Articles | Volume 19, issue 5
https://doi.org/10.5194/acp-19-3341-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-3341-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Lidar observations of pyrocumulonimbus smoke plumes in the UTLS over Tomsk (Western Siberia, Russia) from 2000 to 2017
Vladimir V. Zuev
Institute of Monitoring of Climatic and Ecological Systems SB RAS, Tomsk, 634055, Russia
Vladislav V. Gerasimov
CORRESPONDING AUTHOR
Institute of Monitoring of Climatic and Ecological Systems SB RAS, Tomsk, 634055, Russia
Faculty of Physics, Tomsk State University, Tomsk, 634050, Russia
Aleksei V. Nevzorov
V. E. Zuev Institute of Atmospheric Optics SB RAS, Tomsk, 634055, Russia
Ekaterina S. Savelieva
Institute of Monitoring of Climatic and Ecological Systems SB RAS, Tomsk, 634055, Russia
Related authors
Vladimir V. Zuev, Vladimir D. Burlakov, Aleksei V. Nevzorov, Vladimir L. Pravdin, Ekaterina S. Savelieva, and Vladislav V. Gerasimov
Atmos. Chem. Phys., 17, 3067–3081, https://doi.org/10.5194/acp-17-3067-2017, https://doi.org/10.5194/acp-17-3067-2017, 2017
Vladimir V. Zuev, Vladislav V. Gerasimov, Vladimir L. Pravdin, Aleksei V. Pavlinskiy, and Daria P. Nakhtigalova
Atmos. Meas. Tech., 10, 315–332, https://doi.org/10.5194/amt-10-315-2017, https://doi.org/10.5194/amt-10-315-2017, 2017
Vladimir V. Zuev, Vladimir D. Burlakov, Aleksei V. Nevzorov, Vladimir L. Pravdin, Ekaterina S. Savelieva, and Vladislav V. Gerasimov
Atmos. Chem. Phys., 17, 3067–3081, https://doi.org/10.5194/acp-17-3067-2017, https://doi.org/10.5194/acp-17-3067-2017, 2017
Vladimir V. Zuev, Vladislav V. Gerasimov, Vladimir L. Pravdin, Aleksei V. Pavlinskiy, and Daria P. Nakhtigalova
Atmos. Meas. Tech., 10, 315–332, https://doi.org/10.5194/amt-10-315-2017, https://doi.org/10.5194/amt-10-315-2017, 2017
G. G. Matvienko, B. D. Belan, M. V. Panchenko, O. A. Romanovskii, S. M. Sakerin, D. M. Kabanov, S. A. Turchinovich, Y. S. Turchinovich, T. A. Eremina, V. S. Kozlov, S. A. Terpugova, V. V. Pol'kin, E. P. Yausheva, D. G. Chernov, T. B. Zhuravleva, T. V. Bedareva, S. L. Odintsov, V. D. Burlakov, A. V. Nevzorov, M. Y. Arshinov, G. A. Ivlev, D. E. Savkin, A. V. Fofonov, V. A. Gladkikh, A. P. Kamardin, Y. S. Balin, G. P. Kokhanenko, I. E. Penner, S. V. Samoilova, P. N. Antokhin, V. G. Arshinova, D. K. Davydov, A. V. Kozlov, D. A. Pestunov, T. M. Rasskazchikova, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, S. B. Belan, V. P. Shmargunov, A. S. Kozlov, and S. B. Malyshkin
Atmos. Meas. Tech., 8, 4507–4520, https://doi.org/10.5194/amt-8-4507-2015, https://doi.org/10.5194/amt-8-4507-2015, 2015
Short summary
Short summary
The primary objective of the Complex Aerosol Experiment was measurement of microphysical, chemical, and optical properties of aerosol particles in the surface air layer and free atmosphere. The measurement data were used to retrieve the whole set of aerosol optical parameters, necessary for radiation calculations. Three measurement cycles were performed within the experiment during 2013: in spring, summer (July), and in late summer/early autumn.
Related subject area
Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Evidence of a dual African and Australian biomass burning influence on the vertical distribution of aerosol and carbon monoxide over the southwest Indian Ocean basin in early 2020
Does the Asian summer monsoon play a role in the stratospheric aerosol budget of the Arctic?
Long-term (2010–2021) lidar observations of stratospheric aerosols at Wuhan, China
The 2019 Raikoke eruption as a testbed used by the Volcano Response group for rapid assessment of volcanic atmospheric impacts
Measurement report: Violent biomass burning and volcanic eruptions – a new period of elevated stratospheric aerosol over central Europe (2017 to 2023) in a long series of observations
Radiative impacts of the Australian bushfires 2019–2020 – Part 2: Large-scale and in-vortex radiative heating
Short- and long-term stratospheric impact of smoke from the 2019–2020 Australian wildfires
Quantifying SAGE II (1984–2005) and SAGE III/ISS (2017–2022) observations of smoke in the stratosphere
Stratospheric aerosol size reduction after volcanic eruptions
Occurrence of polar stratospheric clouds as derived from ground-based zenith DOAS observations using the colour index
Retrieving instantaneous extinction of aerosol undetected by the CALIPSO layer detection algorithm
Radiative impacts of the Australian bushfires 2019–2020 – Part 1: Large-scale radiative forcing
Australian wildfire smoke in the stratosphere: the decay phase in 2020/2021 and impact on ozone depletion
Five-satellite-sensor study of the rapid decline of wildfire smoke in the stratosphere
The unexpected smoke layer in the High Arctic winter stratosphere during MOSAiC 2019–2020
Changes in stratospheric aerosol extinction coefficient after the 2018 Ambae eruption as seen by OMPS-LP and MAECHAM5-HAM
Tropospheric and stratospheric wildfire smoke profiling with lidar: mass, surface area, CCN, and INP retrieval
Quasi-coincident observations of polar stratospheric clouds by ground-based lidar and CALIOP at Concordia (Dome C, Antarctica) from 2014 to 2018
Evidence for the predictability of changes in the stratospheric aerosol size following volcanic eruptions of diverse magnitudes using space-based instruments
Stratospheric aerosol layer perturbation caused by the 2019 Raikoke and Ulawun eruptions and their radiative forcing
Is the near-spherical shape the “new black” for smoke?
Smoke of extreme Australian bushfires observed in the stratosphere over Punta Arenas, Chile, in January 2020: optical thickness, lidar ratios, and depolarization ratios at 355 and 532 nm
Long-term (1999–2019) variability of stratospheric aerosol over Mauna Loa, Hawaii, as seen by two co-located lidars and satellite measurements
The unprecedented 2017–2018 stratospheric smoke event: decay phase and aerosol properties observed with the EARLINET
Transport of the 2017 Canadian wildfire plume to the tropics via the Asian monsoon circulation
Long-range-transported Canadian smoke plumes in the lower stratosphere over northern France
Comparison of Antarctic polar stratospheric cloud observations by ground-based and space-borne lidar and relevance for chemistry–climate models
Extreme levels of Canadian wildfire smoke in the stratosphere over central Europe on 21–22 August 2017
Depolarization and lidar ratios at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric Canadian wildfire smoke
Volcanic impact on the climate – the stratospheric aerosol load in the period 2006–2015
A climatology of polar stratospheric cloud composition between 2002 and 2012 based on MIPAS/Envisat observations
Accuracy and precision of polar lower stratospheric temperatures from reanalyses evaluated from A-Train CALIOP and MLS, COSMIC GPS RO, and the equilibrium thermodynamics of supercooled ternary solutions and ice clouds
Lidar ratios of stratospheric volcanic ash and sulfate aerosols retrieved from CALIOP measurements
30-year lidar observations of the stratospheric aerosol layer state over Tomsk (Western Siberia, Russia)
Variability and evolution of the midlatitude stratospheric aerosol budget from 22 years of ground-based lidar and satellite observations
Interannual variations of early winter Antarctic polar stratospheric cloud formation and nitric acid observed by CALIOP and MLS
Spectroscopic evidence of large aspherical β-NAT particles involved in denitrification in the December 2011 Arctic stratosphere
CALIOP near-real-time backscatter products compared to EARLINET data
Characterisation of a stratospheric sulfate plume from the Nabro volcano using a combination of passive satellite measurements in nadir and limb geometry
Dispersion of the Nabro volcanic plume and its relation to the Asian summer monsoon
Possible effect of extreme solar energetic particle events of September–October 1989 on polar stratospheric aerosols: a case study
An assessment of CALIOP polar stratospheric cloud composition classification
On recent (2008–2012) stratospheric aerosols observed by lidar over Japan
Toward a combined SAGE II-HALOE aerosol climatology: an evaluation of HALOE version 19 stratospheric aerosol extinction coefficient observations
Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence
Odin-OSIRIS stratospheric aerosol data product and SAGE III intercomparison
Optical extinction by upper tropospheric/stratospheric aerosols and clouds: GOMOS observations for the period 2002–2008
Optimal estimation retrieval of aerosol microphysical properties from SAGE~II satellite observations in the volcanically unperturbed lower stratosphere
Radiosonde stratospheric temperatures at Dumont d'Urville (Antarctica): trends and link with polar stratospheric clouds
An evaluation of the SAGE III version 4 aerosol extinction coefficient and water vapor data products
Nelson Bègue, Alexandre Baron, Gisèle Krysztofiak, Gwenaël Berthet, Corinna Kloss, Fabrice Jégou, Sergey Khaykin, Marion Ranaivombola, Tristan Millet, Thierry Portafaix, Valentin Duflot, Philippe Keckhut, Hélène Vérèmes, Guillaume Payen, Mahesh Kumar Sha, Pierre-François Coheur, Cathy Clerbaux, Michaël Sicard, Tetsu Sakai, Richard Querel, Ben Liley, Dan Smale, Isamu Morino, Osamu Uchino, Tomohiro Nagai, Penny Smale, John Robinson, and Hassan Bencherif
Atmos. Chem. Phys., 24, 8031–8048, https://doi.org/10.5194/acp-24-8031-2024, https://doi.org/10.5194/acp-24-8031-2024, 2024
Short summary
Short summary
During the 2020 austral summer, the pristine atmosphere of the southwest Indian Ocean basin experienced significant perturbations. Numerical models indicated that the lower-stratospheric aerosol content was influenced by the intense and persistent stratospheric aerosol layer generated during the 2019–2020 extreme Australian bushfire events. Ground-based observations at Réunion confirmed the simultaneous presence of African and Australian aerosol layers.
Sandra Graßl, Christoph Ritter, Ines Tritscher, and Bärbel Vogel
Atmos. Chem. Phys., 24, 7535–7557, https://doi.org/10.5194/acp-24-7535-2024, https://doi.org/10.5194/acp-24-7535-2024, 2024
Short summary
Short summary
Arctic lidar data for 1 year are compared with global modeling of aerosol tracers in the stratosphere. A trend in the aerosol backscatter can be found. These observations are further compared with a model study to investigate the aerosol origin of the observed arctic aerosol. We found a correlation with increased backscatter signal during summer and early autumn and pathways from the Southeast Asian monsoon region and remains of the Asian tropopause aerosol layer in the Arctic.
Yun He, Dongzhe Jing, Zhenping Yin, Kevin Ohneiser, and Fan Yi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1611, https://doi.org/10.5194/egusphere-2024-1611, 2024
Short summary
Short summary
We present a long-term ground-based lidar observation of stratospheric aerosols at a mid-latitude site, Wuhan in central China, from 2010 to 2021. We observed a stratospheric background period from 2013 to mid-2017 along with several perturbations from volcanic aerosols and wildfire-induced smoke. In summer, injected stratospheric aerosols are found to be captured by the Asian monsoon anticyclone, resulting in prolonged residence and regional transport in the mid-latitude of East Asia.
Jean-Paul Vernier, Thomas J. Aubry, Claudia Timmreck, Anja Schmidt, Lieven Clarisse, Fred Prata, Nicolas Theys, Andrew T. Prata, Graham Mann, Hyundeok Choi, Simon Carn, Richard Rigby, Susan C. Loughlin, and John A. Stevenson
Atmos. Chem. Phys., 24, 5765–5782, https://doi.org/10.5194/acp-24-5765-2024, https://doi.org/10.5194/acp-24-5765-2024, 2024
Short summary
Short summary
The 2019 Raikoke eruption (Kamchatka, Russia) generated one of the largest emissions of particles and gases into the stratosphere since the 1991 Mt. Pinatubo eruption. The Volcano Response (VolRes) initiative, an international effort, provided a platform for the community to share information about this eruption and assess its climate impact. The eruption led to a minor global surface cooling of 0.02 °C in 2020 which is negligible relative to warming induced by human greenhouse gas emissions.
Thomas Trickl, Hannes Vogelmann, Michael D. Fromm, Horst Jäger, Matthias Perfahl, and Wolfgang Steinbrecht
Atmos. Chem. Phys., 24, 1997–2021, https://doi.org/10.5194/acp-24-1997-2024, https://doi.org/10.5194/acp-24-1997-2024, 2024
Short summary
Short summary
In 2023, the lidar team at Garmisch-Partenkirchen (Germany) celebrated its 50th year of aerosol profiling. The highlight of these activities has been the lidar measurements of stratospheric aerosol carried out since 1976. The observations since 2017 are characterized by severe smoke from several big fires in North America and Siberia and three volcanic eruptions. The sudden increase in the frequency of such strong fire events is difficult to understand.
Pasquale Sellitto, Redha Belhadji, Juan Cuesta, Aurélien Podglajen, and Bernard Legras
Atmos. Chem. Phys., 23, 15523–15535, https://doi.org/10.5194/acp-23-15523-2023, https://doi.org/10.5194/acp-23-15523-2023, 2023
Short summary
Short summary
Record-breaking wildfires ravaged south-eastern Australia during the fire season 2019–2020. These fires injected a smoke plume in the stratosphere, which dispersed over the whole Southern Hemisphere and interacted with solar and terrestrial radiation. A number of detached smoke bubbles were also observed emanating from this plume and ascending quickly to over 35 km altitude. Here we study how absorption of radiation generated ascending motion of both the the hemispheric plume and the vortices.
Johan Friberg, Bengt G. Martinsson, and Moa K. Sporre
Atmos. Chem. Phys., 23, 12557–12570, https://doi.org/10.5194/acp-23-12557-2023, https://doi.org/10.5194/acp-23-12557-2023, 2023
Short summary
Short summary
We study the short- and long-term stratospheric impact of smoke from the massive Australian wildfires in Dec 2019–Jan 2020 using four satellite sensors. Smoke entered the stratosphere rapidly via transport by firestorms, as well as weeks after the fires. The smoke particle properties evolved over time together with rapidly decreasing stratospheric aerosol load, suggesting photolytic loss of organics in the smoke particles. The depletion rate was estimated to a half-life (e folding) of 10 (14) d.
Larry W. Thomason and Travis Knepp
Atmos. Chem. Phys., 23, 10361–10381, https://doi.org/10.5194/acp-23-10361-2023, https://doi.org/10.5194/acp-23-10361-2023, 2023
Short summary
Short summary
We examine space-based observations of stratospheric aerosol to infer the presence of episodic smoke perturbations. We find that smoke's optical properties often show a consistent behavior but vary somewhat from event to event. We also find that the rate of smoke events observed in the 1984–2005 period is about half the rate of similar observations in the period from 2017 to the present; however, with such low overall rates, inferring change between the periods is difficult.
Felix Wrana, Ulrike Niemeier, Larry W. Thomason, Sandra Wallis, and Christian von Savigny
Atmos. Chem. Phys., 23, 9725–9743, https://doi.org/10.5194/acp-23-9725-2023, https://doi.org/10.5194/acp-23-9725-2023, 2023
Short summary
Short summary
The stratospheric aerosol layer is a naturally occurring and permanent layer of aerosol, in this case very small droplets of mostly sulfuric acid and water, that has a cooling effect on our climate. To quantify this effect and for our general understanding of stratospheric microphysical processes, knowledge of the size of those aerosol particles is needed. Using satellite measurements and atmospheric models we show that some volcanic eruptions can lead to on average smaller aerosol sizes.
Bianca Lauster, Steffen Dörner, Carl-Fredrik Enell, Udo Frieß, Myojeong Gu, Janis Puķīte, Uwe Raffalski, and Thomas Wagner
Atmos. Chem. Phys., 22, 15925–15942, https://doi.org/10.5194/acp-22-15925-2022, https://doi.org/10.5194/acp-22-15925-2022, 2022
Short summary
Short summary
Polar stratospheric clouds (PSCs) are an important component in ozone chemistry. Here, we use two differential optical absorption spectroscopy (DOAS) instruments in the Antarctic and Arctic to investigate the occurrence of PSCs based on the colour index, i.e. the colour of the zenith sky. Additionally using radiative transfer simulations, the variability and the seasonal cycle of PSC occurrence are analysed and an unexpectedly high signal during spring suggests the influence of volcanic aerosol.
Feiyue Mao, Ruixing Shi, Daniel Rosenfeld, Zengxin Pan, Lin Zang, Yannian Zhu, and Xin Lu
Atmos. Chem. Phys., 22, 10589–10602, https://doi.org/10.5194/acp-22-10589-2022, https://doi.org/10.5194/acp-22-10589-2022, 2022
Short summary
Short summary
Previous studies generally ignored the faint aerosols undetected by the CALIPSO layer detection algorithm because they are too optically thin. Here, we retrieved the faint aerosol extinction based on instantaneous CALIPSO observations with the constraint of SAGE data. The correlation and normalized root-mean-square error of the retrievals with independent SAGE data are 0.66 and 100.6 %, respectively. The minimum retrieved extinction at night can be extended to 10-4 km-1 with 125 % uncertainty.
Pasquale Sellitto, Redha Belhadji, Corinna Kloss, and Bernard Legras
Atmos. Chem. Phys., 22, 9299–9311, https://doi.org/10.5194/acp-22-9299-2022, https://doi.org/10.5194/acp-22-9299-2022, 2022
Short summary
Short summary
As a consequence of extreme heat and drought, record-breaking wildfires ravaged south-eastern Australia during the fire season in 2019–2020. Fires injected a smoke plume very high up to the stratosphere, which dispersed quite quickly to the whole Southern Hemisphere and interacted with solar radiation, reflecting and absorbing part of it – thus producing impacts on the climate system. Here we estimate this impact on radiation and we study how it depends on the properties and ageing of the plume.
Kevin Ohneiser, Albert Ansmann, Bernd Kaifler, Alexandra Chudnovsky, Boris Barja, Daniel A. Knopf, Natalie Kaifler, Holger Baars, Patric Seifert, Diego Villanueva, Cristofer Jimenez, Martin Radenz, Ronny Engelmann, Igor Veselovskii, and Félix Zamorano
Atmos. Chem. Phys., 22, 7417–7442, https://doi.org/10.5194/acp-22-7417-2022, https://doi.org/10.5194/acp-22-7417-2022, 2022
Short summary
Short summary
We present and discuss 2 years of long-term lidar observations of the largest stratospheric perturbation by wildfire smoke ever observed. The smoke originated from the record-breaking Australian fires in 2019–2020 and affects climate conditions and even the ozone layer in the Southern Hemisphere. The obvious link between dense smoke occurrence in the stratosphere and strong ozone depletion found in the Arctic and in the Antarctic in 2020 can be regarded as a new aspect of climate change.
Bengt G. Martinsson, Johan Friberg, Oscar S. Sandvik, and Moa K. Sporre
Atmos. Chem. Phys., 22, 3967–3984, https://doi.org/10.5194/acp-22-3967-2022, https://doi.org/10.5194/acp-22-3967-2022, 2022
Short summary
Short summary
Large amounts of wildfire smoke reached the stratosphere in 2017. The literature on stratospheric aerosol is mainly based on horizontally viewing sensors that saturate in dense smoke. Using also a vertically viewing sensor with orders of magnitude shorter path in the smoke, we show that the horizontally viewing sensors miss a dramatic exponential decline of the aerosol load with a half-life of 10 d, where 80 %–90 % of smoke is lost. We attribute the decline to photolytic loss of organic aerosol.
Kevin Ohneiser, Albert Ansmann, Alexandra Chudnovsky, Ronny Engelmann, Christoph Ritter, Igor Veselovskii, Holger Baars, Henriette Gebauer, Hannes Griesche, Martin Radenz, Julian Hofer, Dietrich Althausen, Sandro Dahlke, and Marion Maturilli
Atmos. Chem. Phys., 21, 15783–15808, https://doi.org/10.5194/acp-21-15783-2021, https://doi.org/10.5194/acp-21-15783-2021, 2021
Short summary
Short summary
The highlight of the lidar measurements during the 1-year MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition of the German icebreaker Polarstern (October 2019–October 2020) was the detection of a persistent, 10 km deep Siberian wildfire smoke layer in the upper troposphere and lower stratosphere (UTLS) from about 7–8 km to 17–18 km height that could potentially have impacted the record-breaking ozone depletion over the Arctic in the spring of 2020.
Elizaveta Malinina, Alexei Rozanov, Ulrike Niemeier, Sandra Wallis, Carlo Arosio, Felix Wrana, Claudia Timmreck, Christian von Savigny, and John P. Burrows
Atmos. Chem. Phys., 21, 14871–14891, https://doi.org/10.5194/acp-21-14871-2021, https://doi.org/10.5194/acp-21-14871-2021, 2021
Short summary
Short summary
In the paper, changes in the stratospheric aerosol loading after the 2018 Ambae eruption were analyzed using OMPS-LP observations. The eruption was also simulated with the MAECHAM5-HAM global climate model. Generally, the model and observations agree very well. We attribute the good consistency of the results to a precisely determined altitude and mass of the volcanic injection, as well as nudging of the meteorological data. The radiative forcing from the eruption was estimated to be −0.13 W m−2.
Albert Ansmann, Kevin Ohneiser, Rodanthi-Elisavet Mamouri, Daniel A. Knopf, Igor Veselovskii, Holger Baars, Ronny Engelmann, Andreas Foth, Cristofer Jimenez, Patric Seifert, and Boris Barja
Atmos. Chem. Phys., 21, 9779–9807, https://doi.org/10.5194/acp-21-9779-2021, https://doi.org/10.5194/acp-21-9779-2021, 2021
Short summary
Short summary
We present retrievals of tropospheric and stratospheric height profiles of particle mass, volume, surface area concentration of wildfire smoke layers, and related cloud condensation nuclei (CCN) and ice-nucleating particle (INP) concentrations. The new analysis scheme is applied to ground-based lidar observations of stratospheric Australian smoke over southern South America and to spaceborne lidar observations of tropospheric North American smoke.
Marcel Snels, Francesco Colao, Francesco Cairo, Ilir Shuli, Andrea Scoccione, Mauro De Muro, Michael Pitts, Lamont Poole, and Luca Di Liberto
Atmos. Chem. Phys., 21, 2165–2178, https://doi.org/10.5194/acp-21-2165-2021, https://doi.org/10.5194/acp-21-2165-2021, 2021
Short summary
Short summary
A total of 5 years of polar stratospheric cloud (PSC) observations by ground-based lidar at Concordia station (Antarctica) are presented. These data have been recorded in coincidence with the overpasses of the CALIOP lidar on the CALIPSO satellite. First we demonstrate that both lidars observe essentially the same thing, in terms of detection and composition of the PSCs. Then we use both datasets to study seasonal and interannual variations in the formation temperature of NAT mixtures.
Larry W. Thomason, Mahesh Kovilakam, Anja Schmidt, Christian von Savigny, Travis Knepp, and Landon Rieger
Atmos. Chem. Phys., 21, 1143–1158, https://doi.org/10.5194/acp-21-1143-2021, https://doi.org/10.5194/acp-21-1143-2021, 2021
Short summary
Short summary
Measurements of the impact of volcanic eruptions on stratospheric aerosol loading by space-based instruments show show a fairly well-behaved relationship between the magnitude and the apparent changes to aerosol size over several orders of magnitude. This directly measured relationship provides a unique opportunity to verify the performance of interactive aerosol models used in climate models.
Corinna Kloss, Gwenaël Berthet, Pasquale Sellitto, Felix Ploeger, Ghassan Taha, Mariam Tidiga, Maxim Eremenko, Adriana Bossolasco, Fabrice Jégou, Jean-Baptiste Renard, and Bernard Legras
Atmos. Chem. Phys., 21, 535–560, https://doi.org/10.5194/acp-21-535-2021, https://doi.org/10.5194/acp-21-535-2021, 2021
Short summary
Short summary
The year 2019 was particularly rich for the stratospheric aerosol layer due to two volcanic eruptions (at Raikoke and Ulawun) and wildfire events. With satellite observations and models, we describe the exceptionally complex situation following the Raikoke eruption. The respective plume overwhelmed the Northern Hemisphere stratosphere in terms of aerosol load and resulted in the highest climate impact throughout the past decade.
Anna Gialitaki, Alexandra Tsekeri, Vassilis Amiridis, Romain Ceolato, Lucas Paulien, Anna Kampouri, Antonis Gkikas, Stavros Solomos, Eleni Marinou, Moritz Haarig, Holger Baars, Albert Ansmann, Tatyana Lapyonok, Anton Lopatin, Oleg Dubovik, Silke Groß, Martin Wirth, Maria Tsichla, Ioanna Tsikoudi, and Dimitris Balis
Atmos. Chem. Phys., 20, 14005–14021, https://doi.org/10.5194/acp-20-14005-2020, https://doi.org/10.5194/acp-20-14005-2020, 2020
Short summary
Short summary
Stratospheric smoke particles are found to significantly depolarize incident light, while this effect is also accompanied by a strong spectral dependence. We utilize scattering simulations to show that this behaviour can be attributed to the near-spherical shape of the particles. We also examine whether an extension of the current AERONET scattering model to include the near-spherical shapes could be of benefit to the AERONET retrieval for stratospheric smoke associated with enhanced PLDR.
Kevin Ohneiser, Albert Ansmann, Holger Baars, Patric Seifert, Boris Barja, Cristofer Jimenez, Martin Radenz, Audrey Teisseire, Athina Floutsi, Moritz Haarig, Andreas Foth, Alexandra Chudnovsky, Ronny Engelmann, Félix Zamorano, Johannes Bühl, and Ulla Wandinger
Atmos. Chem. Phys., 20, 8003–8015, https://doi.org/10.5194/acp-20-8003-2020, https://doi.org/10.5194/acp-20-8003-2020, 2020
Short summary
Short summary
Unique lidar observations of a strong perturbation in stratospheric aerosol conditions in the Southern Hemisphere caused by the extreme Australian bushfires in 2019–2020 are presented. One of the main goals of this article is to provide the CALIPSO and Aeolus spaceborne lidar science teams with basic input parameters (lidar ratios, depolarization ratios) for a trustworthy documentation of this record-breaking event.
Fernando Chouza, Thierry Leblanc, John Barnes, Mark Brewer, Patrick Wang, and Darryl Koon
Atmos. Chem. Phys., 20, 6821–6839, https://doi.org/10.5194/acp-20-6821-2020, https://doi.org/10.5194/acp-20-6821-2020, 2020
Holger Baars, Albert Ansmann, Kevin Ohneiser, Moritz Haarig, Ronny Engelmann, Dietrich Althausen, Ingrid Hanssen, Michael Gausa, Aleksander Pietruczuk, Artur Szkop, Iwona S. Stachlewska, Dongxiang Wang, Jens Reichardt, Annett Skupin, Ina Mattis, Thomas Trickl, Hannes Vogelmann, Francisco Navas-Guzmán, Alexander Haefele, Karen Acheson, Albert A. Ruth, Boyan Tatarov, Detlef Müller, Qiaoyun Hu, Thierry Podvin, Philippe Goloub, Igor Veselovskii, Christophe Pietras, Martial Haeffelin, Patrick Fréville, Michaël Sicard, Adolfo Comerón, Alfonso Javier Fernández García, Francisco Molero Menéndez, Carmen Córdoba-Jabonero, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Daniele Bortoli, Maria João Costa, Davide Dionisi, Gian Luigi Liberti, Xuan Wang, Alessia Sannino, Nikolaos Papagiannopoulos, Antonella Boselli, Lucia Mona, Giuseppe D'Amico, Salvatore Romano, Maria Rita Perrone, Livio Belegante, Doina Nicolae, Ivan Grigorov, Anna Gialitaki, Vassilis Amiridis, Ourania Soupiona, Alexandros Papayannis, Rodanthi-Elisaveth Mamouri, Argyro Nisantzi, Birgit Heese, Julian Hofer, Yoav Y. Schechner, Ulla Wandinger, and Gelsomina Pappalardo
Atmos. Chem. Phys., 19, 15183–15198, https://doi.org/10.5194/acp-19-15183-2019, https://doi.org/10.5194/acp-19-15183-2019, 2019
Corinna Kloss, Gwenaël Berthet, Pasquale Sellitto, Felix Ploeger, Silvia Bucci, Sergey Khaykin, Fabrice Jégou, Ghassan Taha, Larry W. Thomason, Brice Barret, Eric Le Flochmoen, Marc von Hobe, Adriana Bossolasco, Nelson Bègue, and Bernard Legras
Atmos. Chem. Phys., 19, 13547–13567, https://doi.org/10.5194/acp-19-13547-2019, https://doi.org/10.5194/acp-19-13547-2019, 2019
Short summary
Short summary
With satellite measurements and transport models, we show that a plume resulting from strong Canadian fires in July/August 2017 was not only distributed throughout the northern/higher latitudes, but also reached the faraway tropics, aided by the circulation of Asian monsoon anticyclone. The regional climate impact in the wider Asian monsoon area in September exceeds the impact of the Asian tropopause aerosol layer by a factor of ~ 3 and compares to that of an advected moderate volcanic eruption.
Qiaoyun Hu, Philippe Goloub, Igor Veselovskii, Juan-Antonio Bravo-Aranda, Ioana Elisabeta Popovici, Thierry Podvin, Martial Haeffelin, Anton Lopatin, Oleg Dubovik, Christophe Pietras, Xin Huang, Benjamin Torres, and Cheng Chen
Atmos. Chem. Phys., 19, 1173–1193, https://doi.org/10.5194/acp-19-1173-2019, https://doi.org/10.5194/acp-19-1173-2019, 2019
Short summary
Short summary
Smoke plumes generated in Canadian fire activities were elevated to the lower stratosphere and transported from North America to Europe. The smoke plumes were observed by three lidar systems in northern France. This study provides a comprehensive characterization for aged smoke aerosols at high altitude using lidar observations. It presents that fire activities on the Earth's surface can be an important contributor of stratospheric aerosols and impact the Earth's radiation budget.
Marcel Snels, Andrea Scoccione, Luca Di Liberto, Francesco Colao, Michael Pitts, Lamont Poole, Terry Deshler, Francesco Cairo, Chiara Cagnazzo, and Federico Fierli
Atmos. Chem. Phys., 19, 955–972, https://doi.org/10.5194/acp-19-955-2019, https://doi.org/10.5194/acp-19-955-2019, 2019
Short summary
Short summary
Polar stratospheric clouds are important for stratospheric chemistry and ozone depletion. Here we statistically compare ground-based and satellite-borne lidar measurements at McMurdo (Antarctica) in order to better understand the differences between ground-based and satellite-borne observations. The satellite observations have also been compared to models used in CCMVAL-2 and CCMI studies, with the goal of testing different diagnostic methods for comparing observations with model outputs.
Albert Ansmann, Holger Baars, Alexandra Chudnovsky, Ina Mattis, Igor Veselovskii, Moritz Haarig, Patric Seifert, Ronny Engelmann, and Ulla Wandinger
Atmos. Chem. Phys., 18, 11831–11845, https://doi.org/10.5194/acp-18-11831-2018, https://doi.org/10.5194/acp-18-11831-2018, 2018
Short summary
Short summary
Extremely large light extinction coefficients of 500 Mm-1, about 20 times higher than after the Pinatubo volcanic eruptions in 1991, were observed by EARLINET lidars in the stratosphere over central Europe from 21 to 22 August, 2017. This paper provides an overview based on ground-based (lidar, AERONET) and satellite (MODIS, OMI) remote sensing.
Moritz Haarig, Albert Ansmann, Holger Baars, Cristofer Jimenez, Igor Veselovskii, Ronny Engelmann, and Dietrich Althausen
Atmos. Chem. Phys., 18, 11847–11861, https://doi.org/10.5194/acp-18-11847-2018, https://doi.org/10.5194/acp-18-11847-2018, 2018
Short summary
Short summary
The worldwide only triple-wavelength polarization/Raman lidar was used to measure optical, microphysical, and morphological properties of aged Canadian wildfire smoke occurring in the troposphere and stratosphere over Leipzig, Germany, in August 2017. A strong contrast between the tropospheric and stratospheric smoke properties was found.
Johan Friberg, Bengt G. Martinsson, Sandra M. Andersson, and Oscar S. Sandvik
Atmos. Chem. Phys., 18, 11149–11169, https://doi.org/10.5194/acp-18-11149-2018, https://doi.org/10.5194/acp-18-11149-2018, 2018
Short summary
Short summary
During 2006–2015 volcanism contributed 40 % of the stratospheric aerosol load. We compute the AOD (aerosol optical depth) of the stratosphere (from the tropopause to 35 km altitude) using new techniques of handling CALIOP data. Regional and global AODs are presented for the entire stratosphere in relation to transport patterns, and the AOD is presented for three stratospheric layers: the LMS, the potential temperature range of 380 to 470 K, and altitudes above the 470 K isentrope.
Reinhold Spang, Lars Hoffmann, Rolf Müller, Jens-Uwe Grooß, Ines Tritscher, Michael Höpfner, Michael Pitts, Andrew Orr, and Martin Riese
Atmos. Chem. Phys., 18, 5089–5113, https://doi.org/10.5194/acp-18-5089-2018, https://doi.org/10.5194/acp-18-5089-2018, 2018
Short summary
Short summary
This paper represents an unprecedented pole-covering day- and nighttime climatology of the polar stratospheric clouds (PSCs) based on satellite measurements, their spatial distribution, and composition of different particle types. The climatology has a high potential for the validation and improvement of PSC schemes in chemical transport and chemistry–climate models, which is important for a better prediction of future polar ozone loss in a changing climate.
Alyn Lambert and Michelle L. Santee
Atmos. Chem. Phys., 18, 1945–1975, https://doi.org/10.5194/acp-18-1945-2018, https://doi.org/10.5194/acp-18-1945-2018, 2018
Andrew T. Prata, Stuart A. Young, Steven T. Siems, and Michael J. Manton
Atmos. Chem. Phys., 17, 8599–8618, https://doi.org/10.5194/acp-17-8599-2017, https://doi.org/10.5194/acp-17-8599-2017, 2017
Short summary
Short summary
We have studied the optical properties of ash-rich and sulfate-rich volcanic aerosols by analysing satellite observations of three different volcanic eruptions. Our results indicate that ash particles have distinctive optical properties when compared to sulfates. We expect our results will improve space-borne lidar detection of volcanic aerosols and provide new insight into their interaction with the atmosphere and solar radiation.
Vladimir V. Zuev, Vladimir D. Burlakov, Aleksei V. Nevzorov, Vladimir L. Pravdin, Ekaterina S. Savelieva, and Vladislav V. Gerasimov
Atmos. Chem. Phys., 17, 3067–3081, https://doi.org/10.5194/acp-17-3067-2017, https://doi.org/10.5194/acp-17-3067-2017, 2017
Sergey M. Khaykin, Sophie Godin-Beekmann, Philippe Keckhut, Alain Hauchecorne, Julien Jumelet, Jean-Paul Vernier, Adam Bourassa, Doug A. Degenstein, Landon A. Rieger, Christine Bingen, Filip Vanhellemont, Charles Robert, Matthew DeLand, and Pawan K. Bhartia
Atmos. Chem. Phys., 17, 1829–1845, https://doi.org/10.5194/acp-17-1829-2017, https://doi.org/10.5194/acp-17-1829-2017, 2017
Short summary
Short summary
The article is devoted to the long-term evolution and variability of stratospheric aerosol, which plays an important role in climate change and the ozone layer. We use 22-year long continuous observations using laser radar soundings in southern France and satellite-based observations to distinguish between natural aerosol variability (caused by volcanic eruptions) and human-induced change in aerosol concentration. An influence of growing pollution above Asia on stratospheric aerosol is found.
Alyn Lambert, Michelle L. Santee, and Nathaniel J. Livesey
Atmos. Chem. Phys., 16, 15219–15246, https://doi.org/10.5194/acp-16-15219-2016, https://doi.org/10.5194/acp-16-15219-2016, 2016
Wolfgang Woiwode, Michael Höpfner, Lei Bi, Michael C. Pitts, Lamont R. Poole, Hermann Oelhaf, Sergej Molleker, Stephan Borrmann, Marcus Klingebiel, Gennady Belyaev, Andreas Ebersoldt, Sabine Griessbach, Jens-Uwe Grooß, Thomas Gulde, Martina Krämer, Guido Maucher, Christof Piesch, Christian Rolf, Christian Sartorius, Reinhold Spang, and Johannes Orphal
Atmos. Chem. Phys., 16, 9505–9532, https://doi.org/10.5194/acp-16-9505-2016, https://doi.org/10.5194/acp-16-9505-2016, 2016
Short summary
Short summary
The analysis of spectral signatures of a polar stratospheric cloud in airborne infrared remote sensing observations in the Arctic in combination with further collocated measurements supports the view that the observed cloud consisted of highly aspherical nitric acid trihydrate particles. A characteristic "shoulder-like" spectral signature may be exploited for identification of large, highly aspherical nitric acid trihydrate particles involved in denitrification of the polar winter stratosphere.
T. Grigas, M. Hervo, G. Gimmestad, H. Forrister, P. Schneider, J. Preißler, L. Tarrason, and C. O'Dowd
Atmos. Chem. Phys., 15, 12179–12191, https://doi.org/10.5194/acp-15-12179-2015, https://doi.org/10.5194/acp-15-12179-2015, 2015
Short summary
Short summary
The expedited near-real-time Level 1.5 Cloud-Aerosol Lidar with Orthogonal Polarization version 3 products were evaluated against data from the ground-based European Aerosol Research Lidar Network. The statistical framework and results of the 3-year evaluation of 48 CALIOP overpasses with ground tracks within a 100km distance from operating EARLINET stations are presented.
M. J. M. Penning de Vries, S. Dörner, J. Puķīte, C. Hörmann, M. D. Fromm, and T. Wagner
Atmos. Chem. Phys., 14, 8149–8163, https://doi.org/10.5194/acp-14-8149-2014, https://doi.org/10.5194/acp-14-8149-2014, 2014
T. D. Fairlie, J.-P. Vernier, M. Natarajan, and K. M. Bedka
Atmos. Chem. Phys., 14, 7045–7057, https://doi.org/10.5194/acp-14-7045-2014, https://doi.org/10.5194/acp-14-7045-2014, 2014
I. A. Mironova and I. G. Usoskin
Atmos. Chem. Phys., 13, 8543–8550, https://doi.org/10.5194/acp-13-8543-2013, https://doi.org/10.5194/acp-13-8543-2013, 2013
M. C. Pitts, L. R. Poole, A. Lambert, and L. W. Thomason
Atmos. Chem. Phys., 13, 2975–2988, https://doi.org/10.5194/acp-13-2975-2013, https://doi.org/10.5194/acp-13-2975-2013, 2013
O. Uchino, T. Sakai, T. Nagai, K. Nakamae, I. Morino, K. Arai, H. Okumura, S. Takubo, T. Kawasaki, Y. Mano, T. Matsunaga, and T. Yokota
Atmos. Chem. Phys., 12, 11975–11984, https://doi.org/10.5194/acp-12-11975-2012, https://doi.org/10.5194/acp-12-11975-2012, 2012
L. W. Thomason
Atmos. Chem. Phys., 12, 8177–8188, https://doi.org/10.5194/acp-12-8177-2012, https://doi.org/10.5194/acp-12-8177-2012, 2012
I. A. Mironova, I. G. Usoskin, G. A. Kovaltsov, and S. V. Petelina
Atmos. Chem. Phys., 12, 769–778, https://doi.org/10.5194/acp-12-769-2012, https://doi.org/10.5194/acp-12-769-2012, 2012
A. E. Bourassa, L. A. Rieger, N. D. Lloyd, and D. A. Degenstein
Atmos. Chem. Phys., 12, 605–614, https://doi.org/10.5194/acp-12-605-2012, https://doi.org/10.5194/acp-12-605-2012, 2012
F. Vanhellemont, D. Fussen, N. Mateshvili, C. Tétard, C. Bingen, E. Dekemper, N. Loodts, E. Kyrölä, V. Sofieva, J. Tamminen, A. Hauchecorne, J.-L. Bertaux, F. Dalaudier, L. Blanot, O. Fanton d'Andon, G. Barrot, M. Guirlet, T. Fehr, and L. Saavedra
Atmos. Chem. Phys., 10, 7997–8009, https://doi.org/10.5194/acp-10-7997-2010, https://doi.org/10.5194/acp-10-7997-2010, 2010
D. Wurl, R. G. Grainger, A. J. McDonald, and T. Deshler
Atmos. Chem. Phys., 10, 4295–4317, https://doi.org/10.5194/acp-10-4295-2010, https://doi.org/10.5194/acp-10-4295-2010, 2010
C. David, P. Keckhut, A. Armetta, J. Jumelet, M. Snels, M. Marchand, and S. Bekki
Atmos. Chem. Phys., 10, 3813–3825, https://doi.org/10.5194/acp-10-3813-2010, https://doi.org/10.5194/acp-10-3813-2010, 2010
L. W. Thomason, J. R. Moore, M. C. Pitts, J. M. Zawodny, and E. W. Chiou
Atmos. Chem. Phys., 10, 2159–2173, https://doi.org/10.5194/acp-10-2159-2010, https://doi.org/10.5194/acp-10-2159-2010, 2010
Cited articles
Ansmann, A., Baars, H., Chudnovsky, A., Mattis, I., Veselovskii, I., Haarig, M.,
Seifert, P., Engelmann, R., and Wandinger, U.: Extreme levels of Canadian
wildfire smoke in the stratosphere over central Europe on 21–22 August 2017,
Atmos. Chem. Phys., 18, 11831–11845, https://doi.org/10.5194/acp-18-11831-2018, 2018.
Balkanski, Y., Myhre, G., Gauss, M., Rädel, G., Highwood, E. J., and Shine,
K. P.: Direct radiative effect of aerosols emitted by transport: from road,
shipping and aviation, Atmos. Chem. Phys., 10, 4477–4489, https://doi.org/10.5194/acp-10-4477-2010, 2010.
Blake, D. F. and Kato, K.: Latitudinal distribution of black carbon soot in the
upper troposphere and lower stratosphere, J. Geophys. Res., 100, 7195–7202,
https://doi.org/10.1029/94JD03118, 1995.
Burlakov, V. D., Dolgii, S. I., and Nevzorov, A. V.: A three-frequency Lidar
for sensing microstructure characteristics of stratospheric aerosols, Instrum.
Exp. Tech., 53, 890–894, https://doi.org/10.1134/S0020441210060230, 2010.
Cammas, J.-P., Brioude, J., Chaboureau, J.-P., Duron, J., Mari, C., Mascart, P.,
Nédélec, P., Smit, H., Pätz, H.-W., Volz-Thomas, A., Stohl, A., and
Fromm, M.: Injection in the lower stratosphere of biomass fire emissions followed
by long-range transport: a MOZAIC case study, Atmos. Chem. Phys., 9, 5829–5846,
https://doi.org/10.5194/acp-9-5829-2009, 2009.
Dahlkötter, F., Gysel, M., Sauer, D., Minikin, A., Baumann, R., Seifert, P.,
Ansmann, A., Fromm, M., Voigt, C., and Weinzierl, B.: The Pagami Creek smoke
plume after long-range transport to the upper troposphere over Europe – aerosol
properties and black carbon mixing state, Atmos. Chem. Phys., 14, 6111–6137,
https://doi.org/10.5194/acp-14-6111-2014, 2014.
Damoah, R., Spichtinger, N., Servranckx, R., Fromm, M., Eloranta, E. W.,
Razenkov, I. A., James, P., Shulski, M., Forster, C., and Stohl, A.: A case
study of pyro-convection using transport model and remote sensing data, Atmos.
Chem. Phys., 6, 173–185, https://doi.org/10.5194/acp-6-173-2006, 2006.
Friberg, J., Martinsson, B. G., Andersson, S. M., and Sandvik, O. S.: Volcanic
impact on the climate – the stratospheric aerosol load in the period 2006–2015,
Atmos. Chem. Phys., 18, 11149–11169, https://doi.org/10.5194/acp-18-11149-2018, 2018.
Fromm, M. and Servranckx, R.: Transport of forest fire smoke above the tropopause
by supercell convection, Geophys. Res. Lett., 30, 1542, https://doi.org/10.1029/2002GL016820, 2003.
Fromm, M., Alfred, J., Hoppel, K., Hornstein, J., Bevilacqua, R., Shettle, E.,
Servranckx, R., Li, Z., and Stocks, B.: Observations of boreal forest fire smoke
in the stratosphere by POAM III, SAGE II, and lidar in 1998, Geophys. Res. Lett.,
27, 1407–1410, https://doi.org/10.1029/1999GL011200, 2000.
Fromm, M., Bevilacqua, R., Servranckx, R., Rosen, J., Thayer, J. P., Herman,
J., and Larko, D.: Pyro-cumulonimbus injection of smoke to the stratosphere:
Observations and impact of a super blowup in northwestern Canada on 3–4 August 1998,
J. Geophys. Res., 110, D08205, https://doi.org/10.1029/2004JD005350, 2005.
Fromm, M., Tupper, A., Rosenfeld, D., Servranckx, R., and McRae, R.: Violent
pyro-convective storm devastates Australia's capital and pollutes the stratosphere,
Geophys. Res. Lett., 33, L05815, https://doi.org/10.1029/2005GL025161, 2006.
Fromm, M., Torres, O., Diner, D., Lindsey, D., Vant Hull, B., Servranckx, R.,
Shettle, E. P., and Li, Z.: Stratospheric impact of the Chisholm pyrocumulonimbus
eruption: 1. Earth-viewing satellite perspective, J. Geophys. Res., 113, D08202,
https://doi.org/10.1029/2007JD009153, 2008a.
Fromm, M., Shettle, E. P., Fricke, K. H., Ritter, C., Trickl, T., Giehl, H.,
Gerding, M., Barnes, J. E., O'Neill, M., Massie, S. T., Blum, U., McDermid, I.
S., Leblanc, T., and Deshler, T.: Stratospheric impact of the Chisholm
pyrocumulonimbus eruption: 2. Vertical profile perspective, J. Geophys. Res.,
113, D08203, https://doi.org/10.1029/2007JD009147, 2008b.
Fromm, M., Lindsey, D.T., Servranckx, R., Yue, G., Trickl, T., Sica, R., Doucet,
P., and Godin-Beekmann, S.: The Untold Story of Pyrocumulonimbus, B. Am.
Meteorol. Soc., 91, 1193–1209, https://doi.org/10.1175/2010BAMS3004.1, 2010.
Fromm, M., Kablick III, G., Nedoluha, G., Carboni, E., Grainger, R., Campbell,
J., and Lewis, J.: Correcting the record of volcanic stratospheric aerosol
impact: Nabro and Sarychev Peak, J. Geophys. Res., 119, 10343–10364,
https://doi.org/10.1002/2014JD021507, 2014.
Goldfarb, L., Keckhut, P., Chanin, M.-L., and Hauchecorne, A.: Cirrus
climatological results from lidar measurements at OHP (44∘ N, 6∘ E),
Geophys. Res. Lett., 28, 1687–1690, https://doi.org/10.1029/2000GL012701, 2001.
Gonzi, S. and Palmer, P. I.: Vertical transport of surface fire emissions
observed from space, J. Geophys. Res., 115, D02306, https://doi.org/10.1029/2009JD012053, 2010.
Guan, H., Esswein, R., Lopez, J., Bergstrom, R., Warnock, A., Follette-Cook,
M., Fromm, M., and Iraci, L. T.: A multi-decadal history of biomass burning
plume heights identified using aerosol index measurements, Atmos. Chem. Phys.,
10, 6461–6469, https://doi.org/10.5194/acp-10-6461-2010, 2010.
Haarig, M., Ansmann, A., Baars, H., Jimenez, C., Veselovskii, I., Engelmann,
R., and Althausen, D.: Depolarization and lidar ratios at 355, 532, and
1064 nm and microphysical properties of aged tropospheric and stratospheric
Canadian wildfire smoke, Atmos. Chem. Phys., 18, 11847–11861, https://doi.org/10.5194/acp-18-11847-2018, 2018.
Hendricks, J., Kärcher, B., Döpelheuer, A., Feichter, J., Lohmann, U.,
and Baumgardner, D.: Simulating the global atmospheric black carbon cycle: a
revisit to the contribution of aircraft emissions. Atmos. Chem. Phys., 4,
2521–2541, https://doi.org/10.5194/acp-4-2521-2004, 2004.
Hofmann, D., Barnes, J., O'Neill, M., Trudeau, M., and Neely, R.: Increase in
background stratospheric aerosol observed with lidar at Mauna Loa Observatory
and Boulder, Colorado, Geophys. Res. Lett., 36, L15808, https://doi.org/10.1029/2009GL039008, 2009.
Hu, Q., Goloub, P., Veselovskii, I., Bravo-Aranda, J.-A., Popovici, I. E.,
Podvin, T., Haeffelin, M., Lopatin, A., Dubovik, O., Pietras, C., Huang, X.,
Torres, B., and Chen, C.: Long-range-transported Canadian smoke plumes in the
lower stratosphere over northern France, Atmos. Chem. Phys., 19, 1173–1193,
https://doi.org/10.5194/acp-19-1173-2019, 2019.
Jost, H. J., Drdla, K., Stohl, A., Pfister, L., Loewenstein, M., Lopez, J. P.,
Hudson, P. K., Murphy, D. M., Cziczo, D. J., Fromm, M., Bui, T. P., Dean-Day,
J., Gerbig, C., Mahoney, M. J., Richard, E. C., Spichtinger, N., Pittman, J. V.,
Weinstock, E. M., Wilson, J. C., and Xueref, I.: In-situ observations of
mid-latitude forest fire plumes deep in the stratosphere, Geophys. Res. Lett.,
31, L11101, https://doi.org/10.1029/2003GL019253, 2004.
Khaykin, S. M., Godin-Beekmann, S., Keckhut, P., Hauchecorne, A., Jumelet, J.,
Vernier, J. P., Bourassa, A., Degenstein, D. A., Rieger, L. A., Bingen, C.,
Vanhellemont, F., Robert, C., DeLand, M., and Bhartia, P. K.: Variability and
evolution of the midlatitude stratospheric aerosol budget from 22 years of
ground-based lidar and satellite observations, Atmos. Chem. Phys., 17,
1829–1845, https://doi.org/10.5194/acp-17-1829-2017, 2017.
Khaykin, S. M., Godin-Beekmann, S., Hauchecorne, A., Pelon, J., Ravetta, F.,
and Keckut, P.: Stratospheric smoke with unprecedentedly high backscatter
observed by lidars above southern France, Geophys. Res. Lett., 45, 1639–1646,
https://doi.org/10.1002/2017GL076763, 2018.
Koehler, K. A., DeMott, P. J., Kreidenweis, S. M., Popovicheva, O. B., Petters,
M. D., Carrico, C. M., Kireeva, E. D., Khokhlova, T. D., and Shonija, N. K.:
Cloud condensation nuclei and ice nucleation activity of hydrophobic and
hydrophilic soot particles, Phys. Chem. Chem. Phys., 11, 7906–7920, https://doi.org/10.1039/B905334B, 2009.
Kremser, S., Thomason, L. W., von Hobe, M., Hermann, M., Deshler, T., Timmreck,
C., Toohey, M., Stenke, A., Schwarz, J. P., Weigel, R., Fueglistaler, S., Prata,
F. J., Vernier, J.-P., Schlager, H., Barnes, J. E., Antuña-Marrero, J.-C.,
Fairlie, D., Palm, M., Mahieu, E., Notholt, J., Rex, M., Bingen, C., Vanhellemont,
F., Bourassa, A., Plane, J. M. C., Klocke, D., Carn, S. A., Clarisse, L., Trickl,
T., Neely, R., James, A. D., Rieger, L., Wilson, J. C., and Meland, B.:
Stratospheric aerosol – Observations, processes, and impact on climate, Rev.
Geophys., 54, 278–335, https://doi.org/10.1002/2015RG000511, 2016.
Livesey, N. J., Fromm, M. D., Waters, J. W., Manney, G. L., Santee, M. L., and
Read, W. G.: Enhancements in lower stratospheric CH3CN observed by
the Upper Atmosphere Research Satellite Microwave Limb Sounder following boreal
forest fires, J. Geophys. Res., 109, D06308, https://doi.org/10.1029/2003JD004055, 2004.
Markowicz, K. M., Chilinski, M. T., Lisok, J., Zawadzka, O., Stachlewska, I. S.,
Janicka, L., Rozwadowska, A., Makuch, P., Pakszys, P., Zielinski, T., Petelski,
T., Posyniak, M., Pietruczuk, A., Szkop, A., and Westphal, D. L.: Study of
aerosol optical properties during long-range transport of biomass burning from
Canada to Central Europe in July 2013, J. Aerosol Sci., 101, 156–173,
https://doi.org/10.1016/j.jaerosci.2016.08.006, 2016.
Measures, R. M.: Laser Remote Sensing: Fundamentals and Applications, Wiley,
New York, 510 pp., 1984.
Mills, M. J., Schmidt, A., Easter, R., Solomon, S., Kinnison, D. E., Ghan, S.
J., Neely III, R. R., Marsh, D. R., Conley, A., Bardeen, C. G., and Gettelman,
A.: Global volcanic aerosol properties derived from emissions, 1990–2014, using
CESM1(WACCM), J. Geophys. Res.-Atmos., 121, 2332–2348, https://doi.org/10.1002/2015JD024290, 2016.
Nikonovas, T., North, P. R. J., and Doerr, S. H.: Particulate emissions from
large North American wildfires estimated using a new top-down method, Atmos.
Chem. Phys., 17, 6423–6438, https://doi.org/10.5194/acp-17-6423-2017, 2017.
Paugam, R., Wooster, M., Freitas, S., and Val Martin, M.: A review of approaches
to estimate wildfire plume injection height within large-scale atmospheric
chemical transport models, Atmos. Chem. Phys., 16, 907–925, https://doi.org/10.5194/acp-16-907-2016, 2016.
Peterson, D., Hyer, E., and Wang, J.: Quantifying the potential for high-altitude
smoke injection in the North American boreal forest using the standard MODIS
fire products and subpixel-based methods, J. Geophys. Res.-Atmos., 119,
3401–3419, https://doi.org/10.1002/2013JD021067, 2014.
Peterson, D., Campbell, J., Hyer, E., Fromm, M., Kablick, G., Cossuth, J., and
DeLand, M.: Wildfire-driven thunderstorms cause a volcano-like stratospheric
injection of smoke, NPJ Clim. Atmos. Sci., 1, 30, https://doi.org/10.1038/s41612-018-0039-3, 2018.
Rémy, S., Veira, A., Paugam, R., Sofiev, M., Kaiser, J. W., Marenco, F.,
Burton, S. P., Benedetti, A., Engelen, R. J., Ferrare, R., and Hair, J. W.: Two
global data sets of daily fire emission injection heights since 2003, Atmos.
Chem. Phys., 17, 2921–2942, https://doi.org/10.5194/acp-17-2921-2017, 2017.
Robock, A.: Volcanic eruptions and climate, Rev. Geophys., 38, 191–219,
https://doi.org/10.1029/1998RG000054, 2000.
Robock, A. and Oppenheimer, C. (Eds.): Volcanism and the Earth's Atmosphere,
Geophysical Monograph Series, 139, AGU, Washington, D.C., 360 pp., 2003.
Sakai, T., Uchino, O., Nagai, T., Liley, B., Morino, I., and Fujimoto, T.:
Long-term variation of stratospheric aerosols observed with lidars over Tsukuba,
Japan, from 1982 and Lauder, New Zealand, from 1992 to 2015, J. Geophys. Res.,
121, 10283–10293, https://doi.org/10.1002/2016JD025132, 2016.
Samokhvalov, I. V., Bryukhanov, I. D., Nasonov, S. V., Zhivotenyuk, I. V., and
Stykon, A. P.: Investigation of the optical characteristics of cirrus clouds
with anomalous backscattering, Russ. Phys. J., 55, 925–929, https://doi.org/10.1007/s11182-013-9902-1, 2013.
Sassen, K., Griffin, M. K., and Dodd, G. C.: Optical scattering and microphysical
properties of subvisual cirrus clouds, and climatic implications, J. Appl.
Meteorol., 28, 91–98, https://doi.org/10.1175/1520-0450(1989)028<0091:OSAMPO>2.0.CO;2, 1989.
Siddaway, J. M. and Petelina, S. V.: Transport and evolution of the 2009 Australian
Black Saturday bushfire smoke in the lower stratosphere observed by OSIRIS on
Odin, J. Geophys. Res., 116, D06203, https://doi.org/10.1029/2010JD015162, 2011.
Sofiev, M., Vankevich, R., Ermakova, T., and Hakkarainen, J.: Global mapping
of maximum emission heights and resulting vertical profiles of wildfire emissions,
Atmos. Chem. Phys., 13, 7039–7052, https://doi.org/10.5194/acp-13-7039-2013, 2013.
Stein, A. F., Draxler, R. R, Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and
Ngan, F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling system,
B. Am. Meteorol. Soc., 96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Tao, Z., McCormick, M. P., Wu, D., Liu, Z., and Vaughan, M. A.: Measurements of
cirrus cloud backscatter color ratio with a two-wavelength lidar, Appl. Optics,
47, 1478–1485, https://doi.org/10.1364/AO.47.001478, 2008.
Trickl, T., Giehl, H., Jäger, H., and Vogelmann, H.: 35 yr of stratospheric
aerosol measurements at Garmisch-Partenkirchen: from Fuego to Eyjafjallajökull,
and beyond, Atmos. Chem. Phys., 13, 5205–5225, https://doi.org/10.5194/acp-13-5205-2013, 2013.
Trickl, T., Vogelmann, H., Flentje, H., and Ries, L.: Stratospheric ozone in
boreal fire plumes – the 2013 smoke season over central Europe, Atmos. Chem.
Phys., 15, 9631–9649, https://doi.org/10.5194/acp-15-9631-2015, 2015.
Val Martin, M., Logan, J.A., Kahn, R.A., Leung, F.-Y., Nelson, D.L., and Diner,
D. J.: Smoke injection heights from fires in North America: analysis of 5 years
of satellite observations, Atmos. Chem. Phys., 10, 1491–1510, https://doi.org/10.5194/acp-10-1491-2010, 2010.
Vaughan, G., Draude, A. P., Ricketts, H. M. A., Schultz, D. M., Adam, M., Sugier,
J., and Wareing, D. P.: Transport of Canadian forest fire smoke over the UK as
observed by lidar, Atmos. Chem. Phys., 18, 11375–11388, https://doi.org/10.5194/acp-18-11375-2018, 2018.
Vernier, J.-P., Thomason, L. W., Pommereau, J. P., Bourassa, A., Pelon, J.,
Garnier, A., Hauchecorne, A., Blanot, L., Trepte, C., Degenstein, D., and
Vargas, F.: Major influence of tropical volcanic eruptions on the stratospheric
aerosol layer during the last decade, Geophys. Res. Lett., 38, 1–8,
https://doi.org/10.1029/2011GL047563, 2011.
Wilkerson, J. T., Jacobson, M. Z., Malwitz, A., Balasubramanian, S., Wayson,
R., Fleming, G., Naiman, A. D., and Lele, S. K.: Analysis of emission data from
global commercial aviation: 2004 and 2006, Atmos. Chem. Phys., 10, 6391–6408,
https://doi.org/10.5194/acp-10-6391-2010, 2010.
WMO: World Meteorological Organization: Definition of the tropopause, Bull.
World Meteorol. Org., 6, 136–137, 1957.
Wotton, B. M., Flannigan, M. D., and Marshall, G. A.: Potential climate change
impacts on fire intensity and key wildfire suppression thresholds in Canada,
Environ. Res. Lett., 12, 095003, https://doi.org/10.1088/1748-9326/aa7e6e, 2017.
Wotton, B. M., Nock, C. A., and Flannigan, M. D.: Forest fire occurrence and
climate change in Canada, Int. J. Wildland Fire, 19, 253–271, https://doi.org/10.1071/WF09002, 2010.
Zuev, V. V.: Siberian Lidar Station – the unique experimental complex for
remote investigations of the ozonosphere, Atmos. Ocean. Opt., 13, 84–88, 2000.
Zuev, V. V., Burlakov, V. D., and El'nikov, A. V.: Ten years (1986–1995) of
lidar observations of temporal and vertical structure of stratospheric aerosols
over Siberia, J. Aerosol Sci., 29, 1179–1187, https://doi.org/10.1016/S0021-8502(98)00025-1, 1998.
Zuev, V. V., Burlakov, V. D., El'nikov, A. V., Ivanov, A. P., Chaikovskii, A.
P., and Shcherbakov, V. N.: Processes of long-term relaxation of stratospheric
aerosol layer in Northern Hemisphere midlatitudes after a powerful volcanic
eruption, Atmos. Environ., 35, 5059–5066, https://doi.org/10.1016/S1352-2310(01)00327-2, 2001.
Zuev, V. V., Burlakov, V. D., Nevzorov, A. V., Pravdin, V. L., Savelieva, E. S.,
and Gerasimov, V. V.: 30-year lidar observations of the stratospheric aerosol
layer state over Tomsk (Western Siberia, Russia), Atmos. Chem. Phys. 17,
3067–3081, https://doi.org/10.5194/acp-17-3067-2017, 2017.
Short summary
Massive wildfires sometimes generate pyrocumulonimbus clouds (pyroCbs), inside of which combustion products can ascend to the upper troposphere or even lower stratosphere (UTLS). Smoke plumes from pyroCbs occurred in North America can spread in the UTLS for long distances and be observed in the UTLS over Europe and even over Russia. In this work, we analyzed aerosol layers detected in the UTLS over Tomsk (Russia) that could be smoke plumes from such pyroCbs that occurred in the 2000–2017 period.
Massive wildfires sometimes generate pyrocumulonimbus clouds (pyroCbs), inside of which...
Altmetrics
Final-revised paper
Preprint