Articles | Volume 19, issue 24
https://doi.org/10.5194/acp-19-15431-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-15431-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long-lived high-frequency gravity waves in the atmospheric boundary layer: observations and simulations
Mingjiao Jia
Glory China Institute of Lidar Technology, Shanghai, 201315, China
Jinlong Yuan
Glory China Institute of Lidar Technology, Shanghai, 201315, China
CAS Center for Excellence in Comparative Planetology, University of
Science and Technology of China, Hefei, 230026, China
Chong Wang
Glory China Institute of Lidar Technology, Shanghai, 201315, China
CAS Center for Excellence in Comparative Planetology, University of
Science and Technology of China, Hefei, 230026, China
Glory China Institute of Lidar Technology, Shanghai, 201315, China
CAS Center for Excellence in Comparative Planetology, University of
Science and Technology of China, Hefei, 230026, China
Yunbin Wu
CAS Center for Excellence in Comparative Planetology, University of
Science and Technology of China, Hefei, 230026, China
Lijie Zhao
CAS Center for Excellence in Comparative Planetology, University of
Science and Technology of China, Hefei, 230026, China
Tianwen Wei
CAS Center for Excellence in Comparative Planetology, University of
Science and Technology of China, Hefei, 230026, China
Jianfei Wu
CAS Center for Excellence in Comparative Planetology, University of
Science and Technology of China, Hefei, 230026, China
Lu Wang
CAS Center for Excellence in Comparative Planetology, University of
Science and Technology of China, Hefei, 230026, China
Sheng-Yang Gu
Electronic Information School, Wuhan University, Wuhan, 430072,
China
Liqun Liu
Anqing Meteorological Bureau, China Meteorological Administration,
Anqing, 246001, China
Dachun Lu
Technical Support Center for Atmosphere Observation, Anhui Meteorological Bureau, China
Meteorological Administration, Hefei, 230031, China
Rulong Chen
Technical Support Center for Atmosphere Observation, Anhui Meteorological Bureau, China
Meteorological Administration, Hefei, 230031, China
Xianghui Xue
CAS Center for Excellence in Comparative Planetology, University of
Science and Technology of China, Hefei, 230026, China
Xiankang Dou
Electronic Information School, Wuhan University, Wuhan, 430072,
China
Related authors
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Mingjiao Jia, Wuhu Feng, John M. C. Plane, Daniel R. Marsh, Jonas Hedin, Jörg Gumbel, and Xiankang Dou
Atmos. Chem. Phys., 22, 11485–11504, https://doi.org/10.5194/acp-22-11485-2022, https://doi.org/10.5194/acp-22-11485-2022, 2022
Short summary
Short summary
We present a study on the climatology of the metal sodium layer in the upper atmosphere from the ground-based measurements obtained from a lidar network, the Odin satellite measurements, and a global model of meteoric sodium in the atmosphere. Comprehensively, comparisons show good agreement and some discrepancies between ground-based observations, satellite measurements, and global model simulations.
Shican Qiu, Mengxi Shi, Willie Soon, Mingjiao Jia, Xianghui Xue, Tao Li, Peng Ju, and Xiankang Dou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1085, https://doi.org/10.5194/acp-2021-1085, 2022
Revised manuscript not accepted
Short summary
Short summary
The solitary wave theory is applied for the first time to study the sporadic sodium layers (NaS). We perform soliton fitting processes on the observed data from the Andes Lidar Observatory, and find out that 24/27 NaS events exhibit similar features to a soliton. Time series of the net anomaly reveal the same variation process to the solution of a five-order KdV equation. Our results suggest the NaS phenomenon would be an appropriate tracer for nonlinear wave studies in the atmosphere.
Shican Qiu, Ning Wang, Willie Soon, Gaopeng Lu, Mingjiao Jia, Xingjin Wang, Xianghui Xue, Tao Li, and Xiankang Dou
Atmos. Chem. Phys., 21, 11927–11940, https://doi.org/10.5194/acp-21-11927-2021, https://doi.org/10.5194/acp-21-11927-2021, 2021
Short summary
Short summary
Our results suggest that lightning strokes would probably influence the ionosphere and thus give rise to the occurrence of a sporadic sodium layer (NaS), with the overturning of the electric field playing an important role. Model simulation results show that the calculated first-order rate coefficient could explain the efficient recombination of Na+→Na in this NaS case study. A conjunction between the lower and upper atmospheres could be established by these inter-connected phenomena.
Chong Wang, Mingjiao Jia, Haiyun Xia, Yunbin Wu, Tianwen Wei, Xiang Shang, Chengyun Yang, Xianghui Xue, and Xiankang Dou
Atmos. Meas. Tech., 12, 3303–3315, https://doi.org/10.5194/amt-12-3303-2019, https://doi.org/10.5194/amt-12-3303-2019, 2019
Short summary
Short summary
To investigate the relationship between BLH and air pollution under different conditions, a compact micro-pulse lidar integrating both direct-detection lidar and coherent Doppler wind lidar is built. Evolution of atmospheric boundary layer height (BLH), aerosol layer and fine structure in cloud base are well retrieved. Negative correlation exists between BLH and PM2.5. Different trends show that the relationship between PM2.5 and BLH should be considered in different boundary layer categories.
Bingkun Yu, Xianghui Xue, Chengling Kuo, Gaopeng Lu, Xiankang Dou, Qi Gao, Jianfei Wu, Mingjiao Jia, Chao Yu, and Xiushu Qie
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1025, https://doi.org/10.5194/acp-2018-1025, 2018
Preprint withdrawn
Short summary
Short summary
This paper explores the relationship between the intensifications of atomic sodium layer and Es layer in the Mesosphere/Lower Thermosphere (MLT) region (the earth's upper atmosphere at altitudes between 90 and 130 km above ground). The multi-instrument experiment of sodium lidar observations, ionospheric observations and sodium chemical simulations advances our understanding of the dynamical and chemical coupling processes in the mesosphere and ionosphere above thunderstorms.
Lian Su, Chunsong Lu, Jinlong Yuan, Xiaofei Wang, Qing He, and Haiyun Xia
Atmos. Chem. Phys., 24, 10947–10963, https://doi.org/10.5194/acp-24-10947-2024, https://doi.org/10.5194/acp-24-10947-2024, 2024
Short summary
Short summary
The cold downhill airflow of the Tibetan Plateau leading to the low-level jet weakens the height and intensity of the inversion layer, which reduces the energy demand for the broken inversion layer. The low-level jet causes dust aerosols to accumulate near the ground. The material conditions for the development of the desert atmospheric boundary layer can be quickly transformed into thermal conditions.
Jianfei Wu, Wuhu Feng, Xianghui Xue, Daniel R. Marsh, and John Maurice Campbell Plane
EGUsphere, https://doi.org/10.5194/egusphere-2024-1792, https://doi.org/10.5194/egusphere-2024-1792, 2024
Short summary
Short summary
Metal layers occur in the MLT region (80–120 km) from the ablation of cosmic dust. The nonmigrating diurnal tides are the persistent global oscillations. We investigate the nonmigrating diurnal tidal variations in the metal layers using satellite observations and global climate model simulations; this has not been studied previously due to the limitations of measurements. We show that the nonmigrating diurnal tides in temperature are strongly linked to the corresponding change in metal layers.
Jianyuan Wang, Na Li, Wen Yi, Xianghui Xue, Iain Reid, Jianfei Wu, Hailun Ye, Jian Li, Zonghua Ding, Jinsong Chen, Guozhu Li, Yaoyu Tian, Boyuan Chang, Jiajing Wu, and Lei Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1662, https://doi.org/10.5194/egusphere-2024-1662, 2024
Short summary
Short summary
The mesospheric diurnal tides over low- and mid-latitude region are suppressed during the QBO disruptions and QBO westward wind phase, and are enhanced during QBO eastward wind phase, observed by a meteor radar chain. By using SD-WACCM-X simulations and ERA5 reanalysis, it is found that the stratospheric QBO winds affect the mesospheric diurnal tides by modulating the subtropical ozone variability in the upper stratosphere and the interaction between tides and gravity waves in the mesosphere.
Kenan Wu, Tianwen Wei, Jinlong Yuan, Haiyun Xia, Xin Huang, Gaopeng Lu, Yunpeng Zhang, Feifan Liu, Baoyou Zhu, and Weidong Ding
Atmos. Meas. Tech., 16, 5811–5825, https://doi.org/10.5194/amt-16-5811-2023, https://doi.org/10.5194/amt-16-5811-2023, 2023
Short summary
Short summary
A compact all-fiber coherent Doppler wind lidar (CDWL) working at the 1.5 µm wavelength is applied to probe the dynamics and microphysics structure of thunderstorms. It was found that thunderclouds below the 0 ℃ isotherm have significant spectrum broadening and an increase in skewness, and that lightning affects the microphysics structure of the thundercloud. It is proven that the precise spectrum of CDWL is a promising indicator for studying the charge structure of thunderstorms.
Penghao Tian, Bingkun Yu, Hailun Ye, Xianghui Xue, Jianfei Wu, and Tingdi Chen
Atmos. Chem. Phys., 23, 13413–13431, https://doi.org/10.5194/acp-23-13413-2023, https://doi.org/10.5194/acp-23-13413-2023, 2023
Short summary
Short summary
Modeling and prediction of ionospheric irregularities is an important topic in upper-atmospheric and upper-ionospheric physics. We proposed an artificial intelligence model to reconstruct the E-region ionospheric irregularities and first developed an open-source application for the community. The model reveals complex relationships between ionospheric irregularities and external driving factors. The findings suggest that spatiotemporal information plays an important role in the reconstruction.
Sheng-Yang Gu, Dong Wang, Liang Tang, and Yafei Wei
EGUsphere, https://doi.org/10.5194/egusphere-2023-910, https://doi.org/10.5194/egusphere-2023-910, 2023
Preprint archived
Short summary
Short summary
Based on SABER observations, the seasonal and interannual variability of the peak emission rate and height of OH airglow is analyzed. The results show that the latitudinal variations of the semi-annual oscillation (SAO) and annual oscillation (AO) of peak emission rates and heights are similar. In addition, we find that the OH airglow emission is modulated by the quasi-biennial oscillation (QBO) in the equatorial region and solar activity.
Liang Tang, Sheng-Yang Gu, Shu-Yue Zhao, and Dong Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-778, https://doi.org/10.5194/acp-2022-778, 2022
Revised manuscript not accepted
Short summary
Short summary
We found that the interannual difference of the W3 and W4 Q2DW is significantly correlated with the Quasi-Biennial Oscillation westerly (QBOW) and easterly (QBOE) phase. In addition, planetary waves gain stronger source activity during the QBOW phase to provide sufficient energy for propagation and amplification. Overall, this study reveals a difference between the dynamics of mid-latitude westward planetary waves in the QBOW and QBOE phases.
Wen Yi, Jie Zeng, Xianghui Xue, Iain Reid, Wei Zhong, Jianfei Wu, Tingdi Chen, and Xiankang Dou
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-254, https://doi.org/10.5194/amt-2022-254, 2022
Revised manuscript not accepted
Short summary
Short summary
In recent years, the concept of multistatic meteor radar systems has attracted the attention of the atmospheric radar community, focusing on the MLT region. In this study, we apply a multistatic meteor radar system consisting of a monostatic meteor radar in Mengcheng (33.36° N, 116.49° E) and a remote receiver in Changfeng (31.98° N, 117.22° E) to estimate the two-dimensional horizontal wind field, and the horizontal divergence and relative vorticity of the wind field.
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Mingjiao Jia, Wuhu Feng, John M. C. Plane, Daniel R. Marsh, Jonas Hedin, Jörg Gumbel, and Xiankang Dou
Atmos. Chem. Phys., 22, 11485–11504, https://doi.org/10.5194/acp-22-11485-2022, https://doi.org/10.5194/acp-22-11485-2022, 2022
Short summary
Short summary
We present a study on the climatology of the metal sodium layer in the upper atmosphere from the ground-based measurements obtained from a lidar network, the Odin satellite measurements, and a global model of meteoric sodium in the atmosphere. Comprehensively, comparisons show good agreement and some discrepancies between ground-based observations, satellite measurements, and global model simulations.
Shican Qiu, Mengzhen Yuan, Willie Soon, Victor Manuel Velasco Herrera, Zhanming Zhang, and Xiankang Dou
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2022-22, https://doi.org/10.5194/angeo-2022-22, 2022
Revised manuscript not accepted
Short summary
Short summary
In this paper, the solar radiation index Y10 acts as an indicator of the solar activity, and the vertical column of ice water content (IWC) characterizes the nature of the polar mesosphere cloud (PMC). Superposed epoch analysis is used to determine the time lag days of temperature and IWC anomalies in responding to Y10 for the PMC seasons from 2007–2015. The results show that the IWC can respond quickly to temperature within time lag of one day.
Yetao Cen, Chengyun Yang, Tao Li, James M. Russell III, and Xiankang Dou
Atmos. Chem. Phys., 22, 7861–7874, https://doi.org/10.5194/acp-22-7861-2022, https://doi.org/10.5194/acp-22-7861-2022, 2022
Short summary
Short summary
The MLT DW1 amplitude is suppressed during El Niño winters in both satellite observation and SD-WACCM simulations. The suppressed Hough mode (1, 1) in the tropopause region propagates vertically to the MLT region, leading to decreased DW1 amplitude. The latitudinal zonal wind shear anomalies during El Niño winters would narrow the waveguide and prevent the vertical propagation of DW1. The gravity wave drag excited by ENSO-induced anomalous convection could also modulate the MLT DW1 amplitude.
Lian Zong, Yuanjian Yang, Haiyun Xia, Meng Gao, Zhaobin Sun, Zuofang Zheng, Xianxiang Li, Guicai Ning, Yubin Li, and Simone Lolli
Atmos. Chem. Phys., 22, 6523–6538, https://doi.org/10.5194/acp-22-6523-2022, https://doi.org/10.5194/acp-22-6523-2022, 2022
Short summary
Short summary
Heatwaves (HWs) paired with higher ozone (O3) concentration at surface level pose a serious threat to human health. Taking Beijing as an example, three unfavorable synoptic weather patterns were identified to dominate the compound HW and O3 pollution events. Under the synergistic stress of HWs and O3 pollution, public mortality risk increased, and synoptic patterns and urbanization enhanced the compound risk of events in Beijing by 33.09 % and 18.95 %, respectively.
Dawei Tang, Tianwen Wei, Jinlong Yuan, Haiyun Xia, and Xiankang Dou
Atmos. Meas. Tech., 15, 2819–2838, https://doi.org/10.5194/amt-15-2819-2022, https://doi.org/10.5194/amt-15-2819-2022, 2022
Short summary
Short summary
During 11–20 March 2020, three aerosol transport events were investigated by a lidar system and an online bioaerosol detection system in Hefei, China.
Observation results reveal that the events not only contributed to high particulate matter pollution but also to the transport of external bioaerosols, resulting in changes in the fraction of fluorescent biological aerosol particles.
This detection method improved the time resolution and provided more parameters for aerosol detection.
Shican Qiu, Mengxi Shi, Willie Soon, Mingjiao Jia, Xianghui Xue, Tao Li, Peng Ju, and Xiankang Dou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1085, https://doi.org/10.5194/acp-2021-1085, 2022
Revised manuscript not accepted
Short summary
Short summary
The solitary wave theory is applied for the first time to study the sporadic sodium layers (NaS). We perform soliton fitting processes on the observed data from the Andes Lidar Observatory, and find out that 24/27 NaS events exhibit similar features to a soliton. Time series of the net anomaly reveal the same variation process to the solution of a five-order KdV equation. Our results suggest the NaS phenomenon would be an appropriate tracer for nonlinear wave studies in the atmosphere.
Liang Tang, Sheng-Yang Gu, and Xian-Kang Dou
Atmos. Chem. Phys., 21, 17495–17512, https://doi.org/10.5194/acp-21-17495-2021, https://doi.org/10.5194/acp-21-17495-2021, 2021
Short summary
Short summary
Our study explores the variation in the occurrence date, peak amplitude and wave period for eastward waves and the role of instability, background wind structure and the critical layer in eastward wave propagation and amplification.
Pu Jiang, Jinlong Yuan, Kenan Wu, Lu Wang, and Haiyun Xia
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-288, https://doi.org/10.5194/amt-2021-288, 2021
Revised manuscript not accepted
Short summary
Short summary
To analyse the atmospheric turbulence in high resolution, we proposed a new method by combining the advantages of two remote sensing instruments. A contrastive experiment was conducted horizontally to verify the method. Based on the result, we obtained and analyzed the continuous Cn2 and other turbulence profiles with high temporal and spatial resolution simultaneously. It is significant for studying the complex and fast-changing atmospheric environment.
Jianfei Wu, Wuhu Feng, Han-Li Liu, Xianghui Xue, Daniel Robert Marsh, and John Maurice Campbell Plane
Atmos. Chem. Phys., 21, 15619–15630, https://doi.org/10.5194/acp-21-15619-2021, https://doi.org/10.5194/acp-21-15619-2021, 2021
Short summary
Short summary
Metal layers occur in the MLT region (80–120 km) from the ablation of cosmic dust. The latest lidar observations show these metals can reach a height approaching 200 km, which is challenging to explain. We have developed the first global simulation incorporating the full life cycle of metal atoms and ions. The model results compare well with lidar and satellite observations of the seasonal and diurnal variation of the metals and demonstrate the importance of ion mass and ion-neutral coupling.
Shican Qiu, Ning Wang, Willie Soon, Gaopeng Lu, Mingjiao Jia, Xingjin Wang, Xianghui Xue, Tao Li, and Xiankang Dou
Atmos. Chem. Phys., 21, 11927–11940, https://doi.org/10.5194/acp-21-11927-2021, https://doi.org/10.5194/acp-21-11927-2021, 2021
Short summary
Short summary
Our results suggest that lightning strokes would probably influence the ionosphere and thus give rise to the occurrence of a sporadic sodium layer (NaS), with the overturning of the electric field playing an important role. Model simulation results show that the calculated first-order rate coefficient could explain the efficient recombination of Na+→Na in this NaS case study. A conjunction between the lower and upper atmospheres could be established by these inter-connected phenomena.
Wei Zhong, Xianghui Xue, Wen Yi, Iain M. Reid, Tingdi Chen, and Xiankang Dou
Atmos. Meas. Tech., 14, 3973–3988, https://doi.org/10.5194/amt-14-3973-2021, https://doi.org/10.5194/amt-14-3973-2021, 2021
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Jianfei Wu, Xinan Yue, Wuhu Feng, Yutian Chi, Daniel R. Marsh, Hanli Liu, Xiankang Dou, and John M. C. Plane
Atmos. Chem. Phys., 21, 4219–4230, https://doi.org/10.5194/acp-21-4219-2021, https://doi.org/10.5194/acp-21-4219-2021, 2021
Short summary
Short summary
A long-standing mystery of metal ions within Es layers in the Earth's upper atmosphere is the marked seasonal dependence, with a summer maximum and a winter minimum. We report a large-scale winter-to-summer transport of metal ions from 6-year multi-satellite observations and worldwide ground-based stations. A global atmospheric circulation is responsible for the phenomenon. Our results emphasise the effect of this atmospheric circulation on the transport of composition in the upper atmosphere.
Jianyuan Wang, Wen Yi, Jianfei Wu, Tingdi Chen, Xianghui Xue, Robert A. Vincent, Iain M. Reid, Paulo P. Batista, Ricardo A. Buriti, Toshitaka Tsuda, and Xiankang Dou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-33, https://doi.org/10.5194/acp-2021-33, 2021
Revised manuscript not accepted
Short summary
Short summary
In this study, we report the climatology of migrating and non-migrating tides in mesopause winds estimated using multiyear observations from three meteor radars in the southern equatorial region. The results reveal that the climatological patterns of tidal amplitudes by meteor radars is similar to the Climatological Tidal Model of the Thermosphere (CTMT) results and the differences are mainly due to the effect of the stratospheric sudden warming (SSW) event.
Chong Wang, Mingjiao Jia, Haiyun Xia, Yunbin Wu, Tianwen Wei, Xiang Shang, Chengyun Yang, Xianghui Xue, and Xiankang Dou
Atmos. Meas. Tech., 12, 3303–3315, https://doi.org/10.5194/amt-12-3303-2019, https://doi.org/10.5194/amt-12-3303-2019, 2019
Short summary
Short summary
To investigate the relationship between BLH and air pollution under different conditions, a compact micro-pulse lidar integrating both direct-detection lidar and coherent Doppler wind lidar is built. Evolution of atmospheric boundary layer height (BLH), aerosol layer and fine structure in cloud base are well retrieved. Negative correlation exists between BLH and PM2.5. Different trends show that the relationship between PM2.5 and BLH should be considered in different boundary layer categories.
Wen Yi, Xianghui Xue, Iain M. Reid, Damian J. Murphy, Chris M. Hall, Masaki Tsutsumi, Baiqi Ning, Guozhu Li, Robert A. Vincent, Jinsong Chen, Jianfei Wu, Tingdi Chen, and Xiankang Dou
Atmos. Chem. Phys., 19, 7567–7581, https://doi.org/10.5194/acp-19-7567-2019, https://doi.org/10.5194/acp-19-7567-2019, 2019
Short summary
Short summary
The seasonal variations in the mesopause densities, especially with regard to its global structure, are still unclear. In this study, we report the climatology of the mesopause density estimated using multiyear observations from nine meteor radars from Arctic to Antarctic latitudes. The results reveal a significant AO and SAO in mesopause density, an asymmetry between the two polar regions and evidence of intraseasonal oscillations (ISOs), perhaps associated with the ISOs of the troposphere.
Bingkun Yu, Xianghui Xue, Xin'an Yue, Chengyun Yang, Chao Yu, Xiankang Dou, Baiqi Ning, and Lianhuan Hu
Atmos. Chem. Phys., 19, 4139–4151, https://doi.org/10.5194/acp-19-4139-2019, https://doi.org/10.5194/acp-19-4139-2019, 2019
Short summary
Short summary
It reports the long-term climatology of the intensity of Es layers from COSMIC satellites. The global Es maps present high-resolution spatial distributions and seasonal dependence. It mainly occurs at mid-latitudes and polar regions. Based on wind shear theory, simulation results indicate the convergence of vertical ion velocity could partially explain the Es seasonal dependence and some disagreements between observations and simulations suggest other processes play roles in the Es variations.
Bingkun Yu, Xianghui Xue, Chengling Kuo, Gaopeng Lu, Xiankang Dou, Qi Gao, Jianfei Wu, Mingjiao Jia, Chao Yu, and Xiushu Qie
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1025, https://doi.org/10.5194/acp-2018-1025, 2018
Preprint withdrawn
Short summary
Short summary
This paper explores the relationship between the intensifications of atomic sodium layer and Es layer in the Mesosphere/Lower Thermosphere (MLT) region (the earth's upper atmosphere at altitudes between 90 and 130 km above ground). The multi-instrument experiment of sodium lidar observations, ionospheric observations and sodium chemical simulations advances our understanding of the dynamical and chemical coupling processes in the mesosphere and ionosphere above thunderstorms.
Tao Li, Chao Ban, Xin Fang, Jing Li, Zhaopeng Wu, Wuhu Feng, John M. C. Plane, Jiangang Xiong, Daniel R. Marsh, Michael J. Mills, and Xiankang Dou
Atmos. Chem. Phys., 18, 11683–11695, https://doi.org/10.5194/acp-18-11683-2018, https://doi.org/10.5194/acp-18-11683-2018, 2018
Short summary
Short summary
A total of 154 nights of observations by the USTC Na temperature and wind lidar (32° N, 117° E) suggest significant seasonal variability in the mesopause. Chemistry plays an important role in Na atom formation. More than half of the observed gravity wave (GW) momentum flux (MF), whose divergence determines the GW forcing, is induced by short-period (10 min–2 h) waves. The anticorrelation between MF and zonal wind (U) suggests strong filtering of short-period GWs by semiannual oscillation U.
Libin Weng, Jiuhou Lei, Eelco Doornbos, Hanxian Fang, and Xiankang Dou
Ann. Geophys., 36, 489–496, https://doi.org/10.5194/angeo-36-489-2018, https://doi.org/10.5194/angeo-36-489-2018, 2018
Short summary
Short summary
Thermospheric mass density from the GOCE satellite for Sun-synchronous orbits between 83.5° S and 83.5° N normalized to 270 km during 2009–2013 has been used to develop our GOCE model at dawn/dusk local solar time sectors based on the empirical orthogonal function (EOF) method. We find that both amplitude and phase of the seasonal variations have strong latitudinal and solar activity dependences, and the annual asymmetry and effect of the Sun–Earth distance vary with latitude and solar activity.
Sheng-Yang Gu, Xiankang Dou, and Dora Pancheva
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-563, https://doi.org/10.5194/acp-2017-563, 2017
Revised manuscript not accepted
Short summary
Short summary
We used the NOGAPS-ALPHA reanalysis datasets upto mesopause region to investigate the anomalous Quasi-Two-Day Wave (QTDW) activities during the major Sudden Stratospheric Warming period of January 2006. We found that the SSW in the winter stratosphere could have significant influence on the QTDWs in the summer mesosphere through inter-hemispheric couplings. Our finding sheds new light on the coulings during SSW period.
Sheng-Yang Gu, Han-Li Liu, Xiankang Dou, and Tao Li
Atmos. Chem. Phys., 16, 4885–4896, https://doi.org/10.5194/acp-16-4885-2016, https://doi.org/10.5194/acp-16-4885-2016, 2016
Short summary
Short summary
The influences of sudden stratospheric warming in the Northern Hemisphere on quasi-2-day waves are studied with both observations and simulations. We found the energy of W3 is transferred to W2 through the nonlinear interaction with SPW1 and the instability at winter mesopause could provide additional amplification for W3. The summer easterly is enhanced during SSW, which is more favorable for the propagation of quasi-2-day waves.
X. Yue, W. S. Schreiner, Z. Zeng, Y.-H. Kuo, and X. Xue
Atmos. Meas. Tech., 8, 225–236, https://doi.org/10.5194/amt-8-225-2015, https://doi.org/10.5194/amt-8-225-2015, 2015
Short summary
Short summary
The occurrence of sporadic E (Es) layers has been a hot scientific topic for a long time. GNSS (global navigation satellite system)-based radio occultation (RO) has proven to be a powerful technique for detecting the global Es layers. In this paper, we show some examples of multiple Es layers occurring in one RO event and the occurrence of Es in a broad region during a certain time interval. The results are then evaluated by independent observations such as lidar and ionosondes.
X. Luan and X. Dou
Ann. Geophys., 31, 1699–1708, https://doi.org/10.5194/angeo-31-1699-2013, https://doi.org/10.5194/angeo-31-1699-2013, 2013
Related subject area
Subject: Dynamics | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
An air quality and boundary layer dynamics analysis of the Los Angeles basin area during the Southwest Urban NOx and VOCs Experiment (SUNVEx)
The Paris Low-Level Jet During PANAME 2022 and its Impact on the Summertime Urban Heat Island
Equatorial waves resolved by balloon-borne Global Navigation Satellite System radio occultation in the Strateole-2 campaign
Wind lidars reveal turbulence transport mechanism in the wake of a tree
On the role of aerosol radiative effect in the wet season onset timing over the Congo rainforest during boreal autumn
Study of the seasonal variation in Aeolus wind product performance over China using ERA5 and radiosonde data
Measurement report: characteristics of clear-day convective boundary layer and associated entrainment zone as observed by a ground-based polarization lidar over Wuhan (30.5° N, 114.4° E)
Technical note: First comparison of wind observations from ESA's satellite mission Aeolus and ground-based radar wind profiler network of China
Assessment of vertical air motion among reanalyses and qualitative comparison with very-high-frequency radar measurements over two tropical stations
Asian summer monsoon anticyclone: trends and variability
Very high stratospheric influence observed in the free troposphere over the northern Alps – just a local phenomenon?
Variability of temperature and ozone in the upper troposphere and lower stratosphere from multi-satellite observations and reanalysis data
Indications for a potential synchronization between the phase evolution of the Madden–Julian oscillation and the solar 27-day cycle
Mesoscale fine structure of a tropopause fold over mountains
Tropical convection regimes in climate models: evaluation with satellite observations
Wave modulation of the extratropical tropopause inversion layer
Planetary boundary layer height from CALIOP compared to radiosonde over China
Exploring atmospheric blocking with GPS radio occultation observations
Upper tropospheric water vapour variability at high latitudes – Part 1: Influence of the annular modes
Mixing layer height and its implications for air pollution over Beijing, China
Effect of tropical cyclones on the tropical tropopause parameters observed using COSMIC GPS RO data
New fire diurnal cycle characterizations to improve fire radiative energy assessments made from MODIS observations
Tropospheric ozone variability in the tropics from ENSO to MJO and shorter timescales
A comprehensive investigation on afternoon transition of the atmospheric boundary layer over a tropical rural site
Characterization of thermal structure and conditions for overshooting of tropical and extratropical cyclones with GPS radio occultation
Spatiotemporal variability of water vapor investigated using lidar and FTIR vertical soundings above the Zugspitze
Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 Observational Prototype Experiment
Determination and climatology of the planetary boundary layer height above the Swiss plateau by in situ and remote sensing measurements as well as by the COSMO-2 model
Comparison of the diurnal variations of warm-season precipitation for East Asia vs. North America downstream of the Tibetan Plateau vs. the Rocky Mountains
How stratospheric are deep stratospheric intrusions?
Impact of tropical land convection on the water vapour budget in the tropical tropopause layer
The thermodynamic state of the Arctic atmosphere observed by AIRS: comparisons during the record minimum sea ice extents of 2007 and 2012
High resolution VHF radar measurements of tropopause structure and variability at Davis, Antarctica (69° S, 78° E)
Measurements of the movement of the jet streams at mid-latitudes, in the Northern and Southern Hemispheres, 1979 to 2010
Continuous detection and characterization of the Sea Breeze in clear sky conditions using Meteosat Second Generation
Thermal structure of intense convective clouds derived from GPS radio occultations
Advances and limitations of atmospheric boundary layer observations with GPS occultation over southeast Pacific Ocean
Teleconnection between Australian winter temperature and Indian summer monsoon rainfall
First results from the GPS atmosphere sounding experiment TOR aboard the TerraSAR-X satellite
Updraft and downdraft characterization with Doppler lidar: cloud-free versus cumuli-topped mixed layer
Remote sensing of the tropical rain forest boundary layer using pulsed Doppler lidar
A new ENSO index derived from satellite measurements of column ozone
Turbulence associated with mountain waves over Northern Scandinavia – a case study using the ESRAD VHF radar and the WRF mesoscale model
Edward J. Strobach, Sunil Baidar, Brian J. Carroll, Steven S. Brown, Kristen Zuraski, Matthew Coggon, Chelsea E. Stockwell, Lu Xu, Yelena L. Pichugina, W. Alan Brewer, Carsten Warneke, Jeff Peischl, Jessica Gilman, Brandi McCarty, Maxwell Holloway, and Richard Marchbanks
Atmos. Chem. Phys., 24, 9277–9307, https://doi.org/10.5194/acp-24-9277-2024, https://doi.org/10.5194/acp-24-9277-2024, 2024
Short summary
Short summary
Large-scale weather patterns are isolated from local patterns to study the impact that different weather scales have on air quality measurements. While impacts from large-scale meteorology were evaluated by separating ozone (O3) exceedance (>70 ppb) and non-exceedance (<70 ppb) days, we developed a technique that allows direct comparisons of small temporal variations between chemical and dynamics measurements under rapid dynamical transitions.
Jonnathan Céspedes, Simone Kotthaus, Jana Preissler, Clément Toupoint, Ludovic Thobois, Marc-Antoine Drouin, Jean-Charles Dupont, Aurélien Faucheux, and Martial Haeffelin
EGUsphere, https://doi.org/10.5194/egusphere-2024-520, https://doi.org/10.5194/egusphere-2024-520, 2024
Short summary
Short summary
The Low-Level Jet (LLJ) and the Urban Heat Island (UHI) are common phenomena in the atmospheric boundary layer, while the UHI has been studied extensively, the interaction between them has received less attention. LLJ detection in the Paris region showed that the turbulence below the LLJ core is an indicator of the UHI intensity variation. This study demonstrates how wind observations in cities provide valuable insights into near-surface processes relevant to human and environmental health.
Bing Cao, Jennifer S. Haase, Michael J. Murphy, M. Joan Alexander, Martina Bramberger, and Albert Hertzog
Atmos. Chem. Phys., 22, 15379–15402, https://doi.org/10.5194/acp-22-15379-2022, https://doi.org/10.5194/acp-22-15379-2022, 2022
Short summary
Short summary
Atmospheric waves that carry momentum from tropospheric weather systems into the equatorial stratosphere modify the winds there. The Strateole-2 2019 campaign launched long-duration stratospheric superpressure balloons to measure these equatorial waves. We deployed a GPS receiver on one of the balloons to measure atmospheric temperature profiles beneath the balloon. Temperature variations in the retrieved profiles show planetary-scale waves with a 20 d period and 3–4 d period waves.
Nikolas Angelou, Jakob Mann, and Ebba Dellwik
Atmos. Chem. Phys., 22, 2255–2268, https://doi.org/10.5194/acp-22-2255-2022, https://doi.org/10.5194/acp-22-2255-2022, 2022
Short summary
Short summary
In this study we use state-of-the-art scanning wind lidars to investigate the wind field in the near-wake region of a mature, open-grown tree. Our measurements provide for the first time a picture of the mean and the turbulent spatial fluctuations in the flow in the wake of a tree in its natural environment. Our observations support the hypothesis that even simple models can realistically simulate the turbulent fluctuations in the wake and thus predict the effect of trees in flow models.
Sudip Chakraborty, Jonathon H. Jiang, Hui Su, and Rong Fu
Atmos. Chem. Phys., 21, 12855–12866, https://doi.org/10.5194/acp-21-12855-2021, https://doi.org/10.5194/acp-21-12855-2021, 2021
Short summary
Short summary
Boreal autumn is the main wet season over the Congo basin. Thus, changes in its onset date have a significant impact on the rainforest. This study provides compelling evidence that the cooling effect of aerosols modifies the timing and strength of the southern African easterly jet that is central to the boreal autumn wet season over the Congo rainforest. A higher boreal summer aerosol concentration is positively correlated with the boreal autumn wet season onset timing.
Siying Chen, Rongzheng Cao, Yixuan Xie, Yinchao Zhang, Wangshu Tan, He Chen, Pan Guo, and Peitao Zhao
Atmos. Chem. Phys., 21, 11489–11504, https://doi.org/10.5194/acp-21-11489-2021, https://doi.org/10.5194/acp-21-11489-2021, 2021
Short summary
Short summary
In this study, the seasonal variation in Aeolus wind product performance over China is analyzed by using L-band radiosonde detection data and ERA5 reanalysis data. The results show that the Aeolus wind product performance is affected by seasonal factors, which may be caused by seasonal changes in wind direction and cloud distribution.
Fuchao Liu, Fan Yi, Zhenping Yin, Yunpeng Zhang, Yun He, and Yang Yi
Atmos. Chem. Phys., 21, 2981–2998, https://doi.org/10.5194/acp-21-2981-2021, https://doi.org/10.5194/acp-21-2981-2021, 2021
Short summary
Short summary
Using high-resolution lidar measurements, this process-based study reveals that the clear-day convective boundary layer evolves in four distinct stages differing in depth growth rate and depth fluctuation magnitudes. The accompanying entrainment zone thickness (EZT) shows a discrepancy in statistical mean and standard deviation for different seasons and developing stages. Common EZT characteristics also exist. These findings help us understand the atmospheric boundary layer evolution.
Jianping Guo, Boming Liu, Wei Gong, Lijuan Shi, Yong Zhang, Yingying Ma, Jian Zhang, Tianmeng Chen, Kaixu Bai, Ad Stoffelen, Gerrit de Leeuw, and Xiaofeng Xu
Atmos. Chem. Phys., 21, 2945–2958, https://doi.org/10.5194/acp-21-2945-2021, https://doi.org/10.5194/acp-21-2945-2021, 2021
Short summary
Short summary
Vertical wind profiles are crucial to a wide range of atmospheric disciplines. Aeolus is the first satellite mission to directly observe wind profile information on a global scale. However, Aeolus wind products over China have thus far not been evaluated by in situ comparison. This work is expected to let the public and science community better know the Aeolus wind products and to encourage use of these valuable data in future research and applications.
Kizhathur Narasimhan Uma, Siddarth Shankar Das, Madineni Venkat Ratnam, and Kuniyil Viswanathan Suneeth
Atmos. Chem. Phys., 21, 2083–2103, https://doi.org/10.5194/acp-21-2083-2021, https://doi.org/10.5194/acp-21-2083-2021, 2021
Short summary
Short summary
Reanalysis data of vertical wind (w) are widely used by the atmospheric community to determine various calculations of atmospheric circulations, diabatic heating, convection, etc. There are no studies that assess the available reanalysis data with respect to observations. The present study assesses for the first time all the reanalysis w by comparing it with 20 years of radar data from Gadanki and Kototabang and shows that downdrafts and peaks in the updrafts are not produced in the reanalyses.
Ghouse Basha, M. Venkat Ratnam, and Pangaluru Kishore
Atmos. Chem. Phys., 20, 6789–6801, https://doi.org/10.5194/acp-20-6789-2020, https://doi.org/10.5194/acp-20-6789-2020, 2020
Short summary
Short summary
This study explores the variability of the Asian summer monsoon anticyclone (ASMA) spatial variability and trends using long-term observational and reanalysis data sets. The decadal variability of the anticyclone is very large at the edges compared with the core region. We propose that the transport process over the Tibetan Plateau and the Indian region is significant in active monsoon, strong monsoon and strong La Niña years. Thus, different phases of the monsoon are important in UTLS analyses.
Thomas Trickl, Hannes Vogelmann, Ludwig Ries, and Michael Sprenger
Atmos. Chem. Phys., 20, 243–266, https://doi.org/10.5194/acp-20-243-2020, https://doi.org/10.5194/acp-20-243-2020, 2020
Short summary
Short summary
Ozone transfer from the stratosphere to the troposphere seems to to have grown over the past decade, parallel to global warming. Lidar measurements, carried out in Garmisch-Partenkirchen, Germany, between 2007 and 2016 show a considerable stratospheric influence in the free troposphere over these sites, with observations of stratospheric layers in the troposphere on 84 % of the measurement days. This high fraction is almost reached also in North America, but frequently not throughout the year.
Ming Shangguan, Wuke Wang, and Shuanggen Jin
Atmos. Chem. Phys., 19, 6659–6679, https://doi.org/10.5194/acp-19-6659-2019, https://doi.org/10.5194/acp-19-6659-2019, 2019
Short summary
Short summary
A significant warming in the troposphere and cooling in the stratosphere are found in satellite measurements (2002–2017). The newest ERA5 data are first used for analyzing temperature and ozone trends in the UTLS and show the best quality compared to other reanalyses. According to model simulations, the temperature increase in the troposphere and ozone decrease in the NH stratosphere are mainly connected to a surface warming of the ocean and subsequent changes in atmospheric circulation.
Christoph G. Hoffmann and Christian von Savigny
Atmos. Chem. Phys., 19, 4235–4256, https://doi.org/10.5194/acp-19-4235-2019, https://doi.org/10.5194/acp-19-4235-2019, 2019
Short summary
Short summary
We examine a possible statistical linkage between atmospheric variability in the tropical troposphere on the intraseasonal timescale, which is known as Madden–Julian oscillation, and known variability of the solar radiation with a period of 27 days. This helps to understand tropospheric variability in more detail, which is generally of interest, e.g., for weather forecasting. We find indications for such a linkage; however, more research has to be conducted for an unambiguous attribution.
Wolfgang Woiwode, Andreas Dörnbrack, Martina Bramberger, Felix Friedl-Vallon, Florian Haenel, Michael Höpfner, Sören Johansson, Erik Kretschmer, Isabell Krisch, Thomas Latzko, Hermann Oelhaf, Johannes Orphal, Peter Preusse, Björn-Martin Sinnhuber, and Jörn Ungermann
Atmos. Chem. Phys., 18, 15643–15667, https://doi.org/10.5194/acp-18-15643-2018, https://doi.org/10.5194/acp-18-15643-2018, 2018
Short summary
Short summary
GLORIA observations during two crossings of the polar front jet stream resolve the fine mesoscale structure of a tropopause fold in high detail. Tracer–tracer correlations of H2O and O3 are presented as a function of potential temperature and reveal an active mixing region. Our study confirms conceptual models of tropopause folds, validates the high quality of ECMWF IFS forecasts, and suggests that mountain waves are capable of modulating exchange processes in the vicinity of tropopause folds.
Andrea K. Steiner, Bettina C. Lackner, and Mark A. Ringer
Atmos. Chem. Phys., 18, 4657–4672, https://doi.org/10.5194/acp-18-4657-2018, https://doi.org/10.5194/acp-18-4657-2018, 2018
Short summary
Short summary
We evaluate the representation of tropical convection regimes in atmospheric climate models with satellite-based observations from GPS radio occultation. We find that models have large temperature biases in the tropopause region. In moist convection regions, models underestimate moisture up to 40 % over oceans whereas in dry regions they overestimate it by 100 %. Our findings show that RO observations are a valuable data source for the evaluation and development of next generation climate models.
Robin Pilch Kedzierski, Katja Matthes, and Karl Bumke
Atmos. Chem. Phys., 17, 4093–4114, https://doi.org/10.5194/acp-17-4093-2017, https://doi.org/10.5194/acp-17-4093-2017, 2017
Wanchun Zhang, Jianping Guo, Yucong Miao, Huan Liu, Yong Zhang, Zhengqiang Li, and Panmao Zhai
Atmos. Chem. Phys., 16, 9951–9963, https://doi.org/10.5194/acp-16-9951-2016, https://doi.org/10.5194/acp-16-9951-2016, 2016
Short summary
Short summary
The PBL height retrieval from CALIOP aboard CALIPSO can significantly complement the traditional ground-based methods, which is only for one site. Our study, to our current knowledge, is the first intercomparison study of PBLH on a large scale using long-term radiosonde observations in China. Three matchup schemes were proposed based on the position of radiosondes relative to CALIPSO ground tracks in China. Results indicate that CALIOP is promising for reliable PBLH retrievals.
Lukas Brunner, Andrea K. Steiner, Barbara Scherllin-Pirscher, and Martin W. Jury
Atmos. Chem. Phys., 16, 4593–4604, https://doi.org/10.5194/acp-16-4593-2016, https://doi.org/10.5194/acp-16-4593-2016, 2016
Short summary
Short summary
Atmospheric blocking refers to persistent high-pressure systems which block the climatological flow at midlatitudes. We explore blocking with observations from GPS radio occultation (RO), a satellite-based remote-sensing system. Using two example cases, we find that RO data robustly capture blocking, highlighting the potential of RO observations to complement models and reanalysis as a basis for blocking research.
Christopher E. Sioris, Jason Zou, David A. Plummer, Chris D. Boone, C. Thomas McElroy, Patrick E. Sheese, Omid Moeini, and Peter F. Bernath
Atmos. Chem. Phys., 16, 3265–3278, https://doi.org/10.5194/acp-16-3265-2016, https://doi.org/10.5194/acp-16-3265-2016, 2016
Short summary
Short summary
The AM (annular mode) is the most important internal mode of climatic variability at high latitudes. Upper tropospheric water vapour (UTWV) at high latitudes increases by up to ~ 50 % during the negative phase of the AMs. The response of water vapour to the AMs vanishes above the tropopause. The ultimate goal of the study was to improve UTWV trend uncertainties by explaining shorter-term variability, and this was achieved by accounting for the AM-related response in a multiple linear regression.
Guiqian Tang, Jinqiang Zhang, Xiaowan Zhu, Tao Song, Christoph Münkel, Bo Hu, Klaus Schäfer, Zirui Liu, Junke Zhang, Lili Wang, Jinyuan Xin, Peter Suppan, and Yuesi Wang
Atmos. Chem. Phys., 16, 2459–2475, https://doi.org/10.5194/acp-16-2459-2016, https://doi.org/10.5194/acp-16-2459-2016, 2016
Short summary
Short summary
This is the first paper to validate and characterize mixing layer height and discuss its relationship with air pollution, using a ceilometer in Beijing. The novelty, originality, and importance of this paper are as follows: (1) the applicable conditions of the ceilometer; (2) the variations of mixing layer height; (3) thermal/dynamic structure inside mixing layers with different degrees of pollution; and (4) critical meteorological conditions for the formation of heavy air pollution.
S. Ravindra Babu, M. Venkat Ratnam, G. Basha, B. V. Krishnamurthy, and B. Venkateswararao
Atmos. Chem. Phys., 15, 10239–10249, https://doi.org/10.5194/acp-15-10239-2015, https://doi.org/10.5194/acp-15-10239-2015, 2015
Short summary
Short summary
The effect of tropical cyclones (TCs) that occurred over the north Indian Ocean in the last decade on the tropical tropopause parameters has been quantified for the first time. The vertical structure of temperature and tropopause parameters within the 5º radius away from the cyclone centre during TC period is also presented. The water vapour variability in the vicinity of TC is investigated.
It is demonstrated that the TCs can significantly affect the tropical tropopause and thus STE processes.
N. Andela, J. W. Kaiser, G. R. van der Werf, and M. J. Wooster
Atmos. Chem. Phys., 15, 8831–8846, https://doi.org/10.5194/acp-15-8831-2015, https://doi.org/10.5194/acp-15-8831-2015, 2015
Short summary
Short summary
The polar orbiting MODIS instruments provide four daily observations of the fire diurnal cycle, resulting in erroneous fire radiative energy (FRE) estimates. Using geostationary SEVIRI data, we explore the fire diurnal cycle and its drivers for Africa to develop a new method to estimate global FRE in near real-time using MODIS. The fire diurnal cycle varied with climate and vegetation type, and including information on the fire diurnal cycle in the model significantly improved the FRE estimates.
J. R. Ziemke, A. R. Douglass, L. D. Oman, S. E. Strahan, and B. N. Duncan
Atmos. Chem. Phys., 15, 8037–8049, https://doi.org/10.5194/acp-15-8037-2015, https://doi.org/10.5194/acp-15-8037-2015, 2015
Short summary
Short summary
Aura OMI and MLS measurements are combined to produce daily maps of tropospheric ozone beginning October 2004. We show that El Niño Southern Oscillation (ENSO) related inter-annual change in tropospheric ozone in the tropics is small compared to combined intra-seasonal/Madden-Julian Oscillation (MJO) and shorter timescale variability. Outgoing Longwave Radiation indicates that deep convection is the primary driver of the observed ozone variability on all timescales.
A. Sandeep, T. N. Rao, and S. V. B. Rao
Atmos. Chem. Phys., 15, 7605–7617, https://doi.org/10.5194/acp-15-7605-2015, https://doi.org/10.5194/acp-15-7605-2015, 2015
Short summary
Short summary
The afternoon-evening transition (AET) in the atmospheric boundary layer has been studied in an integrated approach using 3 years of tower, sodar and wind profiler measurements. Such a long-term data set has been used for the first time to understand the behavior of AET. It allowed us to study the seasonal variation. In contrast to the common belief that the transition evolves from bottom to top, the present study clearly showed that the start time of transition follows top-to-bottom evolution.
R. Biondi, A. K. Steiner, G. Kirchengast, and T. Rieckh
Atmos. Chem. Phys., 15, 5181–5193, https://doi.org/10.5194/acp-15-5181-2015, https://doi.org/10.5194/acp-15-5181-2015, 2015
H. Vogelmann, R. Sussmann, T. Trickl, and A. Reichert
Atmos. Chem. Phys., 15, 3135–3148, https://doi.org/10.5194/acp-15-3135-2015, https://doi.org/10.5194/acp-15-3135-2015, 2015
Short summary
Short summary
We quantitatively analyzed the spatiotemporal variability (minutes to hours, 500m to 10km) of water vapor (IWV and profiles) in the free troposphere recorded at the Zugspitze (Germany) with lidar and solar FTIR. We found that long-range transport of heterogeneous air masses may cause relative short-term variations of the water-vapor density which exceed the impact of local convection by 1 order of magnitude. Our results could be useful for issues of model parametrization and co-location.
E. Hammann, A. Behrendt, F. Le Mounier, and V. Wulfmeyer
Atmos. Chem. Phys., 15, 2867–2881, https://doi.org/10.5194/acp-15-2867-2015, https://doi.org/10.5194/acp-15-2867-2015, 2015
Short summary
Short summary
Measurements and upgrades of the rotational Raman lidar of the University of Hohenheim during the HD(CP)2 Observational Prototype Experiment are presented in this paper. This includes 25h long time series of temperature gradients and water vapor mixing ratio. Through simulation, optimum wavelengths for high- and low-background cases were identified and tested successfully. Low-elevation measurements were performed to measure temperature gradients at altitudes around 100m above ground level.
M. Collaud Coen, C. Praz, A. Haefele, D. Ruffieux, P. Kaufmann, and B. Calpini
Atmos. Chem. Phys., 14, 13205–13221, https://doi.org/10.5194/acp-14-13205-2014, https://doi.org/10.5194/acp-14-13205-2014, 2014
Short summary
Short summary
An operational planetary boundary layer height detection method with several remote sensing instruments (wind profiler, Raman lidar, microwave radiometer) and algorithms (Parcel and bulk Richardson number methods, surface-based temperature inversion, aerosol and humidity gradient analysis) was validated against radio sounding. A comparison with the numerical weather prediction model COSMO-2 and the seasonal cycles of the day- and nighttime PBL for two stations on the Swiss plateau are presented.
Yuanchun Zhang, Fuqing Zhang, and Jianhua Sun
Atmos. Chem. Phys., 14, 10741–10759, https://doi.org/10.5194/acp-14-10741-2014, https://doi.org/10.5194/acp-14-10741-2014, 2014
T. Trickl, H. Vogelmann, H. Giehl, H.-E. Scheel, M. Sprenger, and A. Stohl
Atmos. Chem. Phys., 14, 9941–9961, https://doi.org/10.5194/acp-14-9941-2014, https://doi.org/10.5194/acp-14-9941-2014, 2014
F. Carminati, P. Ricaud, J.-P. Pommereau, E. Rivière, S. Khaykin, J.-L. Attié, and J. Warner
Atmos. Chem. Phys., 14, 6195–6211, https://doi.org/10.5194/acp-14-6195-2014, https://doi.org/10.5194/acp-14-6195-2014, 2014
A. Devasthale, J. Sedlar, T. Koenigk, and E. J. Fetzer
Atmos. Chem. Phys., 13, 7441–7450, https://doi.org/10.5194/acp-13-7441-2013, https://doi.org/10.5194/acp-13-7441-2013, 2013
S. P. Alexander, D. J. Murphy, and A. R. Klekociuk
Atmos. Chem. Phys., 13, 3121–3132, https://doi.org/10.5194/acp-13-3121-2013, https://doi.org/10.5194/acp-13-3121-2013, 2013
R. D. Hudson
Atmos. Chem. Phys., 12, 7797–7808, https://doi.org/10.5194/acp-12-7797-2012, https://doi.org/10.5194/acp-12-7797-2012, 2012
I. M. Lensky and U. Dayan
Atmos. Chem. Phys., 12, 6505–6513, https://doi.org/10.5194/acp-12-6505-2012, https://doi.org/10.5194/acp-12-6505-2012, 2012
R. Biondi, W. J. Randel, S.-P. Ho, T. Neubert, and S. Syndergaard
Atmos. Chem. Phys., 12, 5309–5318, https://doi.org/10.5194/acp-12-5309-2012, https://doi.org/10.5194/acp-12-5309-2012, 2012
F. Xie, D. L. Wu, C. O. Ao, A. J. Mannucci, and E. R. Kursinski
Atmos. Chem. Phys., 12, 903–918, https://doi.org/10.5194/acp-12-903-2012, https://doi.org/10.5194/acp-12-903-2012, 2012
S.-Y. Lee and T. Y. Koh
Atmos. Chem. Phys., 12, 669–681, https://doi.org/10.5194/acp-12-669-2012, https://doi.org/10.5194/acp-12-669-2012, 2012
G. Beyerle, L. Grunwaldt, S. Heise, W. Köhler, R. König, G. Michalak, M. Rothacher, T. Schmidt, J. Wickert, B. D. Tapley, and B. Giesinger
Atmos. Chem. Phys., 11, 6687–6699, https://doi.org/10.5194/acp-11-6687-2011, https://doi.org/10.5194/acp-11-6687-2011, 2011
A. Ansmann, J. Fruntke, and R. Engelmann
Atmos. Chem. Phys., 10, 7845–7858, https://doi.org/10.5194/acp-10-7845-2010, https://doi.org/10.5194/acp-10-7845-2010, 2010
G. Pearson, F. Davies, and C. Collier
Atmos. Chem. Phys., 10, 5891–5901, https://doi.org/10.5194/acp-10-5891-2010, https://doi.org/10.5194/acp-10-5891-2010, 2010
J. R. Ziemke, S. Chandra, L. D. Oman, and P. K. Bhartia
Atmos. Chem. Phys., 10, 3711–3721, https://doi.org/10.5194/acp-10-3711-2010, https://doi.org/10.5194/acp-10-3711-2010, 2010
S. Kirkwood, M. Mihalikova, T. N. Rao, and K. Satheesan
Atmos. Chem. Phys., 10, 3583–3599, https://doi.org/10.5194/acp-10-3583-2010, https://doi.org/10.5194/acp-10-3583-2010, 2010
Cited articles
Banakh, V. and Smalikho, I.: Lidar Studies of Wind Turbulence in the
Stable Atmospheric Boundary Layer, Remote Sens., 10, 1219,
https://doi.org/10.3390/rs10081219, 2018.
Banakh, V. A. and Smalikho, I. N.: Lidar observations of atmospheric internal waves in the boundary layer of the atmosphere on the coast of Lake Baikal, Atmos. Meas. Tech., 9, 5239–5248, https://doi.org/10.5194/amt-9-5239-2016, 2016.
Beran, D. W., Hooke, W. H., and Clifford, S. F.: Acoustic echo-sounding
techniques and their application to gravity-wave, turbulence, and stability
studies, Bound.-Lay. Meteorol., 4, 133–153, https://doi.org/10.1007/bf02265228, 1973.
Berg, J., Troldborg, N., Sørensen, N. N., Patton, E. G., and Sullivan, P.
P.: Large-Eddy Simulation of turbine wake in complex terrain, J.
Phys.: Conference Series, 854, 012003, https://doi.org/10.1088/1742-6596/854/1/012003,
2017.
Bian, J., Chen, H., Vömel, H., Duan, Y., Xuan, Y., and Lü, D.:
Intercomparison of humidity and temperature sensors: GTS1, Vaisala RS80, and
CFH, Adv. Atmos. Sci., 28, 139-146,
https://doi.org/10.1007/s00376-010-9170-8, 2010.
Birch, C. E., Parker, D. J., O'Leary, A., Marsham, J. H., Taylor, C. M.,
Harris, P. P., and Lister, G. M. S.: Impact of soil moisture and
convectively generated waves on the initiation of a West African mesoscale
convective system, Q. J. Roy. Meteorol. Soc.,
139, 1712–1730, https://doi.org/10.1002/qj.2062, 2013.
Blumen, W., Banta, R. M., Berri, G., Blumen, W., Carruthers, D. J., Dalu, G.
A., Durran, D. R., Egger, J., Garratt, J. R., Hanna, S. R., Hunt, J. C. R.,
Meroney, R. N., Miller, W., Neff, W. D., Nicolini, M., Paegle, J., Pielke,
R. A., Smith, R. B., Strimaitis, D. G., Vukicevic, T., and Whiteman, C. D.:
Atmospheric Processes over Complex Terrain, Meteorological Monographs, 57,
Am. Meteorol. Soc., Boston, MA, 1990.
C3S (Copernicus Climate Change Service): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), available at: https://cds.climate.copernicus.eu/cdsapp#!/home (last access: 4 December 2019), 2017.
Chouza, F., Reitebuch, O., Jähn, M., Rahm, S., and Weinzierl, B.: Vertical wind retrieved by airborne lidar and analysis of island induced gravity waves in combination with numerical models and in situ particle measurements, Atmos. Chem. Phys., 16, 4675–4692, https://doi.org/10.5194/acp-16-4675-2016, 2016.
Clark, T. L., Hall, W. D., Kerr, R. M., Middleton, D., Radke, L., Ralph, F.
M., Neiman, P. J., and Levinson, D.: Origins of aircraft-damaging clear-air
turbulence during the 9 December 1992 Colorado downslope windstorm:
Numerical simulations and comparison with observations, J.
Atmos. Sci., 57, 1105–1131, https://doi.org/10.1175/1520-0469(2000)057<1105:Ooadca>2.0.Co;2, 2000.
Cohn, S. A., Holloway, C. L., Oncley, S. P., Doviak, R. J., and Lataitis, R.
J.: Validation of a UHF spaced antenna wind profiler for high-resolution
boundary layer observations, Radio Sci., 32, 1279–1296,
https://doi.org/10.1029/97rs00578, 1997.
Cohn, S. A., Brown, W. O. J., Martin, C. L., Susedik, M. E., Maclean, G. D.,
and Parsons, D. B.: Clear air boundary layer spaced antenna wind measurement
with the Multiple Antenna Profiler (MAPR), Ann. Geophys., 19, 845–854,
https://doi.org/10.5194/angeo-19-845-2001, 2001.
Corby, G. A.: A preliminary study of atmospheric waves using radiosonde
data, Q. J. Roy. Meteorol. Soc., 83, 49–60,
https://doi.org/10.1002/qj.49708335505, 1957.
Einaudi, F. and Finnigan, J. J.: The interaction between an internal
gravity wave and the planetary boundary layer. Part I: The linear analysis,
Q. J. Roy. Meteorol. Soc., 107, 793–806,
https://doi.org/10.1002/qj.49710745404, 1981.
El Kasmi, A. and Masson, C.: Turbulence modeling of atmospheric boundary
layer flow over complex terrain: a comparison of models at wind tunnel and
full scale, Wind Ener., 13, 689–704, https://doi.org/10.1002/we.390, 2010.
Fernando, H. J. S., Mann, J., Palma, J. M. L. M., Lundquist, J. K.,
Barthelmie, R. J., BeloPereira, M., Brown, W. O. J., Chow, F. K., Gerz, T.,
Hocut, C. M., Klein, P. M., Leo, L. S., Matos, J. C., Oncley, S. P., Pryor,
S. C., Bariteau, L., Bell, T. M., Bodini, N., Carney, M. B., Courtney, M.
S., Creegan, E. D., Dimitrova, R., Gomes, S., Hagen, M., Hyde, J. O., Kigle,
S., Krishnamurthy, R., Lopes, J. C., Mazzaro, L., Neher, J. M. T., Menke,
R., Murphy, P., Oswald, L., Otarola-Bustos, S., Pattantyus, A. K.,
Rodrigues, C. V., Schady, A., Sirin, N., Spuler, S., Svensson, E.,
Tomaszewski, J., Turner, D. D., van Veen, L., Vasiljević, N., Vassallo,
D., Voss, S., Wildmann, N., and Wang, Y.: The Perdigão: Peering into
Microscale Details of Mountain Winds, B. Am.
Meteorol. Soc., 100, 799–819, https://doi.org/10.1175/bams-d-17-0227.1, 2018.
Finnigan, J. J. and Einaudi, F.: The interaction between an internal
gravity wave and the planetary boundary layer. Part II: Effect of the wave
on the turbulence structure, Q. J. Roy. Meteorol.
Soc., 107, 807–832, https://doi.org/10.1002/qj.49710745405, 1981.
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in
the middle atmosphere, Rev. Geophys., 41, 64, https://doi.org/10.1029/2001rg000106,
2003.
Fritts, D. C., Nappo, C., Riggin, D. M., Balsley, B. B., Eichinger, W. E.,
and Newsom, R. K.: Analysis of Ducted Motions in the Stable Nocturnal
Boundary Layer during CASES-99, J. Atmos. Sci., 60,
2450–2472, https://doi.org/10.1175/1520-0469(2003)060<2450:aodmit>2.0.co;2, 2003.
Gossard, E. E. and Hooke, W. H.: Waves in the atmosphere: atmospheric
infrasound and gravity waves-their generation and propagation, Atmospheric
Science, Developments in Atmospheric Science, No. 2, Elsevier Scientific
Publishing Co, Amsterdam, 1975.
Grubišić, V., Doyle, J. D., Kuettner, J., Mobbs, S., Smith, R. B.,
Whiteman, C. D., Dirks, R., Czyzyk, S., Cohn, S. A., Vosper, S., Weissmann,
M., Haimov, S., De Wekker, S. F. J., Pan, L. L., and Chow, F. K.: The
Terrain-Induced Rotor Experiment, B. Am. Meteorol.
Soc., 89, 1513–1534, https://doi.org/10.1175/2008bams2487.1, 2008.
Hersbach, H. and Dee, D.: ERA5 reanalysis is in production, Shinfield Park,
Reading, Berkshire RG2 9AX, UK, 7, 2016.
Holton, J. R. and Alexander, M. J.: The role of waves in the transport
circulation of the middle atmosphere, in: Atmospheric Science Across the
Stratopause, edited by: Siskind, D. E., Eckermann, S. D., and Summers, M.
E., Geophysical Monograph Series, 21–35, 2000.
Hooke, W. H. and Jones, R. M.: Dissipative Waves Excited by Gravity-Wave
Encounters with the Stably Stratified Planetary Boundary Layer, J.
Atmos. Sci., 43, 2048–2060, https://doi.org/10.1175/1520-0469(1986)043<2048:dwebgw>2.0.co;2, 1986.
Jarvis, A., Reuter, H. I., Nelson, A., and Guevara, E.: Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT), available at: http://srtm.csi.cgiar.org (last access: 11 December 2018), 2008.
Jia, M. and Yuan, J.: Simulated atmospheric gravity waves by CFD, TIB AV-Portal, Video supplement, https://doi.org/10.5446/41847, 2019.
Jia, M., Yuan, J., Wang, C., Xia, H., Wu, Y., Zhao, L., Wei, T., Wu, J., Wang, L., Gu, S.-Y., Liu, L., Lu, D., Chen, R., Xue, X., and Dou, X.:
Partial data for “Long-lived high-frequency gravity waves in the atmospheric boundary layer: observations and simulations”,
available at: http://www.lidar.cn/datashare/Jia_et_al_2019.rar, last access: 16 March 2019.
Kuettner, J. P., Hildebrand, P. A., and Clark, T. L.: Convection waves:
Observations of gravity wave systems over convectively active boundary
layers, Q. J. Roy. Meteorol. Soc., 113, 445–467,
https://doi.org/10.1002/qj.49711347603, 2007.
Lac, C., Lafore, J. P., and Redelsperger, J. L.: Role of gravity waves in
triggering deep convection during TOGA COARE, J. Atmos.
Sci., 59, 1293–1316, https://doi.org/10.1175/1520-0469(2002)059<1293:Rogwit>2.0.Co;2, 2002.
Lapworth, A. and Osborne, S. R.: Evidence for gravity wave drag in the
boundary layer of a numerical forecast model: a comparison with
observations, Q. J. Roy. Meteorol. Soc., 142,
3257–3264, https://doi.org/10.1002/qj.2909, 2016.
Li, F.: New developments with upper-air sounding in China, WMO, Instruments
and Observing Methods Report 94, Geneva, Switzerland, 2006.
Lyulyukin, V. S., Kallistratova, M. A., Kouznetsov, R. D., Kuznetsov, D. D.,
Chunchuzov, I. P., and Chirokova, G. Y.: Internal gravity-shear waves in the
atmospheric boundary layer from acoustic remote sensing data, Izvestiya,
Atmos. Ocean. Phys., 51, 193–202, https://doi.org/10.1134/s0001433815020103,
2015.
Mahrt, L.: Stably Stratified Atmospheric Boundary Layers, Ann. Rev.
Fluid Mechan., 46, 23–45, https://doi.org/10.1146/annurev-fluid-010313-141354, 2014.
Mann, J., Angelou, N., Arnqvist, J., Callies, D., Cantero, E., Arroyo, R.
C., Courtney, M., Cuxart, J., Dellwik, E., Gottschall, J., Ivanell, S.,
Kuhn, P., Lea, G., Matos, J. C., Palma, J. M., Pauscher, L., Pena, A.,
Rodrigo, J. S., Soderberg, S., Vasiljevic, N., and Rodrigues, C. V.: Complex
terrain experiments in the New European Wind Atlas, Philos.
Trans. A,
375, 23, https://doi.org/10.1098/rsta.2016.0101, 2017.
Marsham, J. H. and Parker, D. J.: Secondary initiation of multiple bands of
cumulonimbus over southern Britain. II: Dynamics of secondary initiation,
Q. J. Roy. Meteorol. Soc., 132, 1053–1072,
https://doi.org/10.1256/qj.05.152, 2006.
Mayor, S. D.: Observations of microscale internal gravity waves in very
stable atmospheric boundary layers over an orchard canopy, Agr. Forest
Meteorol., 244, 136–150, https://doi.org/10.1016/j.agrformet.2017.05.014, 2017.
Miller, C. A. and Davenport, A. G.: Guidelines for the calculation of wind
speed-ups in complex terrain, J. Wind Eng. Indust.
Aerodynam., 74–76, 189–197, https://doi.org/10.1016/s0167-6105(98)00016-6, 1998.
Neiman, P. J., Hardesty, R. M., Shapiro, M. A., and Cupp, R. E.: Doppler
Lidar Observations of a Downslope Windstorm, Mon. Weather Rev., 116,
2265–2275, https://doi.org/10.1175/1520-0493(1988)116<2265:dlooad>2.0.co;2, 1988.
Newsom, R. K. and Banta, R. M.: Shear-Flow Instability in the Stable
Nocturnal Boundary Layer as Observed by Doppler Lidar during CASES-99,
J. Atmos. Sci., 60, 16–33,
https://doi.org/10.1175/1520-0469(2003)060<0016:sfiits>2.0.co;2, 2003.
Plougonven, R. and Zhang, F.: Internal gravity waves from atmospheric jets
and fronts, Rev. Geophys., 52, 33–76, https://doi.org/10.1002/2012rg000419, 2014.
Poulos, G. S., Blumen, W., Fritts, D. C., Lundquist, J. K., Sun, J., Burns,
S. P., Nappo, C., Banta, R., Newsom, R., Cuxart, J., Terradellas, E.,
Balsley, B., and Jensen, M.: CASES-99: A Comprehensive Investigation of the
Stable Nocturnal Boundary Layer, B. Am. Meteorol.
Soc., 83, 555–581, https://doi.org/10.1175/1520-0477(2002)083<0555:caciot>2.3.co;2, 2002.
Pramitha, M., Venkat Ratnam, M., Taori, A., Krishna Murthy, B. V., Pallamraju, D., and Vijaya Bhaskar Rao, S.: Evidence for tropospheric wind shear excitation of high-phase-speed gravity waves reaching the mesosphere using the ray-tracing technique, Atmos. Chem. Phys., 15, 2709–2721, https://doi.org/10.5194/acp-15-2709-2015, 2015.
Preusse, P., Ern, M., Bechtold, P., Eckermann, S. D., Kalisch, S., Trinh, Q. T., and Riese, M.: Characteristics of gravity waves resolved by ECMWF, Atmos. Chem. Phys., 14, 10483–10508, https://doi.org/10.5194/acp-14-10483-2014, 2014.
Ren, H., Laima, S., Chen, W.-L., Zhang, B., Guo, A., and Li, H.: Numerical
simulation and prediction of spatial wind field under complex terrain,
J. Wind Eng. Indust. Aerodynam., 180, 49–65, 2018.
Remmler, S., Hickel, S., Fruman, M. D., and Achatz, U.: Direct Numerical Simulation of Breaking Atmospheric Gravity Waves, in: High Performance Computing in Science and Engineering, edited by: Nagel, W. E., Kröner, D. H., and Resch, M. M., Springer, Cham, Stuttgart, 593–607, https://doi.org/10.1007/978-3-319-10810-0_39, 2015.
Román-Cascón, C., Yagüe, C., Mahrt, L., Sastre, M., Steeneveld, G.-J., Pardyjak, E., van de Boer, A., and Hartogensis, O.: Interactions among drainage flows, gravity waves and turbulence: a BLLAST case study, Atmos. Chem. Phys., 15, 9031–9047, https://doi.org/10.5194/acp-15-9031-2015, 2015.
Sun, J., Mahrt, L., Nappo, C., and Lenschow, D. H.: Wind and Temperature
Oscillations Generated by Wave–Turbulence Interactions in the Stably
Stratified Boundary Layer, J. Atmos. Sci., 72,
1484–1503, https://doi.org/10.1175/jas-d-14-0129.1, 2015a.
Sun, J., Nappo, C. J., Mahrt, L., Belušić, D., Grisogono, B.,
Stauffer, D. R., Pulido, M., Staquet, C., Jiang, Q., Pouquet, A., Yagüe,
C., Galperin, B., Smith, R. B., Finnigan, J. J., Mayor, S. D., Svensson, G.,
Grachev, A. A., and Neff, W. D.: Review of wave-turbulence interactions in
the stable atmospheric boundary layer, Rev. Geophys., 53, 956–993,
https://doi.org/10.1002/2015rg000487, 2015b.
Sun, J. L., Lenschow, D. H., Burns, S. P., Banta, R. M., Newsom, R. K.,
Coulter, R., Frasier, S., Ince, T., Nappo, C., Balsley, B. B., Jensen, M.,
Mahrt, L., Miller, D., and Skelly, B.: Atmospheric disturbances that
generate intermittent turbulence in nocturnal boundary layers,
Bound.-Lay. Meteorol., 110, 255–279, https://doi.org/10.1023/A:1026097926169, 2004.
Toms, B. A., Tomaszewski, J. M., Turner, D. D., and Koch, S. E.: Analysis of
a Lower-Tropospheric Gravity Wave Train Using Direct and Remote Sensing
Measurement Systems, Mon. Weather Rev., 145, 2791–2812,
https://doi.org/10.1175/mwr-d-16-0216.1, 2017.
Toparlar, Y., Blocken, B., Vos, P., van Heijst, G. J. F., Janssen, W. D.,
van Hooff, T., Montazeri, H., and Timmermans, H. J. P.: CFD simulation and
validation of urban microclimate: A case study for Bergpolder Zuid,
Rotterdam, Build. Environ., 83, 79–90,
https://doi.org/10.1016/j.buildenv.2014.08.004, 2015.
Toparlar, Y., Blocken, B., Maiheu, B., and van Heijst, G. J. F.: A review on
the CFD analysis of urban microclimate, Renew. Sustain. Ener.
Rev., 80, 1613–1640, https://doi.org/10.1016/j.rser.2017.05.248, 2017.
Tsiringakis, A., Steeneveld, G. J., and Holtslag, A. A. M.: Small-scale
orographic gravity wave drag in stable boundary layers and its impact on
synoptic systems and near-surface meteorology, Q. J.
Roy. Meteorol. Soc., 143, 1504–1516, https://doi.org/10.1002/qj.3021, 2017.
Vasiljević, N., L. M. Palma, J. M., Angelou, N., Carlos Matos, J., Menke, R., Lea, G., Mann, J., Courtney, M., Frölen Ribeiro, L., and M. G. C. Gomes, V. M.: Perdigão 2015: methodology for atmospheric multi-Doppler lidar experiments, Atmos. Meas. Tech., 10, 3463–3483, https://doi.org/10.5194/amt-10-3463-2017, 2017.
Viana, S., Yagüe, C., and Maqueda, G.: Propagation and Effects of a
Mesoscale Gravity Wave Over a Weakly-Stratified Nocturnal Boundary Layer
During the SABLES2006 Field Campaign, Bound.-Lay. Meteorol., 133,
165–188, https://doi.org/10.1007/s10546-009-9420-4, 2009.
Walmsley, J. L., Taylor, P. A., and Salmon, J. R.: Simple guidelines for
estimating windspeed variations due to small-scale topographic features–an
update, Climatol. Bull., 23, 3–14, 1984.
Wang, C., Xia, H., Shangguan, M., Wu, Y., Wang, L., Zhao, L., Qiu, J., and
Zhang, R.: 1.5 µm polarization coherent lidar incorporating
time-division multiplexing, Opt. Express, 25, 20663–20674,
https://doi.org/10.1364/OE.25.020663, 2017.
Wang, C., Jia, M., Xia, H., Wu, Y., Wei, T., Shang, X., Yang, C., Xue, X., and Dou, X.: Relationship analysis of PM2.5 and boundary layer height using an aerosol and turbulence detection lidar, Atmos. Meas. Tech., 12, 3303–3315, https://doi.org/10.5194/amt-12-3303-2019, 2019.
Wang, Y.: Investigation of nocturnal low-level jet–generated gravity waves
over Oklahoma City during morning boundary layer transition period using
Doppler wind lidar data, J. Appl. Remote Sens., 7, 073487,
https://doi.org/10.1117/1.jrs.7.073487, 2013.
Watt, S. F. L., Gilbert, J. S., Folch, A., Phillips, J. C., and Cai, X. M.:
An example of enhanced tephra deposition driven by topographically induced
atmospheric turbulence, Bull. Volcanol., 77, 14,
https://doi.org/10.1007/s00445-015-0927-x, 2015.
Wei, T., Xia, H., Hu, J., Wang, C., Shangguan, M., Wang, L., Jia, M., and
Dou, X.: Simultaneous wind and rainfall detection by power spectrum analysis
using a VAD scanning coherent Doppler lidar, Opt. Express, 27, 31235–31245,
https://doi.org/10.1364/oe.27.031235, 2019.
Witschas, B., Rahm, S., Dörnbrack, A., Wagner, J., and Rapp, M.:
Airborne Wind Lidar Measurements of Vertical and Horizontal Winds for the
Investigation of Orographically Induced Gravity Waves, J.
Atmos. Ocean. Technol., 34, 1371–1386,
https://doi.org/10.1175/jtech-d-17-0021.1, 2017.
Wu, J. F., Xue, X. H., Liu, H. L., Dou, X. K., and Chen, T. D.: Assessment
of the Simulation of Gravity Waves Generation by a Tropical Cyclone in the
High-Resolution WACCM and the WRF, J. Adv. Model. Earth
Syst., 10, 2214–2227, https://doi.org/10.1029/2018ms001314, 2018.
Yakhot, V., Orszag, S., Thangam, S., Gatski, T., and Speziale, C.:
Development of turbulence models for shear flows by a double expansion
technique, Phys. Fluids A, 4, 1510–1520, 1992.
Yan, B. W., Li, Q. S., He, Y. C., and Chan, P. W.: RANS simulation of
neutral atmospheric boundary layer flows over complex terrain by proper
imposition of boundary conditions and modification on the k-ε
model, Environ. Fluid Mechan., 16, 1–23, https://doi.org/10.1007/s10652-015-9408-1,
2015.
Short summary
Gravitational waves (GWs) with periods ranging from 10 to 30 min over 10 h and 20 wave cycles are detected within a 2 km height in the atmospheric boundary layer (ABL) by a coherent Doppler wind lidar. Observations and computational fluid dynamics (CFD) simulations lead to a conclusion that the GWs are excited by the wind shear of a low-level jet under the condition of light horizontal wind. The GWs are trapped in the ABL due to a combination of thermal and Doppler ducts.
Gravitational waves (GWs) with periods ranging from 10 to 30 min over 10 h and 20 wave cycles...
Altmetrics
Final-revised paper
Preprint