, D. R.: Atmospheric
dispersal of iodine-129 from nuclear fuel reprocessing facilities, Environ.
Sci. Technol., 33, 2536–2542, 1999.
National Climate Center of China Meteorological Administration: MODES forecast monitor (NCEP I): East Asian Winter Monsoon Index, available at: https://cmdp.ncc-cma.net/pred/cn_peace.php?eYear=2017&eMonth=5&search=BE&product=EAWM.MODES#search, last access: 8 July 2019.
Povinec, P. P., Breier, R., Coppola, L., Groening, M., Jeandel, C., Jull, A.
J. T., Kieser, W. E., Lee, S. H., Liong, W. K., Morgenstern, U., Park, Y. H.,
and Top, Z.: Tracing of water masses using a multi isotope approach in the
southern Indian Ocean, Earth Planet. Sc. Lett., 302, 14–26, 2011.
Saiz-Lopez, A., Gómez Martín, J. C., Plane, J. M. C., Saunders, R.
W., Baker, A. R., Von Glasow, R., Carpenter, L. J., and McFiggans, G.:
Atmospheric chemistry of iodine, Chem. Rev., 112, 1773–1804, 2012.
Santos, F. J., López-Gutiérrez, J. M., García-León, M.,
Suter, M., and Synal, H. A.: Determination of 129I/127I in aerosol
samples in Seville (Spain), J. Environ. Radioactiv., 84, 103–109, 2005.
Shaanxi Provincial Bureau of Statistics: Report of industrial coal reduction
in Guanzhong Basin in 2017, Xi'an, China, available at:
http://www.shaanxitj.gov.cn/site/1/html/126/131/138/17703.htm, last access: 10 October 2018.
Sive, B. C., Varner, R. K., Mao, H., Talbot, R., Blake, D. R., and Wingenter,
O. W.: A large terrestrial source of methyl iodide, Geophys. Res. Lett.,
34, L17808, https://doi.org/10.1029/2007GL030528, 2007.
Snyder, G., Aldahan, A., Aldahan, A., and Possnert, G.: Global distribution
and long-term fate of anthropogenic 129I in marine and surface water reservoirs, Geochem. Geophy. Geosy., 11, 1–19, 2010.
Toyama, C., Muramatsu, Y., Igarashi, Y., Aoyama, M., and Matsuzaki, H.:
Atmospheric fallout of 129I in Japan before the Fukushima accident:
Regional and global contributions (1963–2005), Environ. Sci. Technol.,
47, 8383–8390, https://doi.org/10.1021/es401596z, 2013.
Tsukada, H., Ishida, J. and Narita, O.: Particle-size distributions of
atmospheric 129I and 127I aerosols, Atmos. Environ. A-Gen., 25, 905–908, https://doi.org/10.1016/0960-1686(91)90132-Q, 1991.
Wershofen, H. and Aumann, D. C.: Iodine-129 in the environment of a nuclear
fuel reprocessing plant: VII. Concentrations and chemical forms of 129I and 127I in the atmosphere, J. Environ. Radioactiv., 10, 141–156, 1989.
Whitehead, D. C.: The distribution and transformations of iodine in the
environment, Environ. Int., 10, 321–339,
https://doi.org/10.1016/0160-4120(84)90139-9, 1984.
World Nuclear Association: http://www.world-nuclear.org/, last access: 9 January 2017.
Wu, D., Du, J., Deng, H., Wang, W., Xiao, H., and Li, P.: Estimation of
atmospheric iodine emission from coal combustion, Int. J. Environ. Sci.
Te., 11, 357–366, https://doi.org/10.1007/s13762-013-0193-4, 2014.
Xi'an Bureau of Statistics: Xi'an Statistics Yearbook, available
at: http://tjj.xa.gov.cn/ptl/def/def/2017/zk/indexch.htm, last access: 19 December 2018.
Xu, S., Xie, Z., Li, B., Liu, W., Sun, L., Kang, H., Yang, H., and Zhang, P.:
Iodine speciation in marine aerosols along a 15000-km round-trip cruise path
from Shanghai, China, to the Arctic Ocean, Environ. Chem., 7, 406–412, https://doi.org/10.1071/EN10048, 2010.
Xu, S., Freeman, S. P. H. T., Hou, X., Watanabe, A., Yamaguchi, K., and Zhang, L.: Iodine Isotopes in Precipitation: Temporal Responses to
129I Emissions from the Fukushima Nuclear Accident, Environ. Sci.
Technol., 47, 10851–10859, https://doi.org/10.1021/es401527q, 2013.
Xu, S., Zhang, L., Freeman, S. P. H. T., Hou, X., Shibata, Y., Sanderson,
D., Cresswell, A., Doi, T., and Tanaka, A.: Speciation of Radiocesium and
Radioiodine in Aerosols from Tsukuba after the Fukushima Nuclear Accident,
Environ. Sci. Technol., 49, 1017–1024, https://doi.org/10.1021/es504431w, 2015.
Zhang, L., Zhou, W. J., Hou, X., Chen, N., Liu, Q., He, C., Fan, Y., Luo,
M., Wang, Z., and Fu, Y.: Level and source of 129I of environmental
samples in Xi'an region, China, Sci. Total Environ., 409, 3780–3788,
https://doi.org/10.1016/j.scitotenv.2011.06.007, 2011.
Zhang, L., Hou, X., and Xu, S.: Speciation of 127I and 129I in atmospheric aerosols at Risø, Denmark: insight into sources of iodine isotopes and their species transformations, Atmos. Chem. Phys., 16, 1971–1985, , 2016.
Zhang, L., Hou, X., Li, H., and Xu, X.: A 60-year record of 129I in Taal Lake sediments (Philippines): Influence of human nuclear activities at low latitude region, Chemosphere, 193, 1149–1156,
https://doi.org/10.1016/j.chemosphere.2017.11.134, 2018a.
Zhang, L., Hou, X., Fu, Y., Fang, M., and Chen, N.: Determination of
129I in aerosols using pyrolysis and AgI–AgCl coprecipitation
separation and accelerator mass spectrometry measurements, J. Anal. Atom.
Spectrom., 33, 1729–1736, https://doi.org/10.1039/C8JA00248G, 2018b.
Short summary
To trace the long-range transport of air pollutants and understand the atmospheric effect of iodine, the daily-resolution temporal variations of 129I and 127I in aerosols from a monsoonal city indicate the East Asian monsoon and fossil fuel combustion plays crucial roles on transport of 129I from Europe to East Asia and on elevated 127I concentrations. Through linking iodine isotopes with five major air pollutants, this study proposes the possible role of iodine in urban air pollution.
To trace the long-range transport of air pollutants and understand the atmospheric effect of...
Altmetrics
Final-revised paper
Preprint