Articles | Volume 18, issue 9
Atmos. Chem. Phys., 18, 6679–6689, 2018
Atmos. Chem. Phys., 18, 6679–6689, 2018
Research article
09 May 2018
Research article | 09 May 2018

NO2-initiated multiphase oxidation of SO2 by O2 on CaCO3 particles

Ting Yu et al.

Related authors

Regional PM2.5 pollution confined by atmospheric internal boundaries in the North China Plain: 2. boundary layer structures and numerical simulation
Xipeng Jin, Xuhui Cai, Mingyuan Yu, Yu Song, Xuesong Wang, Hongsheng Zhang, and Tong Zhu
Atmos. Chem. Phys. Discuss.,,, 2022
Revised manuscript under review for ACP
Short summary
Observation of strong NOx release over Qiyi Glacier, China
Weili Lin, Feng Wang, Chunxiang Ye, and Tong Zhu
The Cryosphere Discuss.,,, 2021
Preprint withdrawn
Short summary
Effects of AIR pollution on cardiopuLmonary disEaSe in urban and peri-urban reSidents in Beijing: protocol for the AIRLESS study
Yiqun Han, Wu Chen, Lia Chatzidiakou, Anika Krause, Li Yan, Hanbin Zhang, Queenie Chan, Ben Barratt, Rod Jones, Jing Liu, Yangfeng Wu, Meiping Zhao, Junfeng Zhang, Frank J. Kelly, Tong Zhu, and the AIRLESS team
Atmos. Chem. Phys., 20, 15775–15792,,, 2020
Short summary
Simultaneous measurements of urban and rural particles in Beijing – Part 2: Case studies of haze events and regional transport
Yang Chen, Guangming Shi, Jing Cai, Zongbo Shi, Zhichao Wang, Xiaojiang Yao, Mi Tian, Chao Peng, Yiqun Han, Tong Zhu, Yue Liu, Xi Yang, Mei Zheng, Fumo Yang, Qiang Zhang, and Kebin He
Atmos. Chem. Phys., 20, 9249–9263,,, 2020
Short summary
Why is the Indo-Gangetic Plain the region with the largest NH3 column in the globe during pre-monsoon and monsoon seasons?
Tiantian Wang, Yu Song, Zhenying Xu, Mingxu Liu, Tingting Xu, Wenling Liao, Lifei Yin, Xuhui Cai, Ling Kang, Hongsheng Zhang, and Tong Zhu
Atmos. Chem. Phys., 20, 8727–8736,,, 2020
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Iron from coal combustion particles dissolves much faster than mineral dust under simulated atmospheric acidic conditions
Clarissa Baldo, Akinori Ito, Michael D. Krom, Weijun Li, Tim Jones, Nick Drake, Konstantin Ignatyev, Nicholas Davidson, and Zongbo Shi
Atmos. Chem. Phys., 22, 6045–6066,,, 2022
Short summary
Cellulose in atmospheric particulate matter at rural and urban sites across France and Switzerland
Adam Brighty, Véronique Jacob, Gaëlle Uzu, Lucille Borlaza, Sébastien Conil, Christoph Hueglin, Stuart K. Grange, Olivier Favez, Cécile Trébuchon, and Jean-Luc Jaffrezo
Atmos. Chem. Phys., 22, 6021–6043,,, 2022
Short summary
Kinetics, SOA yields, and chemical composition of secondary organic aerosol from β-caryophyllene ozonolysis with and without nitrogen oxides between 213 and 313 K
Linyu Gao, Junwei Song, Claudia Mohr, Wei Huang, Magdalena Vallon, Feng Jiang, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 22, 6001–6020,,, 2022
Short summary
Chemical transformation of α-pinene-derived organosulfate via heterogeneous OH oxidation: implications for sources and environmental fates of atmospheric organosulfates
Rongshuang Xu, Sze In Madeleine Ng, Wing Sze Chow, Yee Ka Wong, Yuchen Wang, Donger Lai, Zhongping Yao, Pui-Kin So, Jian Zhen Yu, and Man Nin Chan
Atmos. Chem. Phys., 22, 5685–5700,,, 2022
Short summary
Aqueous chemical bleaching of 4-nitrophenol brown carbon by hydroxyl radicals; products, mechanism, and light absorption
Bartłomiej Witkowski, Priyanka Jain, and Tomasz Gierczak
Atmos. Chem. Phys., 22, 5651–5663,,, 2022
Short summary

Cited articles

Brandt, C. and Vaneldik, R.: Transition metal-catalyzed oxidation of sulfur (IV) oxides. Atmospheric-relevant processes and mechanisms, Chem. Rev., 95, 119–190,, 1995. 
Brandt, C., Fabian, I., and Vaneldik, R.: Kinetics and mechanism of the iron(III)-catalyzed autoxidation of sulfur(IV) oxides in aqueous-solution – evidence for the redox cycling of iron in the presence of oxygen and modeling of the overall reaction-mechanism, Inorg. Chem., 33, 687–701,, 1994. 
Chameides, W. L. and Davis, D. D.: The free-radical chemistry of cloud droplets and its impact upon the composition of rain, J. Geophys. Res.-Oceans, 87, 4863–4877,, 1982. 
Cheng, Y. F., Zheng, G. J., Wei, C., Mu, Q., Zheng, B., Wang, Z. B., Gao, M., Zhang, Q., He, K. B., Carmichael, G., Poschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China, Sci. Adv., 2, e1601530,, 2016. 
Clifton, C. L., Altstein, N., and Huie, R. E.: Rate-constant for the reaction of NO2 with sulfur(IV) over the pH range 5.3–13, Environ. Sci. Technol., 22, 586–589,, 1988. 
Short summary
The reaction of SO2 with NO2 on particles is proposed to be one major pathway of sulfate formation in the polluted atmosphere. We found that in the reaction of SO2 with NO2 on CaCO3 particles, presence of O2 enhanced the uptake rate of SO2 by 2–3 orders of magnitude compared with the reaction of SO2 directly with NO2. O2 was the main oxidant of SO2 and NO2 was the initializer of chain reactions. The multiphase oxidation of SO2 by NO2/O2 can be an important source of sulfate in the atmosphere.
Final-revised paper