Articles | Volume 19, issue 3
Research article
08 Feb 2019
Research article |  | 08 Feb 2019

Retrieving the age of air spectrum from tracers: principle and method

Aurélien Podglajen and Felix Ploeger

Related authors

Transport into the polar stratosphere from the Asian monsoon region
Xiaolu Yan, Paul Konopka, Felix Ploeger, and Aurélien Podglajen
EGUsphere,,, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Radiative impacts of the Australian bushfires 2019–2020 – Part 2: Large-scale and in-vortex radiative heating
Pasquale Sellitto, Redha Belhadji, Juan Cuesta, Aurélien Podglajen, and Bernard Legras
Atmos. Chem. Phys., 23, 15523–15535,,, 2023
Short summary
Observations of Tropical Tropopause Layer clouds from a balloon-borne lidar
Thomas Lesigne, Francois Ravetta, Aurélien Podglajen, Vincent Mariage, and Jacques Pelon
EGUsphere,,, 2023
Short summary
A simple model to assess the impact of gravity waves on ice-crystal populations in the tropical tropopause layer
Milena Corcos, Albert Hertzog, Riwal Plougonven, and Aurélien Podglajen
Atmos. Chem. Phys., 23, 6923–6939,,, 2023
Short summary
Detection of turbulence occurrences from temperature, pressure, and position measurements under superpressure balloons
Richard Wilson, Clara Pitois, Aurélien Podglajen, Albert Hertzog, Milena Corcos, and Riwal Plougonven
Atmos. Meas. Tech., 16, 311–330,,, 2023
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Chemical ozone loss and chlorine activation in the Antarctic winters of 2013–2020
Raina Roy, Pankaj Kumar, Jayanarayanan Kuttippurath, and Franck Lefevre
Atmos. Chem. Phys., 24, 2377–2386,,, 2024
Short summary
Effects of Arctic ozone on the stratospheric spring onset and its surface impact
Marina Friedel, Gabriel Chiodo, Andrea Stenke, Daniela I. V. Domeisen, and Thomas Peter
Atmos. Chem. Phys., 22, 13997–14017,,, 2022
Short summary
Three-dimensional simulation of stratospheric gravitational separation using the NIES global atmospheric tracer transport model
Dmitry Belikov, Satoshi Sugawara, Shigeyuki Ishidoya, Fumio Hasebe, Shamil Maksyutov, Shuji Aoki, Shinji Morimoto, and Takakiyo Nakazawa
Atmos. Chem. Phys., 19, 5349–5361,,, 2019
Reanalysis intercomparisons of stratospheric polar processing diagnostics
Zachary D. Lawrence, Gloria L. Manney, and Krzysztof Wargan
Atmos. Chem. Phys., 18, 13547–13579,,, 2018
Short summary
An upper-branch Brewer–Dobson circulation index for attribution of stratospheric variability and improved ozone and temperature trend analysis
William T. Ball, Aleš Kuchař, Eugene V. Rozanov, Johannes Staehelin, Fiona Tummon, Anne K. Smith, Timofei Sukhodolov, Andrea Stenke, Laura Revell, Ancelin Coulon, Werner Schmutz, and Thomas Peter
Atmos. Chem. Phys., 16, 15485–15500,,, 2016
Short summary

Cited articles

Andrews, A. E., Boering, K. A., Daube, B. C., Wofsy, S. C., Hintsa, E. J., Weinstock, E. M., and Bui, T. P.: Empirical age spectra for the lower tropical stratosphere from in situ observations of CO2: Implications for stratospheric transport, J. Geophys. Res.-Atmos., 104, 26581–26595,, 1999. a, b
Bernath, P. F., McElroy, C. T., Abrams, M. C., Boone, C. D., Butler, M., Camy-Peyret, C., Carleer, M., Clerbaux, C., Coheur, P.-F., Colin, R., DeCola, P., DeMazière, M., Drummond, J. R., Dufour, D., Evans, W. F. J., Fast, H., Fussen, D., Gilbert, K., Jennings, D. E., Llewellyn, E. J., Lowe, R. P., Mahieu, E., McConnell, J. C., McHugh, M., McLeod, S. D., Michaud, R., Midwinter, C., Nassar, R., Nichitiu, F., Nowlan, C., Rinsland, C. P., Rochon, Y. J., Rowlands, N., Semeniuk, K., Simon, P., Skelton, R., Sloan, J. J., Soucy, M.-A., Strong, K., Tremblay, P., Turnbull, D., Walker, K. A., Walkty, I., Wardle, D. A., Wehrle, V., Zander, R., and Zou, J.: Atmospheric Chemistry Experiment (ACE) Mission overview, Geophys. Res. Lett., 32, L15S01,, 2005. a
Butchart, N., Cionni, I., Eyring, V., Shepherd, T. G., Waugh, D. W., Akiyoshi, H., Austin, J., Brühl, C., Chipperfield, M. P., Cordero, E., Dameris, M., Deckert, R., Dhomse, S., Frith, S. M., Garcia, R. R., Gettelman, A., Giorgetta, M. A., Kinnison, D. E., Li, F., Mancini, E., McLandress, C., Pawson, S., Pitari, G., Plummer, D. A., Rozanov, E., Sassi, F., Scinocca, J. F., Shibata, K., Steil, B., and Tian, W.: Chemistry–Climate Model Simulations of Twenty-First Century Stratospheric Climate and Circulation Changes, J. Climate, 23, 5349–5374,, 2010. a
Diallo, M., Legras, B., and Chédin, A.: Age of stratospheric air in the ERA-Interim, Atmos. Chem. Phys., 12, 12133–12154,, 2012. a, b, c
Engel, A., Möbius, T., Bönisch, H., Schmidt, U., Heinz, R., Levin, I., Atlas, E., Aoki, S., Nakazawa, T., Sugawara, S., Moore, F., Hurst, D., Elkins, J., Schauffler, S., Andrews, A., and Boering, K.: Age of stratospheric air unchanged within uncertainties over the past 30 years, Nat. Geosci., 2, 28–31,, 2009. a, b
Short summary
The age spectrum (distribution of transit times) provides a compact description of transport from the surface to a given point in the atmosphere. It also determines the surface-emitted tracer content of an air parcel. We propose a method to invert this relation in order to retrieve age spectra from tracer concentrations and demonstrate its feasibility in idealized and model setups. Applied to observations, the approach might help to better constrain atmospheric transport timescales.
Final-revised paper