Articles | Volume 19, issue 7
https://doi.org/10.5194/acp-19-4311-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-4311-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The impact of solar radiation on polar mesospheric ice particle formation
Mario Nachbar
CORRESPONDING AUTHOR
Institute of Meteorology and Climate Research, Karlsruhe Institute of
Technology – KIT, Hermann-von-Helmholtz-Platz 1, 76344
Eggenstein-Leopoldshafen, Germany
Henrike Wilms
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik
der Atmosphäre, Oberpfaffenhofen, Germany
Denis Duft
Institute of Meteorology and Climate Research, Karlsruhe Institute of
Technology – KIT, Hermann-von-Helmholtz-Platz 1, 76344
Eggenstein-Leopoldshafen, Germany
Tasha Aylett
School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
Kensei Kitajima
Department of Nuclear Engineering, Kyoto University, Kyoto 615-8540,
Japan
Takuya Majima
Department of Nuclear Engineering, Kyoto University, Kyoto 615-8540,
Japan
John M. C. Plane
School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
Markus Rapp
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik
der Atmosphäre, Oberpfaffenhofen, Germany
Meteorologisches Institut München,
Ludwig-Maximilians-Universität München, Munich, Germany
Thomas Leisner
Institute of Meteorology and Climate Research, Karlsruhe Institute of
Technology – KIT, Hermann-von-Helmholtz-Platz 1, 76344
Eggenstein-Leopoldshafen, Germany
Institute of Environmental Physics, University of Heidelberg, Im
Neuenheimer Feld 229, 69120 Heidelberg, Germany
Related authors
Tasha Aylett, James S. A. Brooke, Alexander D. James, Mario Nachbar, Denis Duft, Thomas Leisner, and John M. C. Plane
Atmos. Chem. Phys., 19, 12767–12777, https://doi.org/10.5194/acp-19-12767-2019, https://doi.org/10.5194/acp-19-12767-2019, 2019
Short summary
Short summary
Interplanetary dust particles entering the Earth's atmosphere often melt and evaporate, injecting metals such as iron and magnesium into the atmosphere between 80 and 105 km. These metals become oxidized and then coagulate into small particles a few nanometres is size, known as meteoric smoke. In this study, iron oxide smoke particles were created in the laboratory, and their composition and optical properties were determined in order to understand satellite measurements.
Denis Duft, Mario Nachbar, and Thomas Leisner
Atmos. Chem. Phys., 19, 2871–2879, https://doi.org/10.5194/acp-19-2871-2019, https://doi.org/10.5194/acp-19-2871-2019, 2019
Short summary
Short summary
How ice particles form in polar mesospheric clouds is still a challenging question. We measured the water adsorption and onset conditions for ice growth on meteoric smoke analogue particles in the laboratory. We find that the particles activate by growth of amorphous ice and at much warmer conditions than previously assumed, affirming meteoric smoke as likely seeds in mesospheric ice clouds. We propose an ice-activation model and show that the particle charge does not play a significant role.
Mario Nachbar, Denis Duft, and Thomas Leisner
Atmos. Chem. Phys., 18, 3419–3431, https://doi.org/10.5194/acp-18-3419-2018, https://doi.org/10.5194/acp-18-3419-2018, 2018
Short summary
Short summary
The crystallization process of amorphous ice below 160 K forms nano-crystalline ice. We report high-quality vapor pressure measurements over ice crystallized from amorphous ice below 160 K. We show that the vapor pressure is increased by more than 100 % compared to bulk crystalline ice and that amorphous ice always forms first, followed by the crystallization of nano-crystalline ice. Our findings are relevant for cold ice clouds in the atmospheres of planets, e.g., Earth and Mars.
Hengheng Zhang, Wei Huang, Xiaoli Shen, Ramakrishna Ramisetty, Junwei Song, Olga Kiseleva, Christopher Claus Holst, Basit Khan, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 10617–10637, https://doi.org/10.5194/acp-24-10617-2024, https://doi.org/10.5194/acp-24-10617-2024, 2024
Short summary
Short summary
Our study unravels how stagnant winter conditions elevate aerosol levels in Stuttgart. Cloud cover at night plays a pivotal role, impacting morning air quality. Validating a key model, our findings aid accurate air quality predictions, crucial for effective pollution mitigation in urban areas.
Alexander Julian Böhmländer, Larissa Lacher, David Brus, Konstantinos-Matthaios Doulgeris, Zoé Brasseur, Matthew Boyer, Joel Kuula, Thomas Leisner, and Ottmar Möhler
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-120, https://doi.org/10.5194/amt-2024-120, 2024
Preprint under review for AMT
Short summary
Short summary
Clouds and aerosol are important for weather and climate. Typically, pure water cloud droplets stay liquid until around -35 °C, unless they come into contact with ice-nucleating particles (INPs). INPs are a rare subset of aerosol particles. Using uncrewed aerial vehicles (UAVs), it is possible to collect aerosol particles and analyse them on their ice-nucleating ability. This study describes the test and validation of a sampling setup that can be used to collect aerosol particles onto a filter.
Natalie Kaifler, Bernd Kaifler, Markus Rapp, Guiping Liu, Diego Janches, Gerd Baumgarten, and Jose-Luis Hormaechea
EGUsphere, https://doi.org/10.5194/egusphere-2024-2318, https://doi.org/10.5194/egusphere-2024-2318, 2024
Short summary
Short summary
Noctilucent clouds (NLC) are silvery clouds that can be viewed during twilight and indicate atmospheric conditions like temperature and water vapor in the upper mesosphere. High-resolution measurements from a remote-sensing laser instrument provide NLC height, brightness and occurrence rate since 2017. Most observations occur in the morning hours, likely caused by strong tidal winds, and NLC ice particles are thus transported from elsewhere to the observing location in the southern hemisphere.
Jianfei Wu, Wuhu Feng, Xianghui Xue, Daniel R. Marsh, and John Maurice Campbell Plane
EGUsphere, https://doi.org/10.5194/egusphere-2024-1792, https://doi.org/10.5194/egusphere-2024-1792, 2024
Short summary
Short summary
Metal layers occur in the MLT region (80–120 km) from the ablation of cosmic dust. The nonmigrating diurnal tides are the persistent global oscillations. We investigate the nonmigrating diurnal tidal variations in the metal layers using satellite observations and global climate model simulations; this has not been studied previously due to the limitations of measurements. We show that the nonmigrating diurnal tides in temperature are strongly linked to the corresponding change in metal layers.
Junwei Song, Georgios I. Gkatzelis, Ralf Tillmann, Nicolas Brüggemann, Thomas Leisner, and Harald Saathoff
EGUsphere, https://doi.org/10.5194/egusphere-2024-1768, https://doi.org/10.5194/egusphere-2024-1768, 2024
Short summary
Short summary
VOCs and organic aerosol (OA) particles were measured online at an European stressed pine forest site. Higher temperatures can enhance the forest emissions of biogenic VOCs exceeding their photochemical consumption during daytime. Weakly oxidized monoterpene products dominated the VOCs during nighttime. Moreover, increasing relative humidity can promote the gas-to-particle partitioning of these weakly oxidized monoterpene products, leading to increased OA mass.
Feng Jiang, Harald Saathoff, Junwei Song, Hengheng Zhang, Linyu Gao, and Thomas Leisner
EGUsphere, https://doi.org/10.5194/egusphere-2024-1848, https://doi.org/10.5194/egusphere-2024-1848, 2024
Short summary
Short summary
The chemical composition of brown carbon in the particle and gas phase were determined by mass spectrometry. BrC in the gas phase was mainly controlled by secondary formation and particle-to-gas partitioning. BrC in the particle phase was mainly from secondary formation. This work helps to get a better understanding of diurnal variations and the sources of brown carbon aerosol at rural location in central Europe.
Joan Stude, Heinfried Aufmhoff, Hans Schlager, Markus Rapp, Carsten Baumann, Frank Arnold, and Boris Strelnikov
EGUsphere, https://doi.org/10.5194/egusphere-2024-1631, https://doi.org/10.5194/egusphere-2024-1631, 2024
Short summary
Short summary
We used a mass spectrometer on a rocket to analyze natural ions at altitudes between 60 and 120 km. Our instrument was launched in 2018 and 2021 from Norway. The heaviest particles were detected around 80 km, while medium particles could be found even above 100 km. Our measurements show that different particles are formed and not just one predominating compound. The most likely compounds that form meteor smoke particles in our measurements are made up from oxides of iron, magnesium and silicon.
Junwei Song, Harald Saathoff, Feng Jiang, Linyu Gao, Hengheng Zhang, and Thomas Leisner
Atmos. Chem. Phys., 24, 6699–6717, https://doi.org/10.5194/acp-24-6699-2024, https://doi.org/10.5194/acp-24-6699-2024, 2024
Short summary
Short summary
This study presents concurrent online measurements of organic gas and particles (VOCs and OA) at a forested site in summer. Both VOCs and OA were largely contributed by oxygenated organic compounds. Semi-volatile oxygenated OA and organic nitrate formed from monoterpenes and sesquiterpenes contributed significantly to nighttime particle growth. The results help us to understand the causes of nighttime particle growth regularly observed in summer in central European rural forested environments.
Hengheng Zhang, Christian Rolf, Ralf Tillmann, Christian Wesolek, Frank Gunther Wienhold, Thomas Leisner, and Harald Saathoff
Aerosol Research, 2, 135–151, https://doi.org/10.5194/ar-2-135-2024, https://doi.org/10.5194/ar-2-135-2024, 2024
Short summary
Short summary
Our study employs advanced tools, including scanning lidar, balloons, and UAVs, to explore aerosol particles in the atmosphere. The scanning lidar offers distinctive near-ground-level insights, enriching our comprehension of aerosol distribution from ground level to the free troposphere. This research provides valuable data for comparing remote sensing and in situ aerosol measurements, advancing our understanding of aerosol impacts on radiative transfer, clouds, and air quality.
Johanna S. Seidel, Alexei A. Kiselev, Alice Keinert, Frank Stratmann, Thomas Leisner, and Susan Hartmann
Atmos. Chem. Phys., 24, 5247–5263, https://doi.org/10.5194/acp-24-5247-2024, https://doi.org/10.5194/acp-24-5247-2024, 2024
Short summary
Short summary
Clouds often contain several thousand times more ice crystals than aerosol particles catalyzing ice formation. This phenomenon, commonly known as ice multiplication, is often explained by secondary ice formation due to the collisions between falling ice particles and droplets. In this study, we mimic this riming process. Contrary to earlier experiments, we found no efficient ice multiplication, which fundamentally questions the importance of the rime-splintering mechanism.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Feng Jiang, Kyla Siemens, Claudia Linke, Yanxia Li, Yiwei Gong, Thomas Leisner, Alexander Laskin, and Harald Saathoff
Atmos. Chem. Phys., 24, 2639–2649, https://doi.org/10.5194/acp-24-2639-2024, https://doi.org/10.5194/acp-24-2639-2024, 2024
Short summary
Short summary
We investigated the optical properties, chemical composition, and formation mechanisms of secondary organic aerosol (SOA) and brown carbon (BrC) from the oxidation of indole with and without NO2 in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) simulation chamber. This work is one of the very few to link the optical properties and chemical composition of indole SOA with and without NO2 by simulation chamber experiments.
Stefan Noll, John M. C. Plane, Wuhu Feng, Konstantinos S. Kalogerakis, Wolfgang Kausch, Carsten Schmidt, Michael Bittner, and Stefan Kimeswenger
Atmos. Chem. Phys., 24, 1143–1176, https://doi.org/10.5194/acp-24-1143-2024, https://doi.org/10.5194/acp-24-1143-2024, 2024
Short summary
Short summary
The Earth's nighttime radiation in the range from the near-UV to the near-IR mainly originates between 75 and 105 km and consists of lines of different species, which are important indicators of the chemistry and dynamics at these altitudes. Based on astronomical spectra, we have characterised the structure and variability of a pseudo-continuum of a high number of faint lines and discovered a new emission process in the near-IR. By means of simulations, we identified HO2 as the likely emitter.
Yiwei Gong, Feng Jiang, Yanxia Li, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 167–184, https://doi.org/10.5194/acp-24-167-2024, https://doi.org/10.5194/acp-24-167-2024, 2024
Short summary
Short summary
This study investigates the role of the important atmospheric reactive intermediates in the formation of dimers and aerosol in monoterpene ozonolysis at different temperatures. Through conducting a series of chamber experiments and utilizing chemical kinetic and aerosol dynamic models, the SOA formation processes are better described, especially for colder regions. The results can be used to improve the chemical mechanism modeling of monoterpenes and SOA parameterization in transport models.
Mohit Singh, Stephanie Helen Jones, Alexei Kiselev, Denis Duft, and Thomas Leisner
Atmos. Meas. Tech., 16, 5205–5215, https://doi.org/10.5194/amt-16-5205-2023, https://doi.org/10.5194/amt-16-5205-2023, 2023
Short summary
Short summary
We introduce a novel method for simultaneous measurement of the viscosity and surface tension of metastable liquids. Our approach is based on the phase analysis of excited shape oscillations in levitated droplets. It is applicable to a wide range of atmospheric conditions and can monitor changes in real time. The technique holds great promise for investigating the effect of atmospheric processing on the viscosity and surface tension of solution droplets in equilibrium with water vapour.
John M. C. Plane, Jörg Gumbel, Konstantinos S. Kalogerakis, Daniel R. Marsh, and Christian von Savigny
Atmos. Chem. Phys., 23, 13255–13282, https://doi.org/10.5194/acp-23-13255-2023, https://doi.org/10.5194/acp-23-13255-2023, 2023
Short summary
Short summary
The mesosphere or lower thermosphere region of the atmosphere borders the edge of space. It is subject to extreme ultraviolet photons and charged particles from the Sun and atmospheric gravity waves from below, which tend to break in this region. The pressure is very low, which facilitates chemistry involving species in excited states, and this is also the region where cosmic dust ablates and injects various metals. The result is a unique and exotic chemistry.
Robert Wagner, Alexander D. James, Victoria L. Frankland, Ottmar Möhler, Benjamin J. Murray, John M. C. Plane, Harald Saathoff, Ralf Weigel, and Martin Schnaiter
Atmos. Chem. Phys., 23, 6789–6811, https://doi.org/10.5194/acp-23-6789-2023, https://doi.org/10.5194/acp-23-6789-2023, 2023
Short summary
Short summary
Polar stratospheric clouds (PSCs) play an important role in the depletion of stratospheric ozone. They can consist of different chemical species, including crystalline nitric acid hydrates. We found that mineral dust or meteoric ablation material can efficiently catalyse the formation of a specific phase of nitric acid dihydrate crystals. We determined predominant particle shapes and infrared optical properties of these crystals, which are important inputs for remote sensing detection of PSCs.
Benjamin Witschas, Sonja Gisinger, Stephan Rahm, Andreas Dörnbrack, David C. Fritts, and Markus Rapp
Atmos. Meas. Tech., 16, 1087–1101, https://doi.org/10.5194/amt-16-1087-2023, https://doi.org/10.5194/amt-16-1087-2023, 2023
Short summary
Short summary
In this paper, a novel scan technique is applied to an airborne coherent Doppler wind lidar, enabling us to measure the vertical wind speed and the horizontal wind speed along flight direction simultaneously with a horizontal resolution of about 800 m and a vertical resolution of 100 m. The performed observations are valuable for gravity wave characterization as they allow us to calculate the leg-averaged momentum flux profile and, with that, the propagation direction of excited gravity waves.
Alexander D. James, Finn Pace, Sebastien N. F. Sikora, Graham W. Mann, John M. C. Plane, and Benjamin J. Murray
Atmos. Chem. Phys., 23, 2215–2233, https://doi.org/10.5194/acp-23-2215-2023, https://doi.org/10.5194/acp-23-2215-2023, 2023
Short summary
Short summary
Here, we examine whether several materials of meteoric origin can nucleate crystallisation in stratospheric cloud droplets which would affect ozone depletion. We find that material which could fragment on atmospheric entry without melting is unlikely to be present in high enough concentration in the stratosphere to contribute to observed crystalline clouds. Material which ablates completely then forms a new solid known as meteoric smoke can provide enough nucleation to explain observed clouds.
Natalie Kaifler, Bernd Kaifler, Markus Rapp, and David C. Fritts
Atmos. Chem. Phys., 23, 949–961, https://doi.org/10.5194/acp-23-949-2023, https://doi.org/10.5194/acp-23-949-2023, 2023
Short summary
Short summary
We used a lidar to measure polar mesospheric clouds from a balloon floating in the upper stratosphere. The thin-layered ice clouds at 83 km altitude are perturbed by waves. The high-resolution lidar soundings reveal small-scale structures induced by the breaking of those waves. We study these patterns and find that they occur very often. We show their morphology and discuss associated dynamical physical processes, which help to interpret case studies and to guide modelling.
Hans-Christoph Lachnitt, Peter Hoor, Daniel Kunkel, Martina Bramberger, Andreas Dörnbrack, Stefan Müller, Philipp Reutter, Andreas Giez, Thorsten Kaluza, and Markus Rapp
Atmos. Chem. Phys., 23, 355–373, https://doi.org/10.5194/acp-23-355-2023, https://doi.org/10.5194/acp-23-355-2023, 2023
Short summary
Short summary
We present an analysis of high-resolution airborne measurements during a flight of the DEEPWAVE 2014 campaign in New Zealand. The focus of this flight was to study the effects of enhanced mountain wave activity over the Southern Alps. We discuss changes in the upstream and downstream distributions of N2O and CO and show that these changes are related to turbulence-induced trace gas fluxes which have persistent effects on the trace gas composition in the lower stratosphere.
Feng Jiang, Junwei Song, Jonas Bauer, Linyu Gao, Magdalena Vallon, Reiner Gebhardt, Thomas Leisner, Stefan Norra, and Harald Saathoff
Atmos. Chem. Phys., 22, 14971–14986, https://doi.org/10.5194/acp-22-14971-2022, https://doi.org/10.5194/acp-22-14971-2022, 2022
Short summary
Short summary
We studied brown carbon aerosol during typical summer and winter periods in downtown Karlsruhe in southwestern Germany. The chromophore and chemical composition of brown carbon was determined by excitation–emission spectroscopy and mass spectrometry. The chromophore types and sources were substantially different in winter and summer. Humic-like chromophores of different degrees of oxidation dominated and were associated with molecules of different molecular weight and nitrogen content.
Natalie Kaifler, Bernd Kaifler, Markus Rapp, and David C. Fritts
Earth Syst. Sci. Data, 14, 4923–4934, https://doi.org/10.5194/essd-14-4923-2022, https://doi.org/10.5194/essd-14-4923-2022, 2022
Short summary
Short summary
We measured polar mesospheric clouds (PMCs), our Earth’s highest clouds at the edge of space, with a Rayleigh lidar from a stratospheric balloon. We describe how we derive the cloud’s brightness and discuss the stability of the gondola pointing and the sensitivity of our measurements. We present our high-resolution PMC dataset that is used to study dynamical processes in the upper mesosphere, e.g. regarding gravity waves, mesospheric bores, vortex rings, and Kelvin–Helmholtz instabilities.
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Mingjiao Jia, Wuhu Feng, John M. C. Plane, Daniel R. Marsh, Jonas Hedin, Jörg Gumbel, and Xiankang Dou
Atmos. Chem. Phys., 22, 11485–11504, https://doi.org/10.5194/acp-22-11485-2022, https://doi.org/10.5194/acp-22-11485-2022, 2022
Short summary
Short summary
We present a study on the climatology of the metal sodium layer in the upper atmosphere from the ground-based measurements obtained from a lidar network, the Odin satellite measurements, and a global model of meteoric sodium in the atmosphere. Comprehensively, comparisons show good agreement and some discrepancies between ground-based observations, satellite measurements, and global model simulations.
Carsten Baumann, Antti Kero, Shikha Raizada, Markus Rapp, Michael P. Sulzer, Pekka T. Verronen, and Juha Vierinen
Ann. Geophys., 40, 519–530, https://doi.org/10.5194/angeo-40-519-2022, https://doi.org/10.5194/angeo-40-519-2022, 2022
Short summary
Short summary
The Arecibo radar was used to probe free electrons of the ionized atmosphere between 70 and 100 km altitude. This is also the altitude region were meteors evaporate and form secondary particulate matter, the so-called meteor smoke particles (MSPs). Free electrons attach to these MSPs when the sun is below the horizon and cause a drop in the number of free electrons, which are the subject of these measurements. We also identified a different number of free electrons during sunset and sunrise.
Fritz Waitz, Martin Schnaiter, Thomas Leisner, and Emma Järvinen
Atmos. Chem. Phys., 22, 7087–7103, https://doi.org/10.5194/acp-22-7087-2022, https://doi.org/10.5194/acp-22-7087-2022, 2022
Short summary
Short summary
Riming, i.e., the accretion of small droplets on the surface of ice particles via collision, is one of the major uncertainties in model prediction of mixed-phase clouds. We discuss the occurrence (up to 50% of particles) and aging of rimed ice particles and show correlations of the occurrence and the degree of riming with ambient meteorological parameters using data gathered by the Particle Habit Imaging and Polar Scattering (PHIPS) probe during three airborne in situ field campaigns.
Linyu Gao, Junwei Song, Claudia Mohr, Wei Huang, Magdalena Vallon, Feng Jiang, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 22, 6001–6020, https://doi.org/10.5194/acp-22-6001-2022, https://doi.org/10.5194/acp-22-6001-2022, 2022
Short summary
Short summary
We study secondary organic aerosol (SOA) from β-caryophyllene (BCP) ozonolysis with and without nitrogen oxides over 213–313 K in the simulation chamber. The yields and the rate constants were determined at 243–313 K. Chemical compositions varied at different temperatures, indicating a strong impact on the BCP ozonolysis pathways. This work helps to better understand the SOA from BCP ozonolysis for conditions representative of the real atmosphere from the boundary layer to the upper troposphere.
Magdalena Vallon, Linyu Gao, Feng Jiang, Bianca Krumm, Jens Nadolny, Junwei Song, Thomas Leisner, and Harald Saathoff
Atmos. Meas. Tech., 15, 1795–1810, https://doi.org/10.5194/amt-15-1795-2022, https://doi.org/10.5194/amt-15-1795-2022, 2022
Short summary
Short summary
A LED-based light source has been constructed for the AIDA simulation chamber at the Karlsruhe Institute of Technology. It allows aerosol formation and ageing studies under atmospherically relevant illumination intensities and spectral characteristics at temperatures from –90 °C to 30 °C with the possibility of changing the photon flux and irradiation spectrum at any point. The first results of photolysis experiments with 2,3-pentanedione, iron oxalate and a brown carbon component are shown.
Stefanie Knobloch, Bernd Kaifler, and Markus Rapp
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-310, https://doi.org/10.5194/amt-2021-310, 2022
Preprint withdrawn
Short summary
Short summary
The study tests the quality of temperature measurements from the airborne Rayleigh lidar ALIMA. The ALIMA system was first used during the SouthTRAC campaign in September 2019 in the vicinity of the Southern Andes, Drake Passage and Antarctic Peninsula. The raw lidar measurements are additionally simulated based on reanalysis data for one research flight. Different types of uncertainty influencing the accuracy of the temperature measurements are studied, e.g. atmospheric and technical sources.
Ulrich Platt, Thomas Wagner, Jonas Kuhn, and Thomas Leisner
Atmos. Meas. Tech., 14, 6867–6883, https://doi.org/10.5194/amt-14-6867-2021, https://doi.org/10.5194/amt-14-6867-2021, 2021
Short summary
Short summary
Absorption spectroscopy of scattered sunlight is extremely useful for the analysis of atmospheric trace gas distributions. A central parameter for the achievable sensitivity of spectroscopic instruments is the light throughput, which can be enhanced in a number of ways. We present new ideas and considerations of how instruments could be optimized. Particular emphasis is on arrays of massively parallel instruments. Such arrays can reduce the size and weight of instruments by orders of magnitude.
Jianfei Wu, Wuhu Feng, Han-Li Liu, Xianghui Xue, Daniel Robert Marsh, and John Maurice Campbell Plane
Atmos. Chem. Phys., 21, 15619–15630, https://doi.org/10.5194/acp-21-15619-2021, https://doi.org/10.5194/acp-21-15619-2021, 2021
Short summary
Short summary
Metal layers occur in the MLT region (80–120 km) from the ablation of cosmic dust. The latest lidar observations show these metals can reach a height approaching 200 km, which is challenging to explain. We have developed the first global simulation incorporating the full life cycle of metal atoms and ions. The model results compare well with lidar and satellite observations of the seasonal and diurnal variation of the metals and demonstrate the importance of ion mass and ion-neutral coupling.
Julia Schneider, Kristina Höhler, Robert Wagner, Harald Saathoff, Martin Schnaiter, Tobias Schorr, Isabelle Steinke, Stefan Benz, Manuel Baumgartner, Christian Rolf, Martina Krämer, Thomas Leisner, and Ottmar Möhler
Atmos. Chem. Phys., 21, 14403–14425, https://doi.org/10.5194/acp-21-14403-2021, https://doi.org/10.5194/acp-21-14403-2021, 2021
Short summary
Short summary
Homogeneous freezing is a relevant mechanism for the formation of cirrus clouds in the upper troposphere. Based on an extensive set of homogeneous freezing experiments at the AIDA chamber with aqueous sulfuric acid aerosol, we provide a new fit line for homogeneous freezing onset conditions of sulfuric acid aerosol focusing on cirrus temperatures. In the atmosphere, homogeneous freezing thresholds have important implications on the cirrus cloud occurrence and related cloud radiative effects.
Alexei A. Kiselev, Alice Keinert, Tilia Gaedeke, Thomas Leisner, Christoph Sutter, Elena Petrishcheva, and Rainer Abart
Atmos. Chem. Phys., 21, 11801–11814, https://doi.org/10.5194/acp-21-11801-2021, https://doi.org/10.5194/acp-21-11801-2021, 2021
Short summary
Short summary
Alkali feldspar is the most abundant mineral in the Earth's crust and is often present in mineral dust aerosols that are responsible for the formation of rain and snow in clouds. However, the cloud droplets containing pure potassium-rich feldspar would not freeze unless cooled down to a very low temperature. Here we show that partly replacing potassium with sodium would induce fracturing of feldspar, exposing a crystalline surface that could initiate freezing at higher temperature.
Hengheng Zhang, Frank Wagner, Harald Saathoff, Heike Vogel, Gholam Ali Hoshyaripour, Vanessa Bachmann, Jochen Förstner, and Thomas Leisner
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-193, https://doi.org/10.5194/amt-2021-193, 2021
Revised manuscript not accepted
Short summary
Short summary
The evolution and the properties of Saharan dust plume were characterized by LIDARs, a sun photometer, and a regional transport model. Comparison between LIDAR measurements, sun photometer and ICON-ART predictions shows a good agreement for dust arrival time, dust layer height, and dust structure but also that the model overestimates the backscatter coefficients by a factor of (2.2 ± 0.16) and underestimate aerosol optical depth by a factor of (1.5 ± 0.11).
Barbara Bertozzi, Robert Wagner, Junwei Song, Kristina Höhler, Joschka Pfeifer, Harald Saathoff, Thomas Leisner, and Ottmar Möhler
Atmos. Chem. Phys., 21, 10779–10798, https://doi.org/10.5194/acp-21-10779-2021, https://doi.org/10.5194/acp-21-10779-2021, 2021
Short summary
Short summary
Internally mixed particles composed of sulfate and organics are among the most abundant aerosol types. Their ice nucleation (IN) ability influences the formation of cirrus and, thus, the climate. We show that the presence of a thin organic coating suppresses the heterogeneous IN ability of crystalline ammonium sulfate particles. However, the IN ability of the same particle can substantially change if subjected to atmospheric processing, mainly due to differences in the resulting morphology.
Fritz Waitz, Martin Schnaiter, Thomas Leisner, and Emma Järvinen
Atmos. Meas. Tech., 14, 3049–3070, https://doi.org/10.5194/amt-14-3049-2021, https://doi.org/10.5194/amt-14-3049-2021, 2021
Short summary
Short summary
A major challenge in the observations of mixed-phase clouds remains the phase discrimination and sizing of cloud droplets and ice crystals, especially for particles with diameters smaller than 0.1 mm. Here, we present a new method to derive the phase and size of single cloud particles using their angular-light-scattering information. Comparisons with other in situ instruments in three case studies show good agreement.
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Jianfei Wu, Xinan Yue, Wuhu Feng, Yutian Chi, Daniel R. Marsh, Hanli Liu, Xiankang Dou, and John M. C. Plane
Atmos. Chem. Phys., 21, 4219–4230, https://doi.org/10.5194/acp-21-4219-2021, https://doi.org/10.5194/acp-21-4219-2021, 2021
Short summary
Short summary
A long-standing mystery of metal ions within Es layers in the Earth's upper atmosphere is the marked seasonal dependence, with a summer maximum and a winter minimum. We report a large-scale winter-to-summer transport of metal ions from 6-year multi-satellite observations and worldwide ground-based stations. A global atmospheric circulation is responsible for the phenomenon. Our results emphasise the effect of this atmospheric circulation on the transport of composition in the upper atmosphere.
Julia Schneider, Kristina Höhler, Paavo Heikkilä, Jorma Keskinen, Barbara Bertozzi, Pia Bogert, Tobias Schorr, Nsikanabasi Silas Umo, Franziska Vogel, Zoé Brasseur, Yusheng Wu, Simo Hakala, Jonathan Duplissy, Dmitri Moisseev, Markku Kulmala, Michael P. Adams, Benjamin J. Murray, Kimmo Korhonen, Liqing Hao, Erik S. Thomson, Dimitri Castarède, Thomas Leisner, Tuukka Petäjä, and Ottmar Möhler
Atmos. Chem. Phys., 21, 3899–3918, https://doi.org/10.5194/acp-21-3899-2021, https://doi.org/10.5194/acp-21-3899-2021, 2021
Short summary
Short summary
By triggering the formation of ice crystals, ice-nucleating particles (INP) strongly influence cloud formation. Continuous, long-term measurements are needed to characterize the atmospheric INP variability. Here, a first long-term time series of INP spectra measured in the boreal forest for more than 1 year is presented, showing a clear seasonal cycle. It is shown that the seasonal dependency of INP concentrations and prevalent INP types is driven by the abundance of biogenic aerosol.
Robert Wagner, Baptiste Testa, Michael Höpfner, Alexei Kiselev, Ottmar Möhler, Harald Saathoff, Jörn Ungermann, and Thomas Leisner
Atmos. Meas. Tech., 14, 1977–1991, https://doi.org/10.5194/amt-14-1977-2021, https://doi.org/10.5194/amt-14-1977-2021, 2021
Short summary
Short summary
During the Asian summer monsoon period, air pollutants are transported from layers near the ground to high altitudes of 13 to 18 km in the atmosphere. Infrared measurements have shown that particles composed of solid ammonium nitrate are a major part of these pollutants. To enable the quantitative analysis of the infrared spectra, we have determined for the first time accurate optical constants of ammonium nitrate for the low-temperature conditions of the upper atmosphere.
Mareike Heckl, Andreas Fix, Matthias Jirousek, Franz Schreier, Jian Xu, and Markus Rapp
Atmos. Meas. Tech., 14, 1689–1713, https://doi.org/10.5194/amt-14-1689-2021, https://doi.org/10.5194/amt-14-1689-2021, 2021
Joan Stude, Heinfried Aufmhoff, Hans Schlager, Markus Rapp, Frank Arnold, and Boris Strelnikov
Atmos. Meas. Tech., 14, 983–993, https://doi.org/10.5194/amt-14-983-2021, https://doi.org/10.5194/amt-14-983-2021, 2021
Short summary
Short summary
In this paper we describe the instrument ROMARA and show data from the first flight on a research rocket.
On the way through the atmosphere, the instrument detects positive and negative, natural occurring ions before returning back to ground.
ROMARA was successfully launched together with other instruments into a special radar echo.
We detected typical, light ions of positive and negative charge and heavy negative ions, but no heavy positive ions.
Michael Krayer, Agathe Chouippe, Markus Uhlmann, Jan Dušek, and Thomas Leisner
Atmos. Chem. Phys., 21, 561–575, https://doi.org/10.5194/acp-21-561-2021, https://doi.org/10.5194/acp-21-561-2021, 2021
Short summary
Short summary
We address the phenomenon of ice enhancement in the vicinity of warm hydrometeors using highly accurate flow simulation techniques. It is found that the transiently supersaturated zones induced by the hydrometeor's wake are by far larger than what has been previously estimated. The ice enhancement is quantified on the micro- and macroscale, and its relevance is discussed. The results provided may contribute to a (currently unavailable) parametrization of the phenomenon.
Alexei Korolev and Thomas Leisner
Atmos. Chem. Phys., 20, 11767–11797, https://doi.org/10.5194/acp-20-11767-2020, https://doi.org/10.5194/acp-20-11767-2020, 2020
Short summary
Short summary
Secondary ice production (SIP) plays a key role in the formation of ice particles in tropospheric clouds. This work presents a critical review of the laboratory studies related to secondary ice production. It aims to identify gaps in our knowledge of SIP as well as to stimulate further laboratory studies focused on obtaining a quantitative description of efficiencies for each SIP mechanism.
Isabelle Steinke, Naruki Hiranuma, Roger Funk, Kristina Höhler, Nadine Tüllmann, Nsikanabasi Silas Umo, Peter G. Weidler, Ottmar Möhler, and Thomas Leisner
Atmos. Chem. Phys., 20, 11387–11397, https://doi.org/10.5194/acp-20-11387-2020, https://doi.org/10.5194/acp-20-11387-2020, 2020
Short summary
Short summary
In this study, we highlight the potential impact of particles from certain terrestrial sources on the formation of ice crystals in clouds. In particular, we focus on biogenic particles consisting of various organic compounds, which makes it very difficult to predict the ice nucleation properties of complex ambient particles. We find that these ambient particles are often more ice active than individual components.
Thomas R. Lewis, Juan Carlos Gómez Martín, Mark A. Blitz, Carlos A. Cuevas, John M. C. Plane, and Alfonso Saiz-Lopez
Atmos. Chem. Phys., 20, 10865–10887, https://doi.org/10.5194/acp-20-10865-2020, https://doi.org/10.5194/acp-20-10865-2020, 2020
Short summary
Short summary
Iodine-bearing gasses emitted from the sea surface are chemically processed in the atmosphere, leading to iodine accumulation in aerosol and transport to continental ecosystems. Such processing involves light-induced break-up of large, particle-forming iodine oxides into smaller, ozone-depleting molecules. We combine experiments and theory to report the photolysis efficiency of iodine oxides required to assess the impact of iodine on ozone depletion and particle formation.
Robert Reichert, Bernd Kaifler, Natalie Kaifler, Markus Rapp, Pierre-Dominique Pautet, Michael J. Taylor, Alexander Kozlovsky, Mark Lester, and Rigel Kivi
Atmos. Meas. Tech., 12, 5997–6015, https://doi.org/10.5194/amt-12-5997-2019, https://doi.org/10.5194/amt-12-5997-2019, 2019
Short summary
Short summary
To determine gravity wave properties like wavelengths, periods and propagation directions at mesospheric altitudes (∼ 86 km) we combine lidar and airglow temperature and meteor radar wind data. By means of wavelet transformation we investigate the wave field and determine intrinsic wave properties as functions of time and period. We are able to identify several gravity wave packets by their distinct propagation and discover a superposition with possible wave–wave and wave–mean-flow interaction.
Xiaoli Shen, Heike Vogel, Bernhard Vogel, Wei Huang, Claudia Mohr, Ramakrishna Ramisetty, Thomas Leisner, André S. H. Prévôt, and Harald Saathoff
Atmos. Chem. Phys., 19, 13189–13208, https://doi.org/10.5194/acp-19-13189-2019, https://doi.org/10.5194/acp-19-13189-2019, 2019
Short summary
Short summary
This study provides good insight into the chemical nature and complex origin of aerosols by combining comprehensive field observations and transport modelling. We suggest that factors related to topography, metrological conditions, local emissions, in situ formation and growth, regional transport, and the interaction of biogenic and anthropogenic compounds need to be considered for a comprehensive understanding of aerosol processes.
Tasha Aylett, James S. A. Brooke, Alexander D. James, Mario Nachbar, Denis Duft, Thomas Leisner, and John M. C. Plane
Atmos. Chem. Phys., 19, 12767–12777, https://doi.org/10.5194/acp-19-12767-2019, https://doi.org/10.5194/acp-19-12767-2019, 2019
Short summary
Short summary
Interplanetary dust particles entering the Earth's atmosphere often melt and evaporate, injecting metals such as iron and magnesium into the atmosphere between 80 and 105 km. These metals become oxidized and then coagulate into small particles a few nanometres is size, known as meteoric smoke. In this study, iron oxide smoke particles were created in the laboratory, and their composition and optical properties were determined in order to understand satellite measurements.
Wei Huang, Harald Saathoff, Xiaoli Shen, Ramakrishna Ramisetty, Thomas Leisner, and Claudia Mohr
Atmos. Chem. Phys., 19, 11687–11700, https://doi.org/10.5194/acp-19-11687-2019, https://doi.org/10.5194/acp-19-11687-2019, 2019
Short summary
Short summary
We investigate the molecular composition and volatility of oxygenated organic aerosol (OOA) particles in summer and winter in Stuttgart, Germany. OOA in summer is more influenced by biogenic emissions, while in winter biomass burning emissions are an important source. OOA in winter is also less volatile. Potential reasons are discussed in our paper. Our study shows the important contributions of nonfossil OA from biogenic and biomass burning even in an urban area with high traffic emissions.
Boris Strelnikov, Martin Eberhart, Martin Friedrich, Jonas Hedin, Mikhail Khaplanov, Gerd Baumgarten, Bifford P. Williams, Tristan Staszak, Heiner Asmus, Irina Strelnikova, Ralph Latteck, Mykhaylo Grygalashvyly, Franz-Josef Lübken, Josef Höffner, Raimund Wörl, Jörg Gumbel, Stefan Löhle, Stefanos Fasoulas, Markus Rapp, Aroh Barjatya, Michael J. Taylor, and Pierre-Dominique Pautet
Atmos. Chem. Phys., 19, 11443–11460, https://doi.org/10.5194/acp-19-11443-2019, https://doi.org/10.5194/acp-19-11443-2019, 2019
Short summary
Short summary
Sounding rockets are the only means of measuring small-scale structures (i.e., spatial scales of kilometers to centimeters) in the Earth's middle atmosphere (50–120 km). We present and analyze brand-new high-resolution measurements of atomic oxygen (O) concentration together with high-resolution measurements of ionospheric plasma and neutral air parameters. We found a new behavior of the O inside turbulent layers, which might be essential to adequately model weather and climate.
Martin Schnaiter, Claudia Linke, Inas Ibrahim, Alexei Kiselev, Fritz Waitz, Thomas Leisner, Stefan Norra, and Till Rehm
Atmos. Chem. Phys., 19, 10829–10844, https://doi.org/10.5194/acp-19-10829-2019, https://doi.org/10.5194/acp-19-10829-2019, 2019
Short summary
Short summary
When combustion particles are deposited to the ground, they darken Earth's snow and ice surfaces by even tiny quantities. This darkening reduces the back reflection of sunlight and induces an additional climate warming. Particles from fresh snow samples were investigated according to their light absorption strength. Enhanced absorption was found in the snow that cannot fully be attributed to combustion particles. Dust and biogenic matter are likely the cause of this additional snow darkening.
Jens Faber, Michael Gerding, Andreas Schneider, Andreas Dörnbrack, Henrike Wilms, Johannes Wagner, and Franz-Josef Lübken
Atmos. Meas. Tech., 12, 4191–4210, https://doi.org/10.5194/amt-12-4191-2019, https://doi.org/10.5194/amt-12-4191-2019, 2019
Short summary
Short summary
Atmospheric measurements on rising balloons can be compromised by the balloon's wake. The aim of this study is to provide a tool for assessing the likelihood of encountering the balloon's wake at the position of the gondola. This includes an uncertainty analysis of the calculation and a retrieval of vertical winds. We find an average wake encounter probability of 28 % for a standard radiosonde. Additionally, we evaluate the influence of wake from smaller objects on turbulence measurements.
Nsikanabasi Silas Umo, Robert Wagner, Romy Ullrich, Alexei Kiselev, Harald Saathoff, Peter G. Weidler, Daniel J. Cziczo, Thomas Leisner, and Ottmar Möhler
Atmos. Chem. Phys., 19, 8783–8800, https://doi.org/10.5194/acp-19-8783-2019, https://doi.org/10.5194/acp-19-8783-2019, 2019
Short summary
Short summary
Annually, over 600 Tg of coal fly ash (CFA) is produced; a significant proportion of this amount is injected into the atmosphere, which could significantly contribute to heterogeneous ice formation in clouds. This study presents an improved understanding of CFA particles' behaviour in forming ice in clouds, especially when exposed to lower temperatures before being re-circulated in the upper troposphere or entrained into the lower troposphere.
Martin Eberhart, Stefan Löhle, Boris Strelnikov, Jonas Hedin, Mikhail Khaplanov, Stefanos Fasoulas, Jörg Gumbel, Franz-Josef Lübken, and Markus Rapp
Atmos. Meas. Tech., 12, 2445–2461, https://doi.org/10.5194/amt-12-2445-2019, https://doi.org/10.5194/amt-12-2445-2019, 2019
Short summary
Short summary
This paper describes the measurement of atomic oxygen in the upper atmosphere onboard sounding rockets using solid electrolyte sensors. Calibration of the sensors in the laboratory is explained in detail. Results from the WADIS-2 rocket campaign show profiles of atomic oxygen density with a high spatial resolution.
Xiaoli Shen, Harald Saathoff, Wei Huang, Claudia Mohr, Ramakrishna Ramisetty, and Thomas Leisner
Atmos. Meas. Tech., 12, 2219–2240, https://doi.org/10.5194/amt-12-2219-2019, https://doi.org/10.5194/amt-12-2219-2019, 2019
Short summary
Short summary
Based on single-particle mass spectra from field measurements in the upper Rhine valley, we identified characteristic particle classes and estimated their mass contributions without the need of a reference instrument in the field. Our study provides a good example for quantitative interpretation of single-particle data. Together with the complimentary results from bulk measurements, we have shown how a better understanding of the mixing state of ambient aerosol particles can be achieved.
Tao Yuan, Wuhu Feng, John M. C. Plane, and Daniel R. Marsh
Atmos. Chem. Phys., 19, 3769–3777, https://doi.org/10.5194/acp-19-3769-2019, https://doi.org/10.5194/acp-19-3769-2019, 2019
Short summary
Short summary
The Na layer in the upper atmosphere is very sensitive to solar radiation and varies considerably during sunrise and sunset. In this paper, we use the lidar observations and an advanced model to investigate this process. We found that the variation is mostly due to the changes in several photochemical reactions involving Na compounds, especially NaHCO3. We also reveal that the Fe layer in the same region changes more quickly than the Na layer due to a faster reaction rate of FeOH to sunlight.
Denis Duft, Mario Nachbar, and Thomas Leisner
Atmos. Chem. Phys., 19, 2871–2879, https://doi.org/10.5194/acp-19-2871-2019, https://doi.org/10.5194/acp-19-2871-2019, 2019
Short summary
Short summary
How ice particles form in polar mesospheric clouds is still a challenging question. We measured the water adsorption and onset conditions for ice growth on meteoric smoke analogue particles in the laboratory. We find that the particles activate by growth of amorphous ice and at much warmer conditions than previously assumed, affirming meteoric smoke as likely seeds in mesospheric ice clouds. We propose an ice-activation model and show that the particle charge does not play a significant role.
Mykhaylo Grygalashvyly, Martin Eberhart, Jonas Hedin, Boris Strelnikov, Franz-Josef Lübken, Markus Rapp, Stefan Löhle, Stefanos Fasoulas, Mikhail Khaplanov, Jörg Gumbel, and Ekaterina Vorobeva
Atmos. Chem. Phys., 19, 1207–1220, https://doi.org/10.5194/acp-19-1207-2019, https://doi.org/10.5194/acp-19-1207-2019, 2019
Short summary
Short summary
Based on rocket-borne true common volume observations of atomic oxygen, atmospheric band emission (762 nm), and background atmosphere density and temperature, one-step, two-step, and combined mechanisms of
O2(b1Σg+) formation were analyzed. We found new coefficients for the fit function based on self-consistent temperature, atomic oxygen, and volume emission observations. This can be used for atmospheric band volume emission modeling or the estimation of atomic oxygen by known volume emission.
Emma Järvinen, Olivier Jourdan, David Neubauer, Bin Yao, Chao Liu, Meinrat O. Andreae, Ulrike Lohmann, Manfred Wendisch, Greg M. McFarquhar, Thomas Leisner, and Martin Schnaiter
Atmos. Chem. Phys., 18, 15767–15781, https://doi.org/10.5194/acp-18-15767-2018, https://doi.org/10.5194/acp-18-15767-2018, 2018
Short summary
Short summary
Using light diffraction it is possible to detect microscopic features within ice particles that have not yet been fully characterized. Here, this technique was applied in airborne measurements, where it was found that majority of atmospheric ice particles have features that significantly change the way ice particles interact with solar light. The microscopic features make ice-containing clouds more reflective than previously thought, which could have consequences for predicting our climate.
John M. C. Plane, Wuhu Feng, Juan Carlos Gómez Martín, Michael Gerding, and Shikha Raizada
Atmos. Chem. Phys., 18, 14799–14811, https://doi.org/10.5194/acp-18-14799-2018, https://doi.org/10.5194/acp-18-14799-2018, 2018
Short summary
Short summary
Meteoric ablation creates layers of metal atoms in the atmosphere around 90 km. Although Ca and Na have similar elemental abundances in most minerals found in the solar system, surprisingly the Ca abundance in the atmosphere is less than 1 % that of Na. This study uses a detailed chemistry model of Ca, largely based on laboratory kinetics measurements, in a whole-atmosphere model to show that the depletion is caused by inefficient ablation of Ca and the formation of stable molecular reservoirs.
Andreas Dörnbrack, Sonja Gisinger, Natalie Kaifler, Tanja Christina Portele, Martina Bramberger, Markus Rapp, Michael Gerding, Jens Faber, Nedjeljka Žagar, and Damjan Jelić
Atmos. Chem. Phys., 18, 12915–12931, https://doi.org/10.5194/acp-18-12915-2018, https://doi.org/10.5194/acp-18-12915-2018, 2018
Short summary
Short summary
A deep upper-air sounding stimulated the current investigation of internal gravity waves excited during a minor sudden stratospheric warming (SSW) in the Arctic winter 2015/16. The analysis of the radiosonde profile revealed large kinetic and potential energies in the upper stratosphere without any simultaneous enhancement of upper tropospheric and lower stratospheric values. In combination with high-resolution meteorological analyses we identified an elevated source of gravity wave excitation.
Tao Li, Chao Ban, Xin Fang, Jing Li, Zhaopeng Wu, Wuhu Feng, John M. C. Plane, Jiangang Xiong, Daniel R. Marsh, Michael J. Mills, and Xiankang Dou
Atmos. Chem. Phys., 18, 11683–11695, https://doi.org/10.5194/acp-18-11683-2018, https://doi.org/10.5194/acp-18-11683-2018, 2018
Short summary
Short summary
A total of 154 nights of observations by the USTC Na temperature and wind lidar (32° N, 117° E) suggest significant seasonal variability in the mesopause. Chemistry plays an important role in Na atom formation. More than half of the observed gravity wave (GW) momentum flux (MF), whose divergence determines the GW forcing, is induced by short-period (10 min–2 h) waves. The anticorrelation between MF and zonal wind (U) suggests strong filtering of short-period GWs by semiannual oscillation U.
Ramakrishna Ramisetty, Ahmed Abdelmonem, Xiaoli Shen, Harald Saathoff, Thomas Leisner, and Claudia Mohr
Atmos. Meas. Tech., 11, 4345–4360, https://doi.org/10.5194/amt-11-4345-2018, https://doi.org/10.5194/amt-11-4345-2018, 2018
Short summary
Short summary
In this study we coupled a laser ablation aerosol time-of-flight (LAAPTOF) single-particle mass spectrometer, originally equipped with an excimer laser, to a femtosecond laser. The objective was to assess the influence of the higher laser power density of the femtosecond laser on ablation–ionization of atmospheric particles, ion signal, and ultimately quantitative abilities of the single-particle mass spectrometer.
Xiaoli Shen, Ramakrishna Ramisetty, Claudia Mohr, Wei Huang, Thomas Leisner, and Harald Saathoff
Atmos. Meas. Tech., 11, 2325–2343, https://doi.org/10.5194/amt-11-2325-2018, https://doi.org/10.5194/amt-11-2325-2018, 2018
Short summary
Short summary
This paper presents performance data and reference spectra from the commercially available single-particle mass spectrometer LAAPTOF. The main characteristics of the instrument, like its detection efficiency, are given for a wide particle size range. Furthermore, reference mass spectra for 32 well-defined different particle types relevant for atmospheric aerosol compounds are presented. It is shown that these reference mass spectra are very useful in analysis of atmospheric aerosol particles.
Alexander D. James, James S. A. Brooke, Thomas P. Mangan, Thomas F. Whale, John M. C. Plane, and Benjamin J. Murray
Atmos. Chem. Phys., 18, 4519–4531, https://doi.org/10.5194/acp-18-4519-2018, https://doi.org/10.5194/acp-18-4519-2018, 2018
Short summary
Short summary
Crystal nucleation in polar stratospheric clouds (PSCs) has a direct impact on stratospheric chemistry and ozone. However, the mechanism of nucleation has been unclear for decades, limiting prediction of the response of ozone to atmospheric changes. We experimentally demonstrate that meteoric material can trigger nucleation heterogeneously and this can produce observed crystal concentrations in PSCs. This discovery paves the way to robust modelling of past and future trends in PSCs and ozone.
Qiang Li, Markus Rapp, Gunter Stober, and Ralph Latteck
Ann. Geophys., 36, 577–586, https://doi.org/10.5194/angeo-36-577-2018, https://doi.org/10.5194/angeo-36-577-2018, 2018
Short summary
Short summary
With the powerful MAARSY radar, we detected 3D wind fields and the vertical winds show a non-Gaussian distribution. We further obtained the frequency spectrum of vertical wind. The distribution of the spectral slopes under different wind conditions is derived and their comparisons with the background horizontal winds show that the spectra become steeper with increasing wind velocities under quiet conditions, approach a slope of −5/3 at 10 m/s and then maintain this slope for even stronger winds.
Mario Nachbar, Denis Duft, and Thomas Leisner
Atmos. Chem. Phys., 18, 3419–3431, https://doi.org/10.5194/acp-18-3419-2018, https://doi.org/10.5194/acp-18-3419-2018, 2018
Short summary
Short summary
The crystallization process of amorphous ice below 160 K forms nano-crystalline ice. We report high-quality vapor pressure measurements over ice crystallized from amorphous ice below 160 K. We show that the vapor pressure is increased by more than 100 % compared to bulk crystalline ice and that amorphous ice always forms first, followed by the crystallization of nano-crystalline ice. Our findings are relevant for cold ice clouds in the atmospheres of planets, e.g., Earth and Mars.
Wei Huang, Harald Saathoff, Aki Pajunoja, Xiaoli Shen, Karl-Heinz Naumann, Robert Wagner, Annele Virtanen, Thomas Leisner, and Claudia Mohr
Atmos. Chem. Phys., 18, 2883–2898, https://doi.org/10.5194/acp-18-2883-2018, https://doi.org/10.5194/acp-18-2883-2018, 2018
Markus Rapp, Andreas Dörnbrack, and Bernd Kaifler
Atmos. Meas. Tech., 11, 1031–1048, https://doi.org/10.5194/amt-11-1031-2018, https://doi.org/10.5194/amt-11-1031-2018, 2018
Short summary
Short summary
Temperature profiles from operational weather satellites are used to determine the global distribution of gravity wave activity. This is an important information to constrain global climate models. The quality of this data set is assessed by
systematic comparison to model fields from ECMWF which are considered very high quality. This reveals good agreement between model and observations, albeit the model misses localized centers of wave activity if model resolution is too low.
Sylvia C. Sullivan, Corinna Hoose, Alexei Kiselev, Thomas Leisner, and Athanasios Nenes
Atmos. Chem. Phys., 18, 1593–1610, https://doi.org/10.5194/acp-18-1593-2018, https://doi.org/10.5194/acp-18-1593-2018, 2018
Short summary
Short summary
Ice multiplication (IM) processes can have a profound impact on cloud and precipitation development but are poorly understood. Here we study whether a lower limit of ice nuclei exists to initiate IM. The lower limit is found to be extremely low (0.01 per liter or less). A counterintuitive but profound conclusion thus emerges: IM requires cloud formation around a thermodynamic
sweet spotand is sensitive to fluctuations in cloud condensation nuclei concentration alone.
Martin Schnaiter, Emma Järvinen, Ahmed Abdelmonem, and Thomas Leisner
Atmos. Meas. Tech., 11, 341–357, https://doi.org/10.5194/amt-11-341-2018, https://doi.org/10.5194/amt-11-341-2018, 2018
Short summary
Short summary
PHIPS-HALO is a novel aircraft instrument for cloud research. It combines microscopic imaging of single cloud particles with the measurement of their spacial light scattering properties. The knowledge of how atmospheric ice particles in clouds scatter visible light is important for improving future climate models.
Isabell Krisch, Peter Preusse, Jörn Ungermann, Andreas Dörnbrack, Stephen D. Eckermann, Manfred Ern, Felix Friedl-Vallon, Martin Kaufmann, Hermann Oelhaf, Markus Rapp, Cornelia Strube, and Martin Riese
Atmos. Chem. Phys., 17, 14937–14953, https://doi.org/10.5194/acp-17-14937-2017, https://doi.org/10.5194/acp-17-14937-2017, 2017
Short summary
Short summary
Using the infrared limb imager GLORIA, the 3-D structure of mesoscale gravity waves in the lower stratosphere was measured for the first time, allowing for a complete 3-D characterization of the waves. This enables the precise determination of the sources of the waves in the mountain regions of Iceland with backward ray tracing. Forward ray tracing shows oblique propagation, an effect generally neglected in global atmospheric models.
Romy Heller, Christiane Voigt, Stuart Beaton, Andreas Dörnbrack, Andreas Giez, Stefan Kaufmann, Christian Mallaun, Hans Schlager, Johannes Wagner, Kate Young, and Markus Rapp
Atmos. Chem. Phys., 17, 14853–14869, https://doi.org/10.5194/acp-17-14853-2017, https://doi.org/10.5194/acp-17-14853-2017, 2017
Heiner Asmus, Tristan Staszak, Boris Strelnikov, Franz-Josef Lübken, Martin Friedrich, and Markus Rapp
Ann. Geophys., 35, 979–998, https://doi.org/10.5194/angeo-35-979-2017, https://doi.org/10.5194/angeo-35-979-2017, 2017
Short summary
Short summary
This work sheds new light on the size distribution of dust grains of meteoric origin in the mesosphere and lower thermosphere region using rocket-borne instrumentation. We found that a large number of very small (~ 0.5 nm) particles are charged and therefore have a significant influence on the charge balance of the lower ionosphere.
Martin P. Langowski, Christian von Savigny, John P. Burrows, Didier Fussen, Erin C. M. Dawkins, Wuhu Feng, John M. C. Plane, and Daniel R. Marsh
Atmos. Meas. Tech., 10, 2989–3006, https://doi.org/10.5194/amt-10-2989-2017, https://doi.org/10.5194/amt-10-2989-2017, 2017
Short summary
Short summary
Meteoric metals form metal layers in the upper atmosphere anandplay a role in the formation of middle-atmospheric clouds and aerosols. However, the total metal influx rate is not well known. Global Na datasets from measurements and a model are available, which had not been compared yet on a global scale until this paper. Overall the agreement is good, and many differences between measurements are also found in the model simulations. However, the modeled layer altitude is too low.
Boris Strelnikov, Artur Szewczyk, Irina Strelnikova, Ralph Latteck, Gerd Baumgarten, Franz-Josef Lübken, Markus Rapp, Stefanos Fasoulas, Stefan Löhle, Martin Eberhart, Ulf-Peter Hoppe, Tim Dunker, Martin Friedrich, Jonas Hedin, Mikhail Khaplanov, Jörg Gumbel, and Aroh Barjatya
Ann. Geophys., 35, 547–565, https://doi.org/10.5194/angeo-35-547-2017, https://doi.org/10.5194/angeo-35-547-2017, 2017
Short summary
Short summary
The WADIS sounding rocket mission utilized multi-point turbulence measurements in the mesosphere by different techniques, i.e., with ionization gauges carried by rockets and ground-based MAARSY and EISCAT radars. Results show that turbulence energy dissipation rates oscillate in space and time with amplitude of up to 2 orders of magnitude. Spatial oscillations show the same wavelengths as atmospheric gravity waves. Temporal variability reveals periods of atmospheric tides and gravity waves.
Stefanie Unterguggenberger, Stefan Noll, Wuhu Feng, John M. C. Plane, Wolfgang Kausch, Stefan Kimeswenger, Amy Jones, and Sabine Moehler
Atmos. Chem. Phys., 17, 4177–4187, https://doi.org/10.5194/acp-17-4177-2017, https://doi.org/10.5194/acp-17-4177-2017, 2017
Short summary
Short summary
This study focuses on the analysis of astronomical medium-resolution spectra from the VLT in Chile to measure airglow pseudo-continuum emission of FeO in the optical regime. Compared to OH or Na emissions, this emission is difficult to measure. Using 3.5 years of spectroscopic data, we found annual and semi-annual variations of the FeO emission. Furthermore, we used WACCM to determine the quantum yield of the FeO-producing Fe + O3 reaction in the atmosphere, which has not been done before.
Johannes Wagner, Andreas Dörnbrack, Markus Rapp, Sonja Gisinger, Benedikt Ehard, Martina Bramberger, Benjamin Witschas, Fernando Chouza, Stephan Rahm, Christian Mallaun, Gerd Baumgarten, and Peter Hoor
Atmos. Chem. Phys., 17, 4031–4052, https://doi.org/10.5194/acp-17-4031-2017, https://doi.org/10.5194/acp-17-4031-2017, 2017
Tamás Kovács, Wuhu Feng, Anna Totterdill, John M. C. Plane, Sandip Dhomse, Juan Carlos Gómez-Martín, Gabriele P. Stiller, Florian J. Haenel, Christopher Smith, Piers M. Forster, Rolando R. García, Daniel R. Marsh, and Martyn P. Chipperfield
Atmos. Chem. Phys., 17, 883–898, https://doi.org/10.5194/acp-17-883-2017, https://doi.org/10.5194/acp-17-883-2017, 2017
Short summary
Short summary
Sulfur hexafluoride (SF6) is a very potent greenhouse gas, which is present in the atmosphere only through its industrial use, for example as an electrical insulator. To estimate accurately the impact of SF6 emissions on climate we need to know how long it persists in the atmosphere before being removed. Previous estimates of the SF6 lifetime indicate a large degree of uncertainty. Here we use a detailed atmospheric model to calculate a current best estimate of the SF6 lifetime.
Alfonso Saiz-Lopez, John M. C. Plane, Carlos A. Cuevas, Anoop S. Mahajan, Jean-François Lamarque, and Douglas E. Kinnison
Atmos. Chem. Phys., 16, 15593–15604, https://doi.org/10.5194/acp-16-15593-2016, https://doi.org/10.5194/acp-16-15593-2016, 2016
Short summary
Short summary
Electronic structure calculations are used to survey possible reactions that HOI and I2 could undergo at night in the lower troposphere, and hence reconcile measurements and models. The reactions NO3 + HOI and I2 + NO3 are included in two models to explore a new nocturnal iodine radical activation mechanism, leading to a reduction of nighttime HOI and I2. This chemistry can have a large impact on NO3 levels in the MBL, and hence upon the nocturnal oxidizing capacity of the marine atmosphere.
Qiang Li, Markus Rapp, Anne Schrön, Andreas Schneider, and Gunter Stober
Ann. Geophys., 34, 1209–1229, https://doi.org/10.5194/angeo-34-1209-2016, https://doi.org/10.5194/angeo-34-1209-2016, 2016
Short summary
Short summary
Turbulence is an essential process in the atmosphere and ocean. Clear-air turbulence is a well-known threat for the safety of aviation. Using a powerful MST radar, we detected turbulence and compared it with the results from radiosondes. The correlation between turbulence and background conditions, e.g., Richardson number and wind shears, is determined. There is a nearly negative correlation between turbulence and Richardson number independent of the length scale over which it was calculated.
Wayne K. Hocking, Reynold E. Silber, John M. C. Plane, Wuhu Feng, and Marcial Garbanzo-Salas
Ann. Geophys., 34, 1119–1144, https://doi.org/10.5194/angeo-34-1119-2016, https://doi.org/10.5194/angeo-34-1119-2016, 2016
Short summary
Short summary
Meteoroids entering the atmosphere produce trails of ionized particles which can be detected with radar. The weakest ones are called underdense (the most common), the strongest are called overdense, and intermediate ones are transitional. Meteor radar signatures are used to determine atmospheric parameters like temperature and winds. We present new results which show the effect of ozone on the transitional trail lifetimes, which may eventually allow radar to measure mesospheric ozone.
Claudia Linke, Inas Ibrahim, Nina Schleicher, Regina Hitzenberger, Meinrat O. Andreae, Thomas Leisner, and Martin Schnaiter
Atmos. Meas. Tech., 9, 5331–5346, https://doi.org/10.5194/amt-9-5331-2016, https://doi.org/10.5194/amt-9-5331-2016, 2016
Short summary
Short summary
Various carbonaceous materials are present in the atmosphere. Besides gaseous organic compounds, carbonaceous particles like soot are emitted into the air from traffic sources, residential wood combustion, or wildfires. Variable chemical compositions of such materials, which often result from incomplete combustion processes, show differences in the absorption behavior at visible wavelengths. Our instrument is able to measure the absorption at three visible wavelengths.
Andreas Peckhaus, Alexei Kiselev, Thibault Hiron, Martin Ebert, and Thomas Leisner
Atmos. Chem. Phys., 16, 11477–11496, https://doi.org/10.5194/acp-16-11477-2016, https://doi.org/10.5194/acp-16-11477-2016, 2016
Short summary
Short summary
The precipitation in midlatitude clouds proceeds predominantly via nucleation of ice in the supercooled droplets containing foreign inclusions, like feldspar mineral dust, that have been recently identified as one of the most active ice nucleating agents in the atmosphere. We have built an apparatus to observe the freezing of feldspar immersed in up to 1500 identical droplets simultaneously. With this setup we investigated four feldspar samples and show that it can induce freezing at −5 °C.
Anna Totterdill, Tamás Kovács, Wuhu Feng, Sandip Dhomse, Christopher J. Smith, Juan Carlos Gómez-Martín, Martyn P. Chipperfield, Piers M. Forster, and John M. C. Plane
Atmos. Chem. Phys., 16, 11451–11463, https://doi.org/10.5194/acp-16-11451-2016, https://doi.org/10.5194/acp-16-11451-2016, 2016
Short summary
Short summary
In this study we have experimentally determined the infrared absorption cross sections of NF3 and CFC-115, calculated the radiative forcing and efficiency using two radiative transfer models and identified the effect of clouds and stratospheric adjustment. We have also determined their atmospheric lifetimes using the Whole Atmosphere Community Climate Model.
Tamás Kovács, John M. C. Plane, Wuhu Feng, Tibor Nagy, Martyn P. Chipperfield, Pekka T. Verronen, Monika E. Andersson, David A. Newnham, Mark A. Clilverd, and Daniel R. Marsh
Geosci. Model Dev., 9, 3123–3136, https://doi.org/10.5194/gmd-9-3123-2016, https://doi.org/10.5194/gmd-9-3123-2016, 2016
Short summary
Short summary
This study was completed on D-region atmospheric model development. The sophisticated 3-D Whole Atmosphere Community Climate Model (WACCM) and the 1-D Sodynkalä Ion and Neutral Chemistry Model (SIC) were combined in order to provide a detailed, accurate model (WACCM-SIC) that considers the processes taking place in solar proton events. The original SIC model was reduced by mechanism reduction, which provided an accurate sub-mechanism (rSIC, WACCM-rSIC) of the original model.
Ahmed Abdelmonem, Emma Järvinen, Denis Duft, Edwin Hirst, Steffen Vogt, Thomas Leisner, and Martin Schnaiter
Atmos. Meas. Tech., 9, 3131–3144, https://doi.org/10.5194/amt-9-3131-2016, https://doi.org/10.5194/amt-9-3131-2016, 2016
Short summary
Short summary
The properties of ice crystals present in mixed-phase and ice clouds influence the radiation properties, precipitation occurrence and lifetime of these clouds. It is necessary to investigate the optical and microphysical properties of cloud particles particularly in situ, and to get correlation between these properties. To this end we have developed PHIPS-HALO to measure the optical properties and the corresponding microphysical parameters of individual cloud particles simultaneously.
Carsten Baumann, Markus Rapp, and Antti Kero
Ann. Geophys., 34, 573–580, https://doi.org/10.5194/angeo-34-573-2016, https://doi.org/10.5194/angeo-34-573-2016, 2016
Short summary
Short summary
Meteor smoke particles (MSPs), originating from evaporated meteoric matter at 60–110 km altitude, are present in the whole atmosphere including polar regions. As electron precipitation is present at high latitudes, these MSPs are bombarded by energetic electrons. The energetic electrons can enter the MSPs and excite secondary electrons. That can lead to a change of the charge state of these MSPs. The study finds that other charging processes, e.g., electron attachment, are more important.
Emma Järvinen, Karoliina Ignatius, Leonid Nichman, Thomas B. Kristensen, Claudia Fuchs, Christopher R. Hoyle, Niko Höppel, Joel C. Corbin, Jill Craven, Jonathan Duplissy, Sebastian Ehrhart, Imad El Haddad, Carla Frege, Hamish Gordon, Tuija Jokinen, Peter Kallinger, Jasper Kirkby, Alexei Kiselev, Karl-Heinz Naumann, Tuukka Petäjä, Tamara Pinterich, Andre S. H. Prevot, Harald Saathoff, Thea Schiebel, Kamalika Sengupta, Mario Simon, Jay G. Slowik, Jasmin Tröstl, Annele Virtanen, Paul Vochezer, Steffen Vogt, Andrea C. Wagner, Robert Wagner, Christina Williamson, Paul M. Winkler, Chao Yan, Urs Baltensperger, Neil M. Donahue, Rick C. Flagan, Martin Gallagher, Armin Hansel, Markku Kulmala, Frank Stratmann, Douglas R. Worsnop, Ottmar Möhler, Thomas Leisner, and Martin Schnaiter
Atmos. Chem. Phys., 16, 4423–4438, https://doi.org/10.5194/acp-16-4423-2016, https://doi.org/10.5194/acp-16-4423-2016, 2016
P. Vochezer, E. Järvinen, R. Wagner, P. Kupiszewski, T. Leisner, and M. Schnaiter
Atmos. Meas. Tech., 9, 159–177, https://doi.org/10.5194/amt-9-159-2016, https://doi.org/10.5194/amt-9-159-2016, 2016
Short summary
Short summary
To study clouds constituting of liquid droplets as well as ice particles we used the latest versions of the Small Ice Detector which record high resolution scattering patterns of individual small cloud particles. In the case of a droplet its precise size is obtained and for ice particles its shape is deduced from the scattering pattern.We present results from artificial clouds at the AIDA cloud chamber and natural clouds probed at a mountain top station as well as from an aircraft in the arctic.
B. Ehard, B. Kaifler, N. Kaifler, and M. Rapp
Atmos. Meas. Tech., 8, 4645–4655, https://doi.org/10.5194/amt-8-4645-2015, https://doi.org/10.5194/amt-8-4645-2015, 2015
Short summary
Short summary
We evalute four methods currently used for gravity wave extraction from lidar temperature measurements. The spectral response of these methods is determined with the help of synthetic temperature perturbations. Afterwards, the methods are applied to lidar temperature measurements over New Zealand for further evaluation of the four algorithms. Based on the results two methods are recommended for gravity wave extraction.
M. Placke, P. Hoffmann, and M. Rapp
Ann. Geophys., 33, 1091–1096, https://doi.org/10.5194/angeo-33-1091-2015, https://doi.org/10.5194/angeo-33-1091-2015, 2015
Short summary
Short summary
Imposed momentum from mesospheric breaking gravity waves (GWs) is conserved by a balance between vertical divergence of GW momentum flux and Coriolis acceleration of the mean meridional wind. We present the first experimental verification of the momentum balance from the Saura MF radar at 69°N. For contributions from GWs only this balance is fulfilled between 70 and 100km during summer when GWs dominate the mesospheric dynamics, but it does not exist in winter due to planetary wave impacts.
A. Abdelmonem, J. Lützenkirchen, and T. Leisner
Atmos. Meas. Tech., 8, 3519–3526, https://doi.org/10.5194/amt-8-3519-2015, https://doi.org/10.5194/amt-8-3519-2015, 2015
Short summary
Short summary
This manuscript belongs and is important to the environmental and atmospheric science, particularly cloud formation and cloud seeding, and presents a setup to apply Second Harmonic Generation spectroscopy to heterogeneous freezing research. We describe the setup and provide first results on temperature-dependent structural changes of water on the surfaces of two relevant atmospheric aerosol substances (sapphire and mica as poor and good ice nucleators, respectively).
N. S. Umo, B. J. Murray, M. T. Baeza-Romero, J. M. Jones, A. R. Lea-Langton, T. L. Malkin, D. O'Sullivan, L. Neve, J. M. C. Plane, and A. Williams
Atmos. Chem. Phys., 15, 5195–5210, https://doi.org/10.5194/acp-15-5195-2015, https://doi.org/10.5194/acp-15-5195-2015, 2015
Short summary
Short summary
Combustion ash particles nucleate ice in the immersion mode at conditions relevant to mixed-phase clouds. Hence, combustion ashes could play an important role in primary ice formation in mixed-phase clouds, especially in clouds that are formed near the emission source of these aerosol particles. From this study, there is a need to quantify the atmospheric abundance of combustion ashes in order to quantitatively assess the impact of combustion ashes on mixed-phase clouds.
I. Steinke, C. Hoose, O. Möhler, P. Connolly, and T. Leisner
Atmos. Chem. Phys., 15, 3703–3717, https://doi.org/10.5194/acp-15-3703-2015, https://doi.org/10.5194/acp-15-3703-2015, 2015
Short summary
Short summary
Ice nucleation in clouds has a significant influence on the global radiative budget and the hydrological cycle. Several studies have investigated the ice formation in droplets and parameterizations have been developed in order to include immersion freezing in climate models. In contrast, there are fewer studies regarding the conversion of water vapor into ice (so-called deposition nucleation) which is the topic of this paper which investigates deposition nucleation by Arizona Test dust in detail
N. Hiranuma, S. Augustin-Bauditz, H. Bingemer, C. Budke, J. Curtius, A. Danielczok, K. Diehl, K. Dreischmeier, M. Ebert, F. Frank, N. Hoffmann, K. Kandler, A. Kiselev, T. Koop, T. Leisner, O. Möhler, B. Nillius, A. Peckhaus, D. Rose, S. Weinbruch, H. Wex, Y. Boose, P. J. DeMott, J. D. Hader, T. C. J. Hill, Z. A. Kanji, G. Kulkarni, E. J. T. Levin, C. S. McCluskey, M. Murakami, B. J. Murray, D. Niedermeier, M. D. Petters, D. O'Sullivan, A. Saito, G. P. Schill, T. Tajiri, M. A. Tolbert, A. Welti, T. F. Whale, T. P. Wright, and K. Yamashita
Atmos. Chem. Phys., 15, 2489–2518, https://doi.org/10.5194/acp-15-2489-2015, https://doi.org/10.5194/acp-15-2489-2015, 2015
Short summary
Short summary
Seventeen ice nucleation measurement techniques contributed to investigate the immersion freezing behavior of illite NX. All data showed a similar temperature trend, but the measured ice nucleation activity was on average smaller for the wet suspended samples and higher for the dry-dispersed aerosol samples at high temperatures. A continued investigation and collaboration is necessary to obtain further insights into consistency or diversity of ice nucleation measurements.
V. Matthias, T. G. Shepherd, P. Hoffmann, and M. Rapp
Ann. Geophys., 33, 199–206, https://doi.org/10.5194/angeo-33-199-2015, https://doi.org/10.5194/angeo-33-199-2015, 2015
Short summary
Short summary
A vertical coupling process in the northern high-latitude middle atmosphere has been identified during the equinox transitions, which we call the “hiccup” and which acts like a “mini sudden stratospheric warming (SSW)”. We study the average characteristics of the hiccup based on a composite analysis using a nudged model. A comparison of the average characteristics of hiccups and SSWs shows both similarities and differences between the two vertical coupling processes.
M. P. Langowski, C. von Savigny, J. P. Burrows, W. Feng, J. M. C. Plane, D. R. Marsh, D. Janches, M. Sinnhuber, A. C. Aikin, and P. Liebing
Atmos. Chem. Phys., 15, 273–295, https://doi.org/10.5194/acp-15-273-2015, https://doi.org/10.5194/acp-15-273-2015, 2015
Short summary
Short summary
Global concentration fields of Mg and Mg+ in the Earth's upper mesosphere and lower thermosphere (70-150km) are presented. These are retrieved from SCIAMACHY/Envisat satellite grating spectrometer measurements in limb viewing geometry between 2008 and 2012.
These were compared with WACCM-Mg model results and a large fraction of the available measurement results for these species, and an interpretation of the results is done. The variation of these species during NLC presence is discussed.
H. Berresheim, M. Adam, C. Monahan, C. O'Dowd, J. M. C. Plane, B. Bohn, and F. Rohrer
Atmos. Chem. Phys., 14, 12209–12223, https://doi.org/10.5194/acp-14-12209-2014, https://doi.org/10.5194/acp-14-12209-2014, 2014
Short summary
Short summary
Sulfuric acid plays a major role in the formation of aerosol particles and clouds. Measurements at the west coast of Ireland reveal that oxidation of SO2 by OH explains only 20%, on average, of H2SO4 formation in coastal marine air. Additional sources may be (a) oxidation by Criegee intermediates produced photolytically and/or (b) formation from SO3 instead of SO2 in the oxidation of dimethyl sulfide, suggesting an important role of marine emissions in the self-cleaning power of the atmosphere.
Y. J. Liu, J. M. C. Plane, B. R. Clemesha, J. H. Wang, and X. W. Cheng
Ann. Geophys., 32, 1321–1332, https://doi.org/10.5194/angeo-32-1321-2014, https://doi.org/10.5194/angeo-32-1321-2014, 2014
A. Spolaor, P. Vallelonga, J. Gabrieli, T. Martma, M. P. Björkman, E. Isaksson, G. Cozzi, C. Turetta, H. A. Kjær, M. A. J. Curran, A. D. Moy, A. Schönhardt, A.-M. Blechschmidt, J. P. Burrows, J. M. C. Plane, and C. Barbante
Atmos. Chem. Phys., 14, 9613–9622, https://doi.org/10.5194/acp-14-9613-2014, https://doi.org/10.5194/acp-14-9613-2014, 2014
S. M. MacDonald, J. C. Gómez Martín, R. Chance, S. Warriner, A. Saiz-Lopez, L. J. Carpenter, and J. M. C. Plane
Atmos. Chem. Phys., 14, 5841–5852, https://doi.org/10.5194/acp-14-5841-2014, https://doi.org/10.5194/acp-14-5841-2014, 2014
H. Wilms, M. Rapp, P. Hoffmann, J. Fiedler, and G. Baumgarten
Atmos. Chem. Phys., 13, 11951–11963, https://doi.org/10.5194/acp-13-11951-2013, https://doi.org/10.5194/acp-13-11951-2013, 2013
C. Baumann, M. Rapp, A. Kero, and C.-F. Enell
Ann. Geophys., 31, 2049–2062, https://doi.org/10.5194/angeo-31-2049-2013, https://doi.org/10.5194/angeo-31-2049-2013, 2013
A. Spolaor, J. Gabrieli, T. Martma, J. Kohler, M. B. Björkman, E. Isaksson, C. Varin, P. Vallelonga, J. M. C. Plane, and C. Barbante
The Cryosphere, 7, 1645–1658, https://doi.org/10.5194/tc-7-1645-2013, https://doi.org/10.5194/tc-7-1645-2013, 2013
G. Stober, S. Sommer, M. Rapp, and R. Latteck
Atmos. Meas. Tech., 6, 2893–2905, https://doi.org/10.5194/amt-6-2893-2013, https://doi.org/10.5194/amt-6-2893-2013, 2013
N. Hoffmann, A. Kiselev, D. Rzesanke, D. Duft, and T. Leisner
Atmos. Meas. Tech., 6, 2373–2382, https://doi.org/10.5194/amt-6-2373-2013, https://doi.org/10.5194/amt-6-2373-2013, 2013
V. Matthias, P. Hoffmann, A. Manson, C. Meek, G. Stober, P. Brown, and M. Rapp
Ann. Geophys., 31, 1397–1415, https://doi.org/10.5194/angeo-31-1397-2013, https://doi.org/10.5194/angeo-31-1397-2013, 2013
A. Spolaor, P. Vallelonga, J. M. C. Plane, N. Kehrwald, J. Gabrieli, C. Varin, C. Turetta, G. Cozzi, R. Kumar, C. Boutron, and C. Barbante
Atmos. Chem. Phys., 13, 6623–6635, https://doi.org/10.5194/acp-13-6623-2013, https://doi.org/10.5194/acp-13-6623-2013, 2013
H. Saathoff, S. Henin, K. Stelmaszczyk, M. Petrarca, R. Delagrange, Z. Hao, J. Lüder, O. Möhler, Y. Petit, P. Rohwetter, M. Schnaiter, J. Kasparian, T. Leisner, J.-P. Wolf, and L. Wöste
Atmos. Chem. Phys., 13, 4593–4604, https://doi.org/10.5194/acp-13-4593-2013, https://doi.org/10.5194/acp-13-4593-2013, 2013
J. Skrotzki, P. Connolly, M. Schnaiter, H. Saathoff, O. Möhler, R. Wagner, M. Niemand, V. Ebert, and T. Leisner
Atmos. Chem. Phys., 13, 4451–4466, https://doi.org/10.5194/acp-13-4451-2013, https://doi.org/10.5194/acp-13-4451-2013, 2013
G. Stober, C. Schult, C. Baumann, R. Latteck, and M. Rapp
Ann. Geophys., 31, 473–487, https://doi.org/10.5194/angeo-31-473-2013, https://doi.org/10.5194/angeo-31-473-2013, 2013
I. Strelnikova and M. Rapp
Ann. Geophys., 31, 359–375, https://doi.org/10.5194/angeo-31-359-2013, https://doi.org/10.5194/angeo-31-359-2013, 2013
M. Rapp, J. M. C. Plane, B. Strelnikov, G. Stober, S. Ernst, J. Hedin, M. Friedrich, and U.-P. Hoppe
Ann. Geophys., 30, 1661–1673, https://doi.org/10.5194/angeo-30-1661-2012, https://doi.org/10.5194/angeo-30-1661-2012, 2012
A. S. Mahajan, J. C. Gómez Martín, T. D. Hay, S.-J. Royer, S. Yvon-Lewis, Y. Liu, L. Hu, C. Prados-Roman, C. Ordóñez, J. M. C. Plane, and A. Saiz-Lopez
Atmos. Chem. Phys., 12, 11609–11617, https://doi.org/10.5194/acp-12-11609-2012, https://doi.org/10.5194/acp-12-11609-2012, 2012
Related subject area
Subject: Clouds and Precipitation | Research Activity: Laboratory Studies | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Unravelling the microphysics of polar mesospheric cloud formation
The vapor pressure over nano-crystalline ice
Technical Note: VUV photodesorption rates from water ice in the 120–150 K temperature range – significance for Noctilucent Clouds
Denis Duft, Mario Nachbar, and Thomas Leisner
Atmos. Chem. Phys., 19, 2871–2879, https://doi.org/10.5194/acp-19-2871-2019, https://doi.org/10.5194/acp-19-2871-2019, 2019
Short summary
Short summary
How ice particles form in polar mesospheric clouds is still a challenging question. We measured the water adsorption and onset conditions for ice growth on meteoric smoke analogue particles in the laboratory. We find that the particles activate by growth of amorphous ice and at much warmer conditions than previously assumed, affirming meteoric smoke as likely seeds in mesospheric ice clouds. We propose an ice-activation model and show that the particle charge does not play a significant role.
Mario Nachbar, Denis Duft, and Thomas Leisner
Atmos. Chem. Phys., 18, 3419–3431, https://doi.org/10.5194/acp-18-3419-2018, https://doi.org/10.5194/acp-18-3419-2018, 2018
Short summary
Short summary
The crystallization process of amorphous ice below 160 K forms nano-crystalline ice. We report high-quality vapor pressure measurements over ice crystallized from amorphous ice below 160 K. We show that the vapor pressure is increased by more than 100 % compared to bulk crystalline ice and that amorphous ice always forms first, followed by the crystallization of nano-crystalline ice. Our findings are relevant for cold ice clouds in the atmospheres of planets, e.g., Earth and Mars.
M. Yu. Kulikov, A. M. Feigin, S. K. Ignatov, P. G. Sennikov, Th. Bluszcz, and O. Schrems
Atmos. Chem. Phys., 11, 1729–1734, https://doi.org/10.5194/acp-11-1729-2011, https://doi.org/10.5194/acp-11-1729-2011, 2011
Cited articles
Antonsen, T., Havnes, O., and Mann, I.: Estimates of the Size Distribution of
Meteoric Smoke Particles From Rocket-Borne Impact Probes, J. Geophys.
Res.-Atmos., 122, 12353–12365, 2017.
Asmus, H., Wilms, H., Strelnikov, B., and Rapp, M.: On the heterogeneous
nucleation of mesospheric ice on meteoric smoke particles: Microphysical
modeling, J. Atmos. Sol.-Terr. Phys., 118, 180–189, 2014.
Bardeen, C. G., Toon, O. B., Jensen, E. J., Hervig, M. E., Randall, C. E.,
Benze, S., Marsh, D. R., and Merkel, A.: Numerical simulations of the
three-dimensional distribution of polar mesospheric clouds and comparisons
with Cloud Imaging and Particle Size (CIPS) experiment and the Solar
Occultation For Ice Experiment (SOFIE) observations, J. Geophys. Res.-Atmos.,
115, D10204, https://doi.org/10.1029/2009JD012451, 2010.
Bedidi, A. and Cervelle, B.: Light scattering by spherical particles with
hematite and goethitelike optical properties: Effect of water impregnation,
J. Geophys. Res.-Sol. Ea., 98, 11941–11952, 1993.
Berger, U. and Lübken, F.-J.: Trends in mesospheric ice layers in the
Northern Hemisphere during 1961–2013, J. Geophys. Res.-Atmos., 120,
11277–211298, 2015.
Bickes, R. W., Duquette, G., van den Meijdenberg, C. J. N., Rulis, A. M.,
Scoles, G., and Smith, K. M.: Molecular Beam Scattering Experiments with
Polar Molecules: Measurement of Differential Collision Cross Sections for
H2O+H2, He, Ne, Ar, H2O and NH3 +H2, He,
NH3, J. Phys. B, 8, 3034–3043, 1975.
Bohren, C. F. and Huffmann, D. R.: Absorption and Scattering of Light by
Small Particles, WILEY-VCH Verlag GmbH & Co. KGaA, 530 pp., 2007.
Bondi, A.: van der Waals Volumes and Radii, J. Phys. Chem., 68, 441–451,
https://doi.org/10.1021/j100785a001, 1964.
Brown, D. E., George, S. M., Huang, C., Wong, E. K. L., Rider, K. B., Smith,
R. S., and Kay, B. D.: H2O condensation coefficient and refractive
index for vapor-deposited ice from molecular beam and optical interference
measurements, J. Phys. Chem., 100, 4988–4995, 1996.
Demissie, T. D., Espy, P. J., Kleinknecht, N. H., Hatlen, M., Kaifler, N.,
and Baumgarten, G.: Characteristics and sources of gravity waves observed in
noctilucent cloud over Norway, Atmos. Chem. Phys., 14, 12133–12142,
https://doi.org/10.5194/acp-14-12133-2014, 2014.
Dorschner, J., Begemann, B., Henning, T., Jäger, C., and Mutschke, H.:
Steps toward interstellar silicate mineralogy, II. Study of Mg-Fe-silicate
glasses of variable composition, Astron. Astrophys., 300, 503–520, 1995.
Duft, D., Nachbar, M., Eritt, M., and Leisner, T.: A Linear Trap for Studying
the Interaction of Nanoparticles with Supersaturated Vapors, Aerosol Sci.
Tech., 49, 682–690, 2015.
Duft, D., Nachbar, M., and Leisner, T.: Unravelling the microphysics of polar
mesospheric cloud formation, Atmos. Chem. Phys., 19, 2871–2879,
https://doi.org/10.5194/acp-19-2871-2019, 2019.
Espy, P. J. and Jutt, H.: Equilibrium temperature of water–ice aerosols in
the high-latitude summer mesosphere, J. Atmos. Sol.-Terr. Phys., 64,
1823–1832, 2002.
Fung, K. H. and Tang, I. N.: Thermal-accommodation measurement of helium on a
suspended water droplet, Phys. Rev. A, 37, 2557–2561, 1988.
Ganta, D., Dale, E. B., Rezac, J. P., and Rosenberg, A. T.: Optical method
for measuring thermal accommodation coefficients using a whispering-gallery
microresonator, J. Chem. Phys., 135, 084313, https://doi.org/10.1063/1.3631342, 2011.
Grams, G. and Fiocco, G.: Equilibrium temperatures of spherical ice particles
in the upper atmosphere and implications for noctilucent cloud formation, J.
Geophys. Res., 82, 961–966, 1977.
Gumbel, J. and Megner, L.: Charged meteoric smoke as ice nuclei in the
mesosphere: Part 1 – A review of basic concepts, J. Atmos. Sol.-Terr. Phys.,
71, 1225–1235, 2009.
Havnes, O., Gumbel, J., Antonsen, T., Hedin, J., and La Hoz, C.: On the size
distribution of collision fragments of NLC dust particles and their relevance
to meteoric smoke particles, J. Atmos. Sol.-Terr. Phys., 118, 190–198, 2014.
Henning, T., Begemann, B., Mutschke, H., and Dorschner, J.: Optical
properties of oxide dust grains, Astron. Astrophys., 112, 143–149, 1995.
Hervig, M. E., Stevens, M. H., Gordley, L. L., Deaver, L. E., Russell, J. M.,
and Bailey, S. M.: Relationships between polar mesospheric clouds,
temperature, and water vapor from Solar Occultation for Ice Experiment
(SOFIE) observations, J. Geophys. Res.-Atmos., 114, D20203,
https://doi.org/10.1029/2009JD012302, 2009.
Hervig, M. E., Deaver, L. E., Bardeen, C. G., Russell, J. M., Bailey, S. M.,
and Gordley, L. L.: The content and composition of meteoric smoke in
mesospheric ice particles from SOFIE observations, J. Atmos. Sol.-Terr.
Phys., 84/85, 1–6, 2012.
Hervig, M. E., Berger, U., and Siskind, D. E.: Decadal variability in PMCs
and implications for changing temperature and water vapor in the upper
mesosphere, J. Geophys. Res.-Atmos., 121, 2383–2392, 2016.
Hervig, M. E., Brooke, J. S. A., Feng, W., Bardeen, C. G., and Plane, J. M.
C.: Constraints on Meteoric Smoke Composition and Meteoric Influx Using SOFIE
Observations With Models, J. Geophys. Res.-Atmos., 122, 13495–413505, 2017.
Hirschfelder, J., Curtiss, C. F., and Bird, R. B.: Molecular Theory of Gases
and Liquids, John Wiley & Sons, 1249 pp., 1966.
Hsu, W. P. and Matijević, E.: Optical properties of monodispersed
hematite hydrosols, Appl. Opt., 24, 1623–1630, 1985.
Kaifler, N., Baumgarten, G., Fiedler, J., and Lübken, F.-J.:
Quantification of waves in lidar observations of noctilucent clouds at scales
from seconds to minutes, Atmos. Chem. Phys., 13, 11757–11768,
https://doi.org/10.5194/acp-13-11757-2013, 2013.
Keesee, R. G.: Nucleation and particle formation in the upper atmosphere, J.
Geophys. Res.-Atmos., 94, 14683–14692, 1989.
Kerker, M., Scheiner, P., Cooke, D. D., and Kratohvil, J. P.: Absorption
index and color of colloidal hematite, J. Colloid Interf. Sci., 71, 176–187,
1979.
Leslie, R. C.: Sky Glows, Nature, 32, p. 245, 1885.
Loerting, T., Bauer, M., Kohl, I., Watschinger, K., Winkel, K., and Mayer,
E.: Cryoflotation: Densities of Amorphous and Crystalline Ices, J. Phys.
Chem. B, 115, 14167–14175, 2011.
Longtin, D. R., Shettle, E. P., Hummel, J. R., and Pryce, J. D.: A Wind
Dependent Desert Aerosol Model: Refractive Properties, Air Force Geophys.
Lab., Air Force Syst. Command Hanscom Air Force Base, 115 pp., 1988.
Lübken, F.-J.: Thermal structure of the Arctic summer mesosphere, J.
Geophys. Res.-Atmos., 104, 9135–9149, 1999.
Lübken, F. J., Lautenbach, J., Höffner, J., Rapp, M., and Zecha, M.:
First continuous temperature measurements within polar mesosphere summer
echoes, J. Atmos. Sol.-Terr. Phys., 71, 453–463, 2009.
Majima, T., Santambrogio, G., Bartels, C., Terasaki, A., Kondow, T., Meinen,
J., and Leisner, T.: Spatial distribution of ions in a linear octopole
radio-frequency ion trap in the space-charge limit, Phys. Rev. A, 85, 053414,
https://doi.org/10.1103/PhysRevA.85.053414, 2012.
Mazeina, L. and Navrotsky, A.: Enthalpy of Water Adsorption and Surface
Enthalpy of Goethite (α-FeOOH) and Hematite (α-Fe2O3), Chem.
Mater., 19, 825–833, 2007.
Megner, L., Gumbel, J., Rapp, M., and Siskind, D. E.: Reduced meteoric smoke
particle density at the summer pole – Implications for mesospheric ice
particle nucleation, Adv. Space Res., 41, 41–49, 2008a.
Megner, L., Siskind, D. E., Rapp, M., and Gumbel, J.: Global and temporal
distribution of meteoric smoke: A two-dimensional simulation study, J.
Geophys. Res.-Atmos., 113, D03202, https://doi.org/10.1029/2007JD009054, 2008b.
Meinen, J., Khasminskaya, S., Rühl, E., Baumann, W., and Leisner, T.: The
TRAPS Apparatus: Enhancing Target Density of Nanoparticle Beams in Vacuum for
X-ray and Optical Spectroscopy, Aerosol Sci. Tech., 44, 316–328, 2010.
Meland, B., Kleiber, P. D., Grassian, V. H., and Young, M. A.: Visible light
scattering study at 470, 550, and 660 nm of components of mineral dust
aerosol: Hematite and goethite, J. Quant. Spectrosc. Ra., 112, 1108–1118,
2011.
Murphy, D. M. and Koop, T.: Review of the vapour pressures of ice and
supercooled water for atmospheric applications, Q. J. Roy. Meteor. Soc., 131,
1539–1565, 2005.
Nachbar, M., Duft, D., Mangan, T. P., Martin, J. C. G., Plane, J. M. C., and
Leisner, T.: Laboratory measurements of heterogeneous CO2 ice
nucleation on nanoparticles under conditions relevant to the Martian
mesosphere, J. Geophys. Res.-Planet., 121, 753–769, 2016.
Nachbar, M., Duft, D., Kiselev, A., and Leisner, T.: Composition, Mixing
State and Water Affinity of Meteoric Smoke Analogue Nanoparticles Produced in
a Non-Thermal Microwave Plasma Source, Z. Phys. Chem., 232, 635–648, 2018a.
Nachbar, M., Duft, D., and Leisner, T.: The vapor pressure over
nano-crystalline ice, Atmos. Chem. Phys., 18, 3419-3431, 2018b.
Nachbar, M., Duft, D., and Leisner, T.: Volatility of Amorphous Solid Water,
J. Phys. Chem. B, 122, 10044–10050, 2018c.
Navrotsky, A., Mazeina, L., and Majzlan, J.: Size-Driven Structural and
Thermodynamic Complexity in Iron Oxides, Science, 319, 1635–1638, 2008.
Plane, J. M. C., Saunders, R. W., Hedin, J., Stegman, J., Khaplanov, M.,
Gumbel, J., Lynch, K. A., Bracikowski, P. J., Gelinas, L. J., Friedrich, M.,
Blindheim, S., Gausa, M., and Williams, B. P.: A combined rocket-borne and
ground-based study of the sodium layer and charged dust in the upper
mesosphere, J. Atmos. Sol.-Terr. Phys., 118, 151–160, 2014.
Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and Precipitation,
Springer, 2010.
Querry, M. R.: Optical Constants, Contractor report, US Army Chemical
Research, Delvelopement and Engineering Center (CRDC), Aberdeen Proving
Ground, MD, 415 pp., 1985.
Rapp, M. and Thomas, G. E.: Modeling the microphysics of mesospheric ice
particles: Assessment of current capabilities and basic sensitivities, J.
Atmos. Sol.-Terr. Phys., 68, 715–744, 2006.
Rapp, M., Lübken, F. J., Müllemann, A., Thomas, G. E., and Jensen, E.
J.: Small-scale temperature variations in the vicinity of NLC: Experimental
and model results, J. Geophys. Res.-Atmos., 107, 11 pp., 2002.
Rapp, M., Plane, J. M. C., Strelnikov, B., Stober, G., Ernst, S., Hedin, J.,
Friedrich, M., and Hoppe, U.-P.: In situ observations of meteor smoke
particles (MSP) during the Geminids 2010: constraints on MSP size, work
function and composition, Ann. Geophys., 30, 1661–1673,
https://doi.org/10.5194/angeo-30-1661-2012, 2012.
Rong, P. P., Yue, J., Russell, J. M., Lumpe, J. D., Gong, J., Wu, D. L., and
Randall, C. E.: Horizontal winds derived from the polar mesospheric cloud
images as observed by the CIPS instrument on the AIM satellite, J. Geophys.
Res.-Atmos., 120, 5564–5584, 2015.
Schmidt, F., Baumgarten, G., Berger, U., Fiedler, J., and Lübken, F.-J.:
Local time dependence of polar mesospheric clouds: a model study, Atmos.
Chem. Phys., 18, 8893–8908, https://doi.org/10.5194/acp-18-8893-2018, 2018.
Seele, C. and Hartogh, P.: Water vapor of the polar middle atmosphere: Annual
variation and summer mesosphere Conditions as observed by ground-based
microwave spectroscopy, Geophys. Res. Lett., 26, 1517–1520, 1999.
Sneh, O., Cameron, M. A., and George, S. M.: Adsorption and desorption
kinetics of H2O on a fully hydroxylated SiO2 surface, Surf. Sci.,
364, 61–78, 1996.
Thomas, G. E. and Olivero, J.: Noctilucent clouds as possible indicators of
global change in the mesosphere, Adv. Space Res., 28, 937–946, 2001.
Thomas, G. E., Olivero, J. J., Jensen, E. J., Schroeder, W., and Toon, O. B.:
Relation between increasing methane and the presence of ice clouds at the
mesopause, Nature, 338, 490–492, 1989.
Turco, R. P., Toon, O. B., Whitten, R. C., Keesee, R. G., and Hollenbach, D.:
Noctilucent clouds: Simulation studies of their genesis, properties and
global influences, Planet. Space Sci., 30, 1147–1181, 1982.
Wilms, H., Rapp, M., and Kirsch, A.: Nucleation of mesospheric cloud
particles: Sensitivities and limits, J. Geophys. Res.-Space, 121, 2621–2644,
2016.
Witt, G.: Height, structure and displacement of noctilucent clouds, Tellus,
14, 1–18, 1962.
Yasumoto, I.: Thermal transpiration effects for gases at pressures above 0.1
torr, J. Phys. Chem., 84, 589–593, 1980.
Zhang, X. L., Wu, G. J., Zhang, C. L., Xu, T. L., and Zhou, Q. Q.: What is
the real role of iron oxides in the optical properties of dust aerosols?,
Atmos. Chem. Phys., 15, 12159–12177,
https://doi.org/10.5194/acp-15-12159-2015, 2015.
Short summary
Polar mesospheric clouds (PMC) are water ice clouds forming on nanoparticles in the polar summer mesopause. We investigate the impact of solar radiation on PMC formation in the laboratory. We show that Mie theory calculations combined with an equilibrium temperature model presented in this work predict the warming of the particles very well. Using this model we demonstrate that the impact of solar radiation on ice particle formation is significantly lower than previously assumed.
Polar mesospheric clouds (PMC) are water ice clouds forming on nanoparticles in the polar summer...
Altmetrics
Final-revised paper
Preprint