Articles | Volume 18, issue 4
https://doi.org/10.5194/acp-18-2481-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-18-2481-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multiphase oxidation of SO2 by NO2 on CaCO3 particles
Defeng Zhao
BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering,
Peking University, Beijing, 100871, China
Xiaojuan Song
BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering,
Peking University, Beijing, 100871, China
BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering,
Peking University, Beijing, 100871, China
Zefeng Zhang
BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering,
Peking University, Beijing, 100871, China
Yingjun Liu
BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering,
Peking University, Beijing, 100871, China
Jing Shang
BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering,
Peking University, Beijing, 100871, China
Related authors
Ting Yu, Defeng Zhao, Xiaojuan Song, and Tong Zhu
Atmos. Chem. Phys., 18, 6679–6689, https://doi.org/10.5194/acp-18-6679-2018, https://doi.org/10.5194/acp-18-6679-2018, 2018
Short summary
Short summary
The reaction of SO2 with NO2 on particles is proposed to be one major pathway of sulfate formation in the polluted atmosphere. We found that in the reaction of SO2 with NO2 on CaCO3 particles, presence of O2 enhanced the uptake rate of SO2 by 2–3 orders of magnitude compared with the reaction of SO2 directly with NO2. O2 was the main oxidant of SO2 and NO2 was the initializer of chain reactions. The multiphase oxidation of SO2 by NO2/O2 can be an important source of sulfate in the atmosphere.
D. B. Collins, D. F. Zhao, M. J. Ruppel, O. Laskina, J. R. Grandquist, R. L. Modini, M. D. Stokes, L. M. Russell, T. H. Bertram, V. H. Grassian, G. B. Deane, and K. A. Prather
Atmos. Meas. Tech., 7, 3667–3683, https://doi.org/10.5194/amt-7-3667-2014, https://doi.org/10.5194/amt-7-3667-2014, 2014
Short summary
Short summary
Sea spray aerosol particles represent a system of relatively high chemical complexity. The chemical composition of sea spray aerosol particles was shown in this study to be directly determined by the method used to produce bubbles, which produce aerosol upon bursting at the sea surface. Using methods which deviate from natural breaking waves directly translated into differences in the measured particle sizes and the chemical mixing state of laboratory-generated sea spray aerosol particles.
Gang Zhao, Ping Tian, Chunxiang Ye, Weili Lin, Yicheng Gao, Jie Sun, Yi Chen, Fengjun Shen, and Tong Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3012, https://doi.org/10.5194/egusphere-2025-3012, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Understanding aerosol size distribution helps us predict how aerosols move, grow, and interact with the environment and climate. We used "maximum entropy" to demonstrate that the aerosol particle number size distribution would follow the Weibull distribution in the clean atmosphere during the new particle formation and growth process. The observations showed good consistency with the theoretical analysis.
Xi Cheng, Yong Jie Li, Yan Zheng, Keren Liao, Theodore K. Koenig, Yanli Ge, Tong Zhu, Chunxiang Ye, Xinghua Qiu, and Qi Chen
Atmos. Chem. Phys., 24, 2099–2112, https://doi.org/10.5194/acp-24-2099-2024, https://doi.org/10.5194/acp-24-2099-2024, 2024
Short summary
Short summary
In this study we conducted laboratory measurements to investigate the formation of gas-phase oxygenated organic molecules (OOMs) from six aromatic volatile organic compounds (VOCs). We provide a thorough analysis on the effects of precursor structure (substituents and ring numbers) on product distribution and highlight from a laboratory perspective that heavy (e.g., double-ring) aromatic VOCs are important in initial particle growth during secondary organic aerosol formation.
Xipeng Jin, Xuhui Cai, Xuesong Wang, Qianqian Huang, Yu Song, Ling Kang, Hongsheng Zhang, and Tong Zhu
Atmos. Chem. Phys., 24, 259–274, https://doi.org/10.5194/acp-24-259-2024, https://doi.org/10.5194/acp-24-259-2024, 2024
Short summary
Short summary
This work presents a climatology of water vapour exchange flux between the atmospheric boundary layer (ABL) and free troposphere (FT) over eastern China. The water vapour exchange maintains ABL humidity in cold months and moistens the FT in warm seasons, and its distribution has terrain-dependent features. The exchange flux is correlated with the El Niño–Southern Oscillation (ENSO) index and precipitation pattern. The study provides new insight into moisture transport and extreme weather.
Chuanhua Ren, Xin Huang, Tengyu Liu, Yu Song, Zhang Wen, Xuejun Liu, Aijun Ding, and Tong Zhu
Geosci. Model Dev., 16, 1641–1659, https://doi.org/10.5194/gmd-16-1641-2023, https://doi.org/10.5194/gmd-16-1641-2023, 2023
Short summary
Short summary
Ammonia in the atmosphere has wide impacts on the ecological environment and air quality, and its emission from soil volatilization is highly sensitive to meteorology, making it challenging to be well captured in models. We developed a dynamic emission model capable of calculating ammonia emission interactively with meteorological and soil conditions. Such a coupling of soil emission with meteorology provides a better understanding of ammonia emission and its contribution to atmospheric aerosol.
Zefeng Zhang, Hengnan Guo, Hanqing Kang, Jing Wang, Junlin An, Xingna Yu, Jingjing Lv, and Bin Zhu
Atmos. Meas. Tech., 15, 7259–7264, https://doi.org/10.5194/amt-15-7259-2022, https://doi.org/10.5194/amt-15-7259-2022, 2022
Short summary
Short summary
In this study, we first analyze the relationship between the visibility, the extinction coefficient, and atmospheric compositions. Then we propose to use the harmonic average of visibility data as the average visibility, which can better reflect changes in atmospheric extinction coefficients and aerosol concentrations. It is recommended to use the harmonic average visibility in the studies of climate change, atmospheric radiation, air pollution, environmental health, etc.
Xipeng Jin, Xuhui Cai, Mingyuan Yu, Yu Song, Xuesong Wang, Hongsheng Zhang, and Tong Zhu
Atmos. Chem. Phys., 22, 11409–11427, https://doi.org/10.5194/acp-22-11409-2022, https://doi.org/10.5194/acp-22-11409-2022, 2022
Short summary
Short summary
Meteorological discontinuities in the vertical direction define the lowest atmosphere as the boundary layer, while in the horizontal direction it identifies the contrast zone as the internal boundary. Both of them determine the polluted air mass dimension over the North China Plain. This study reveals the boundary layer structures under three categories of internal boundaries, modified by thermal, dynamical, and blending effects. It provides a new insight to understand regional pollution.
Yuhan Liu, Xuejiao Wang, Jing Shang, Weiwei Xu, Mengshuang Sheng, and Chunxiang Ye
Atmos. Chem. Phys., 22, 11347–11358, https://doi.org/10.5194/acp-22-11347-2022, https://doi.org/10.5194/acp-22-11347-2022, 2022
Short summary
Short summary
In this study, the influence of HCHO on renoxification on nitrate-doped TiO2 particles is investigated by using an experimental chamber. Mass NOx release is suggested to follow the NO−3-NO3·-HNO3-NOx pathway, with HCHO involved in the transformation of NO3· to HNO3 through hydrogen abstraction. Our proposed reaction mechanism by which HCHO promotes photocatalytic renoxification is helpful for deeply understanding the atmospheric photochemical processes and nitrogen cycling.
Hengnan Guo, Zefeng Zhang, Lin Jiang, Junlin An, Bin Zhu, Hanqing Kang, and Jing Wang
Atmos. Meas. Tech., 14, 2441–2450, https://doi.org/10.5194/amt-14-2441-2021, https://doi.org/10.5194/amt-14-2441-2021, 2021
Short summary
Short summary
Visibility is an indicator of atmospheric transparency and is widely used in many research fields. Although efforts have been made to improve the performance of visibility meters, a significant error exists in measured visibility data. This is because current methods of visibility measurement include a false assumption, which leads to the long-term neglect of an important source of visibility errors. Without major adjustments to current methods, it is not possible to obtain reliable data.
Weili Lin, Feng Wang, Chunxiang Ye, and Tong Zhu
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-32, https://doi.org/10.5194/tc-2021-32, 2021
Preprint withdrawn
Short summary
Short summary
Field observations found that released NOx on the glacier surface of the Tibetan Plateau, an important snow-covered region in the northern mid-latitudes, had a higher concentration than in Antarctic and Arctic regions. Such evidence, and such high fluxes as observed here on the Tibetan plateau is novel. That such high concentrations of nitrogen oxides can be found in remote areas is interesting and important for the oxidative budget of the boundary layer.
Yiqun Han, Wu Chen, Lia Chatzidiakou, Anika Krause, Li Yan, Hanbin Zhang, Queenie Chan, Ben Barratt, Rod Jones, Jing Liu, Yangfeng Wu, Meiping Zhao, Junfeng Zhang, Frank J. Kelly, Tong Zhu, and the AIRLESS team
Atmos. Chem. Phys., 20, 15775–15792, https://doi.org/10.5194/acp-20-15775-2020, https://doi.org/10.5194/acp-20-15775-2020, 2020
Short summary
Short summary
Panel studies might be the most suitable way to link intensive air monitoring campaigns for a wide range of pollutant species and personal exposure in different micro-environments, together with epidemiological studies of detailed biological changes in humans. Panel studies are intensive, but related papers are very limited. With the successful collection of a rich dataset, we believe AIRLESS sets a good example for the design of a multidisciplinary study.
Yang Chen, Guangming Shi, Jing Cai, Zongbo Shi, Zhichao Wang, Xiaojiang Yao, Mi Tian, Chao Peng, Yiqun Han, Tong Zhu, Yue Liu, Xi Yang, Mei Zheng, Fumo Yang, Qiang Zhang, and Kebin He
Atmos. Chem. Phys., 20, 9249–9263, https://doi.org/10.5194/acp-20-9249-2020, https://doi.org/10.5194/acp-20-9249-2020, 2020
Short summary
Short summary
Individual particles were observed in two field studies during winter 2016 in the urban and rural areas of Beijing. An online single-particle chemical composition analysis was used as a tracing system to investigate the impact of heating activities and the formation of haze events. During the pollution events, a pattern of transport and accumulation was found with evidence of single particles. The transport from Pinggu to Peking University was significant but PKU to PG occurred occasionally.
Tiantian Wang, Yu Song, Zhenying Xu, Mingxu Liu, Tingting Xu, Wenling Liao, Lifei Yin, Xuhui Cai, Ling Kang, Hongsheng Zhang, and Tong Zhu
Atmos. Chem. Phys., 20, 8727–8736, https://doi.org/10.5194/acp-20-8727-2020, https://doi.org/10.5194/acp-20-8727-2020, 2020
Short summary
Short summary
Satellite measurements have revealed that the Indo-Gangetic Plain (IGP) has the global maximum ammonia concentrations, with a peak from June to August. Here, we studied the reasons for this phenomenon through computer simulations. Low sulfur dioxide and nitrogen oxides emissions and high air temperature over the IGP weaken the swallowing of gaseous ammonia by acidic gases. Additionally, the barrier effects of the Himalayas, like a windshield, are also conducive to the accumulation of ammonia.
Yan Zheng, Xi Cheng, Keren Liao, Yaowei Li, Yong Jie Li, Ru-Jin Huang, Weiwei Hu, Ying Liu, Tong Zhu, Shiyi Chen, Limin Zeng, Douglas R. Worsnop, and Qi Chen
Atmos. Meas. Tech., 13, 2457–2472, https://doi.org/10.5194/amt-13-2457-2020, https://doi.org/10.5194/amt-13-2457-2020, 2020
Short summary
Short summary
This paper provides important information to help researchers to understand the mass quantification and source apportionment by Aerodyne aerosol mass spectrometers.
Yingruo Li, Ziqiang Tan, Chunxiang Ye, Junxia Wang, Yanwen Wang, Yi Zhu, Pengfei Liang, Xi Chen, Yanhua Fang, Yiqun Han, Qi Wang, Di He, Yao Wang, and Tong Zhu
Atmos. Chem. Phys., 19, 13841–13857, https://doi.org/10.5194/acp-19-13841-2019, https://doi.org/10.5194/acp-19-13841-2019, 2019
Short summary
Short summary
Vehicle emissions are a major source of Beijing's pollution. Various vehicle emission control policies have been implemented at great cost, but there is a lack of appropriate methods to evaluate the effectiveness of such policies. Here we developed a new method to evaluate the effectiveness of vehicle emission control policies during APEC. Our findings are instructive for air pollution control policy making.
Yanhua Fang, Chunxiang Ye, Junxia Wang, Yusheng Wu, Min Hu, Weili Lin, Fanfan Xu, and Tong Zhu
Atmos. Chem. Phys., 19, 12295–12307, https://doi.org/10.5194/acp-19-12295-2019, https://doi.org/10.5194/acp-19-12295-2019, 2019
Short summary
Short summary
Year-long observations of PM2.5, gaseous pollutants, and meteorological parameters in Beijing were analysed to investigate sulfate formation. RH and O3 concentrations above thresholds of 45 % and 35 ppb, respectively, greatly accelerated sulfate formation. Ambient changes in RH and O3 contributed to variations in sulfate formation among different seasons and pollution levels. A shift from gas-phase to multiphase SO2 oxidation contributed to fast sulfate formation under polluted conditions.
Lia Chatzidiakou, Anika Krause, Olalekan A. M. Popoola, Andrea Di Antonio, Mike Kellaway, Yiqun Han, Freya A. Squires, Teng Wang, Hanbin Zhang, Qi Wang, Yunfei Fan, Shiyi Chen, Min Hu, Jennifer K. Quint, Benjamin Barratt, Frank J. Kelly, Tong Zhu, and Roderic L. Jones
Atmos. Meas. Tech., 12, 4643–4657, https://doi.org/10.5194/amt-12-4643-2019, https://doi.org/10.5194/amt-12-4643-2019, 2019
Short summary
Short summary
This study validates the performance of a personal air quality monitor that integrates miniaturised sensors that measure physical and chemical parameters. Overall, the air pollution sensors showed excellent agreement with standard instrumentation in outdoor, indoor and commuting environments across seasons and different geographical settings. Hence, novel sensing technologies like the ones demonstrated here can revolutionise health studies by providing highly resolved reliable exposure metrics.
Jianjun Li, Gehui Wang, Qi Zhang, Jin Li, Can Wu, Wenqing Jiang, Tong Zhu, and Limin Zeng
Atmos. Chem. Phys., 19, 10481–10496, https://doi.org/10.5194/acp-19-10481-2019, https://doi.org/10.5194/acp-19-10481-2019, 2019
Short summary
Short summary
In this study, we investigated molecular compositions of organic aerosols (OAs) in summertime PM2.5 at a rural site in the North China Plain. We found that regional emission from field biomass burning (BB) significantly affects the concentration and molecular distribution of aliphatic lipids, sugars, and terpene-derived SOA, but has limited influence on PAHs, hopenes, and phthalates. The contribution of BB to OA increased by more than 50 % during the period influenced by regional open-field BB.
Wangshu Tan, Gang Zhao, Yingli Yu, Chengcai Li, Jian Li, Ling Kang, Tong Zhu, and Chunsheng Zhao
Atmos. Meas. Tech., 12, 3825–3839, https://doi.org/10.5194/amt-12-3825-2019, https://doi.org/10.5194/amt-12-3825-2019, 2019
Short summary
Short summary
A new method to retrieve CCN number concentrations using multiwavelength Raman lidars is proposed. The method implements hygroscopic enhancements of backscatter and extinction with relative humidity to represent particle hygroscopicity. The retrieved CCN number concentrations are in good agreement with theoretical calculated values. Sensitivity tests indicate that retrieval error in CCN arises mostly from uncertainties in extinction coefficients and RH profiles.
Zongbo Shi, Tuan Vu, Simone Kotthaus, Roy M. Harrison, Sue Grimmond, Siyao Yue, Tong Zhu, James Lee, Yiqun Han, Matthias Demuzere, Rachel E. Dunmore, Lujie Ren, Di Liu, Yuanlin Wang, Oliver Wild, James Allan, W. Joe Acton, Janet Barlow, Benjamin Barratt, David Beddows, William J. Bloss, Giulia Calzolai, David Carruthers, David C. Carslaw, Queenie Chan, Lia Chatzidiakou, Yang Chen, Leigh Crilley, Hugh Coe, Tie Dai, Ruth Doherty, Fengkui Duan, Pingqing Fu, Baozhu Ge, Maofa Ge, Daobo Guan, Jacqueline F. Hamilton, Kebin He, Mathew Heal, Dwayne Heard, C. Nicholas Hewitt, Michael Hollaway, Min Hu, Dongsheng Ji, Xujiang Jiang, Rod Jones, Markus Kalberer, Frank J. Kelly, Louisa Kramer, Ben Langford, Chun Lin, Alastair C. Lewis, Jie Li, Weijun Li, Huan Liu, Junfeng Liu, Miranda Loh, Keding Lu, Franco Lucarelli, Graham Mann, Gordon McFiggans, Mark R. Miller, Graham Mills, Paul Monk, Eiko Nemitz, Fionna O'Connor, Bin Ouyang, Paul I. Palmer, Carl Percival, Olalekan Popoola, Claire Reeves, Andrew R. Rickard, Longyi Shao, Guangyu Shi, Dominick Spracklen, David Stevenson, Yele Sun, Zhiwei Sun, Shu Tao, Shengrui Tong, Qingqing Wang, Wenhua Wang, Xinming Wang, Xuejun Wang, Zifang Wang, Lianfang Wei, Lisa Whalley, Xuefang Wu, Zhijun Wu, Pinhua Xie, Fumo Yang, Qiang Zhang, Yanli Zhang, Yuanhang Zhang, and Mei Zheng
Atmos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-19-7519-2019, https://doi.org/10.5194/acp-19-7519-2019, 2019
Short summary
Short summary
APHH-Beijing is a collaborative international research programme to study the sources, processes and health effects of air pollution in Beijing. This introduction to the special issue provides an overview of (i) the APHH-Beijing programme, (ii) the measurement and modelling activities performed as part of it and (iii) the air quality and meteorological conditions during joint intensive field campaigns as a core activity within APHH-Beijing.
Zhenying Xu, Mingxu Liu, Minsi Zhang, Yu Song, Shuxiao Wang, Lin Zhang, Tingting Xu, Tiantian Wang, Caiqing Yan, Tian Zhou, Yele Sun, Yuepeng Pan, Min Hu, Mei Zheng, and Tong Zhu
Atmos. Chem. Phys., 19, 5605–5613, https://doi.org/10.5194/acp-19-5605-2019, https://doi.org/10.5194/acp-19-5605-2019, 2019
Hao He, Xinrong Ren, Sarah E. Benish, Zhanqing Li, Fei Wang, Yuying Wang, Timothy P. Canty, Xiaobo Dong, Feng Lv, Yongtao Hu, Tong Zhu, and Russell R. Dickerson
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-248, https://doi.org/10.5194/acp-2019-248, 2019
Revised manuscript not accepted
Short summary
Short summary
We conducted aircraft measurements of air pollution in the North China Plain. Concentrations of air pollutants higher than the air quality standards were observed. Our modeling study indicates that the rate of ozone (one major air pollutant) production is determined by volatile organic compounds (VOCs), which is confirmed by satellite observations. Currently, VOCs are not well regulated in China, so this study suggests the future direction of control measures to improve air quality in China.
Mingxu Liu, Xin Huang, Yu Song, Tingting Xu, Shuxiao Wang, Zhijun Wu, Min Hu, Lin Zhang, Qiang Zhang, Yuepeng Pan, Xuejun Liu, and Tong Zhu
Atmos. Chem. Phys., 18, 17933–17943, https://doi.org/10.5194/acp-18-17933-2018, https://doi.org/10.5194/acp-18-17933-2018, 2018
Yingjie Zhang, Wei Du, Yuying Wang, Qingqing Wang, Haofei Wang, Haitao Zheng, Fang Zhang, Hongrong Shi, Yuxuan Bian, Yongxiang Han, Pingqing Fu, Francesco Canonaco, André S. H. Prévôt, Tong Zhu, Pucai Wang, Zhanqing Li, and Yele Sun
Atmos. Chem. Phys., 18, 14637–14651, https://doi.org/10.5194/acp-18-14637-2018, https://doi.org/10.5194/acp-18-14637-2018, 2018
Short summary
Short summary
We have a comprehensive characterization of aerosol chemistry and particle growth events at a downwind site of a highly polluted city in the North China Plain. Aerosol particles at the urban downwind site were highly aged and mainly from secondary formation. New particle growth events were also frequently observed on both clean and polluted days. While both sulfate and SOA played important roles in particle growth during clean periods, SOA was more important than sulfate during polluted events.
Suzane S. de Sá, Brett B. Palm, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Gabriel Isaacman-VanWertz, Lindsay D. Yee, Joel Brito, Samara Carbone, Igor O. Ribeiro, Glauber G. Cirino, Yingjun Liu, Ryan Thalman, Arthur Sedlacek, Aaron Funk, Courtney Schumacher, John E. Shilling, Johannes Schneider, Paulo Artaxo, Allen H. Goldstein, Rodrigo A. F. Souza, Jian Wang, Karena A. McKinney, Henrique Barbosa, M. Lizabeth Alexander, Jose L. Jimenez, and Scot T. Martin
Atmos. Chem. Phys., 18, 12185–12206, https://doi.org/10.5194/acp-18-12185-2018, https://doi.org/10.5194/acp-18-12185-2018, 2018
Short summary
Short summary
This study aimed at understanding and quantifying the changes in mass concentration and composition of submicron airborne particulate matter (PM) in Amazonia due to urban pollution. Downwind of Manaus, PM concentrations increased by up to 200 % under polluted compared with background conditions. The observed changes included contributions from both primary and secondary processes. The differences in organic PM composition suggested a shift in the pathways of secondary production with pollution.
Lindsay D. Yee, Gabriel Isaacman-VanWertz, Rebecca A. Wernis, Meng Meng, Ventura Rivera, Nathan M. Kreisberg, Susanne V. Hering, Mads S. Bering, Marianne Glasius, Mary Alice Upshur, Ariana Gray Bé, Regan J. Thomson, Franz M. Geiger, John H. Offenberg, Michael Lewandowski, Ivan Kourtchev, Markus Kalberer, Suzane de Sá, Scot T. Martin, M. Lizabeth Alexander, Brett B. Palm, Weiwei Hu, Pedro Campuzano-Jost, Douglas A. Day, Jose L. Jimenez, Yingjun Liu, Karena A. McKinney, Paulo Artaxo, Juarez Viegas, Antonio Manzi, Maria B. Oliveira, Rodrigo de Souza, Luiz A. T. Machado, Karla Longo, and Allen H. Goldstein
Atmos. Chem. Phys., 18, 10433–10457, https://doi.org/10.5194/acp-18-10433-2018, https://doi.org/10.5194/acp-18-10433-2018, 2018
Short summary
Short summary
Biogenic volatile organic compounds react in the atmosphere to form secondary organic aerosol, yet the chemical pathways remain unclear. We collected filter samples and deployed a semi-volatile thermal desorption aerosol gas chromatograph in the central Amazon. We measured 30 sesquiterpenes and 4 diterpenes and find them to be important for reactive ozone loss. We estimate that sesquiterpene oxidation contributes at least 0.4–5 % (median 1 %) of observed submicron organic aerosol mass.
Qianqian Huang, Xuhui Cai, Jian Wang, Yu Song, and Tong Zhu
Atmos. Chem. Phys., 18, 7573–7593, https://doi.org/10.5194/acp-18-7573-2018, https://doi.org/10.5194/acp-18-7573-2018, 2018
Short summary
Short summary
Air stagnation index is a vital meteorological measure of the atmosphere's ability to dilute air pollutants. We propose a Boundary-layer air Stagnation Index (BSI) based on daily maximal ventilation, real latent instability and precipitation. The BSI is positively correlated with API during 2000–2012, tracks the day-by-day variation of PM2.5 concentration during January 2013 in Beijing well, and successfully represents the improved air quality during November and December in 2017.
Mingjin Wang, Tong Zhu, Defeng Zhao, Florian Rubach, Andreas Wahner, Astrid Kiendler-Scharr, and Thomas F. Mentel
Atmos. Chem. Phys., 18, 7345–7359, https://doi.org/10.5194/acp-18-7345-2018, https://doi.org/10.5194/acp-18-7345-2018, 2018
Short summary
Short summary
Organic coatings modify hygroscopicity and CCN activation of mineral dust perticles. Small amounts of oleic acid coating (volume fraction (vf) ≤ 4.1 %) decreased the CCN activity of CaCO3 particles, while more oleic acid coating (vf ≥ 14.8 %) increased the CCN activity of CaCO3 particles, while malonic acid coating (vf = 0.4−42 %) even in smallest amounts increased the CCN activity of CaCO3 particles. Our laboratory results should also hold under conditions of the atmosphere.
Ting Yu, Defeng Zhao, Xiaojuan Song, and Tong Zhu
Atmos. Chem. Phys., 18, 6679–6689, https://doi.org/10.5194/acp-18-6679-2018, https://doi.org/10.5194/acp-18-6679-2018, 2018
Short summary
Short summary
The reaction of SO2 with NO2 on particles is proposed to be one major pathway of sulfate formation in the polluted atmosphere. We found that in the reaction of SO2 with NO2 on CaCO3 particles, presence of O2 enhanced the uptake rate of SO2 by 2–3 orders of magnitude compared with the reaction of SO2 directly with NO2. O2 was the main oxidant of SO2 and NO2 was the initializer of chain reactions. The multiphase oxidation of SO2 by NO2/O2 can be an important source of sulfate in the atmosphere.
Yiqiu Ma, Yubo Cheng, Xinghua Qiu, Gang Cao, Yanhua Fang, Junxia Wang, Tong Zhu, Jianzhen Yu, and Di Hu
Atmos. Chem. Phys., 18, 5607–5617, https://doi.org/10.5194/acp-18-5607-2018, https://doi.org/10.5194/acp-18-5607-2018, 2018
Short summary
Short summary
Water-soluble humic-like substances (HULISWS) are a potential toxic component of PM2.5 for their redox activity. In this study, we measured HULISWS and associated redox activity in PM2.5 sampled during a 1-year period in Beijing and investigated their sources. We found biomass burning and secondary aerosol formation were the major contributors (> 59 %) to both HULISWS and redox activity, and the combustion-related primary sources accounted for > 70 % of HULISWS and redox activity.
Fengcheng Wu, Pinhua Xie, Ang Li, Fusheng Mou, Hao Chen, Yi Zhu, Tong Zhu, Jianguo Liu, and Wenqing Liu
Atmos. Chem. Phys., 18, 1535–1554, https://doi.org/10.5194/acp-18-1535-2018, https://doi.org/10.5194/acp-18-1535-2018, 2018
Short summary
Short summary
Investigating the temporal and spatial distribution of pollutants, emissions, and pollution transport is necessary to better understand the effect of various sources on air quality. We report on mobile differential optical absorption spectroscopy (mobile DOAS) observations of precursors SO2 and NO2 vertical columns in NCP in the summer of 2013 (from 11 June to 7 July) in this study.
Pengfei Liang, Tong Zhu, Yanhua Fang, Yingruo Li, Yiqun Han, Yusheng Wu, Min Hu, and Junxia Wang
Atmos. Chem. Phys., 17, 13921–13940, https://doi.org/10.5194/acp-17-13921-2017, https://doi.org/10.5194/acp-17-13921-2017, 2017
Short summary
Short summary
The generalized linear regression model (GLM), even based only on meteorological parameters, could be satisfactory to estimate the contribution of meteorological conditions in reducing air pollution and hence the contribution of control strategies in reducing air pollution. Using the GLM, we found that the meteorological conditions and pollution control strategies contributed 30 % and 28 % to the reduction of the PM2.5 concentration during APEC 2014 and 38 % and 25 % during Parade 2015.
Mingjin Tang, Xin Huang, Keding Lu, Maofa Ge, Yongjie Li, Peng Cheng, Tong Zhu, Aijun Ding, Yuanhang Zhang, Sasho Gligorovski, Wei Song, Xiang Ding, Xinhui Bi, and Xinming Wang
Atmos. Chem. Phys., 17, 11727–11777, https://doi.org/10.5194/acp-17-11727-2017, https://doi.org/10.5194/acp-17-11727-2017, 2017
Short summary
Short summary
We provide a comprehensive and critical review of laboratory studies of heterogeneous uptake of OH, NO3, O3, and their directly related species by mineral dust particles. The atmospheric importance of heterogeneous uptake as sinks for these species is also assessed. In addition, we have outlined major open questions and challenges in this field and discussed research strategies to address them.
Qianqian Huang, Xuhui Cai, Yu Song, and Tong Zhu
Atmos. Chem. Phys., 17, 7793–7805, https://doi.org/10.5194/acp-17-7793-2017, https://doi.org/10.5194/acp-17-7793-2017, 2017
Short summary
Short summary
Air stagnation is an important meteorological measure of unfavorable air conditions, and previous studies have found that stagnation events are usually related to air pollution episodes. China is currently experiencing heavy air pollution, but to our knowledge, little is known about air stagnation in the country. In this paper, we conducted a comprehensive investigation of air stagnation climatology in China based on sounding and surface observations across the country.
Xu Yue, Nadine Unger, Kandice Harper, Xiangao Xia, Hong Liao, Tong Zhu, Jingfeng Xiao, Zhaozhong Feng, and Jing Li
Atmos. Chem. Phys., 17, 6073–6089, https://doi.org/10.5194/acp-17-6073-2017, https://doi.org/10.5194/acp-17-6073-2017, 2017
Short summary
Short summary
While it is widely recognized that air pollutants adversely affect human health and climate change, their impacts on the regional carbon balance are less well understood. We apply an Earth system model to quantify the combined effects of ozone and aerosol particles on net primary production in China. Ozone vegetation damage dominates over the aerosol effects, leading to a substantial net suppression of land carbon uptake in the present and future worlds.
Huan Yao, Yu Song, Mingxu Liu, Scott Archer-Nicholls, Douglas Lowe, Gordon McFiggans, Tingting Xu, Pin Du, Jianfeng Li, Yusheng Wu, Min Hu, Chun Zhao, and Tong Zhu
Atmos. Chem. Phys., 17, 5205–5219, https://doi.org/10.5194/acp-17-5205-2017, https://doi.org/10.5194/acp-17-5205-2017, 2017
Yuxuan Zhang, Hang Su, Simonas Kecorius, Zhibin Wang, Min Hu, Tong Zhu, Kebin He, Alfred Wiedensohler, Qiang Zhang, and Yafang Cheng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-222, https://doi.org/10.5194/acp-2017-222, 2017
Revised manuscript not accepted
Short summary
Short summary
The light absorption of black carbon (BC) strongly depends on their mixing state. By now, the BC mixing state in the atmosphere is still unclear. In this work, we have investigated the comprehensive characterization of BC mixing state at a polluted regional background site of the North China Plain (NCP) based on in site measurements. we found that BC aerosols of the NCP were fully aged, suggesting a strong optical and climate effect of BC on the regional scale in northern China.
Zefeng Zhang, Yan Shen, Yanwei Li, Bin Zhu, and Xingna Yu
Atmos. Chem. Phys., 17, 4147–4157, https://doi.org/10.5194/acp-17-4147-2017, https://doi.org/10.5194/acp-17-4147-2017, 2017
Short summary
Short summary
Aerosol particles and relative humidity are the main factors that affect atmospheric visibility. Due to the complexity of the physicochemical properties of aerosol particles, more and more instruments and cost were put into research, which limited the development of large area observation research. Thus, it is especially important to find the key parameters which affect the visibility and to establish the observation scheme.
Yingruo Li, Chunxiang Ye, Jun Liu, Yi Zhu, Junxia Wang, Ziqiang Tan, Weili Lin, Limin Zeng, and Tong Zhu
Atmos. Chem. Phys., 16, 14265–14283, https://doi.org/10.5194/acp-16-14265-2016, https://doi.org/10.5194/acp-16-14265-2016, 2016
Short summary
Short summary
We developed the surface flux intensity calculation method based on 2-year continuous ground measurement at a cross-boundary site between Beijing and the NCP to investigate the surface regional transport. The long-term and multispecies observation demonstrated the regional transport influence of the megacity Beijing and the NCP on Yufa. Our study has a direct implication in air quality control measures implemented in Beijing and its surrounding areas.
Yi Zhu, Jiping Zhang, Junxia Wang, Wenyuan Chen, Yiqun Han, Chunxiang Ye, Yingruo Li, Jun Liu, Limin Zeng, Yusheng Wu, Xinfeng Wang, Wenxing Wang, Jianmin Chen, and Tong Zhu
Atmos. Chem. Phys., 16, 12551–12565, https://doi.org/10.5194/acp-16-12551-2016, https://doi.org/10.5194/acp-16-12551-2016, 2016
Short summary
Short summary
With five repeated experiments using a mobile laboratory, we obtained the spatial distribution of major air pollutants over the surface of the North China Plain (NCP). All the pollutants were at high levels, with pollutant peak values in nearby major cities and along transport routes. With simulated wind fields, we identified the prevalent transport routes of air pollutants on different parts of the NCP, reflecting the transport of air pollution between megacities and surrounding regions.
B. Quennehen, J.-C. Raut, K. S. Law, N. Daskalakis, G. Ancellet, C. Clerbaux, S.-W. Kim, M. T. Lund, G. Myhre, D. J. L. Olivié, S. Safieddine, R. B. Skeie, J. L. Thomas, S. Tsyro, A. Bazureau, N. Bellouin, M. Hu, M. Kanakidou, Z. Klimont, K. Kupiainen, S. Myriokefalitakis, J. Quaas, S. T. Rumbold, M. Schulz, R. Cherian, A. Shimizu, J. Wang, S.-C. Yoon, and T. Zhu
Atmos. Chem. Phys., 16, 10765–10792, https://doi.org/10.5194/acp-16-10765-2016, https://doi.org/10.5194/acp-16-10765-2016, 2016
Short summary
Short summary
This paper evaluates the ability of six global models and one regional model in reproducing short-lived pollutants (defined here as ozone and its precursors, aerosols and black carbon) concentrations over Asia using satellite, ground-based and airborne observations.
Key findings are that models homogeneously reproduce the trace gas observations although nitrous oxides are underestimated, whereas the aerosol distributions are heterogeneously reproduced, implicating important uncertainties.
Ziqiang Tan, Yanwen Wang, Chunxiang Ye, Yi Zhu, Yingruo Li, Pengfei Liang, Qi Wang, Yiqun Han, Yanhua Fang, Junxia Wang, Lei Meng, Yao Wang, and Tong Zhu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-460, https://doi.org/10.5194/acp-2016-460, 2016
Revised manuscript not accepted
Short summary
Short summary
We used mobile research platform to evaluate the effectiveness of the strictest vehicle emission control policies ever applied in China during the Asia-Pacific Economic Cooperation Forum, Beijing, China 2014. We applied the continuous wavelet transform (CWT) method to decompose on-road measured concentrations of major air pollutants, and used high frequency signals of the concentrations to represent the "instantaneous emission" from vehicles.
Yuxuan Zhang, Qiang Zhang, Yafang Cheng, Hang Su, Simonas Kecorius, Zhibin Wang, Zhijun Wu, Min Hu, Tong Zhu, Alfred Wiedensohler, and Kebin He
Atmos. Meas. Tech., 9, 1833–1843, https://doi.org/10.5194/amt-9-1833-2016, https://doi.org/10.5194/amt-9-1833-2016, 2016
Short summary
Short summary
We develop a novel method in this work for in situ measurements of the morphology and effective density of ambient In-BC cores using a volatility tandem differential mobility analyzer and a single-particle soot photometer. We find that In-BC cores hardly transform the morphology of BC into a void-free sphere. Taking the morphology and density of ambient In-BC cores into account, our work provides a new insight into the enhancement of light absorption for In-BC particles in the atmosphere.
Yaning Kang, Mingxu Liu, Yu Song, Xin Huang, Huan Yao, Xuhui Cai, Hongsheng Zhang, Ling Kang, Xuejun Liu, Xiaoyuan Yan, Hong He, Qiang Zhang, Min Shao, and Tong Zhu
Atmos. Chem. Phys., 16, 2043–2058, https://doi.org/10.5194/acp-16-2043-2016, https://doi.org/10.5194/acp-16-2043-2016, 2016
Short summary
Short summary
The multi-year (1980–2012) comprehensive ammonia emissions inventories were compiled for China on 1 km × 1 km grid.
Various realistic parameters (ambient temperature, wind speed, soil acidity, synthetic fertilizer types, etc.) were considered in these inventories to synthetically refine the emission factors of ammonia volatilization according to local agricultural practice.
This paper shows the interannual trend and spatial distribution of ammonia emissions in details over recent decades.
A. Stohl, B. Aamaas, M. Amann, L. H. Baker, N. Bellouin, T. K. Berntsen, O. Boucher, R. Cherian, W. Collins, N. Daskalakis, M. Dusinska, S. Eckhardt, J. S. Fuglestvedt, M. Harju, C. Heyes, Ø. Hodnebrog, J. Hao, U. Im, M. Kanakidou, Z. Klimont, K. Kupiainen, K. S. Law, M. T. Lund, R. Maas, C. R. MacIntosh, G. Myhre, S. Myriokefalitakis, D. Olivié, J. Quaas, B. Quennehen, J.-C. Raut, S. T. Rumbold, B. H. Samset, M. Schulz, Ø. Seland, K. P. Shine, R. B. Skeie, S. Wang, K. E. Yttri, and T. Zhu
Atmos. Chem. Phys., 15, 10529–10566, https://doi.org/10.5194/acp-15-10529-2015, https://doi.org/10.5194/acp-15-10529-2015, 2015
Short summary
Short summary
This paper presents a summary of the findings of the ECLIPSE EU project. The project has investigated the climate and air quality impacts of short-lived climate pollutants (especially methane, ozone, aerosols) and has designed a global mitigation strategy that maximizes co-benefits between air quality and climate policy. Transient climate model simulations allowed quantifying the impacts on temperature (e.g., reduction in global warming by 0.22K for the decade 2041-2050) and precipitation.
S. H. Budisulistiorini, X. Li, S. T. Bairai, J. Renfro, Y. Liu, Y. J. Liu, K. A. McKinney, S. T. Martin, V. F. McNeill, H. O. T. Pye, A. Nenes, M. E. Neff, E. A. Stone, S. Mueller, C. Knote, S. L. Shaw, Z. Zhang, A. Gold, and J. D. Surratt
Atmos. Chem. Phys., 15, 8871–8888, https://doi.org/10.5194/acp-15-8871-2015, https://doi.org/10.5194/acp-15-8871-2015, 2015
Short summary
Short summary
Isoprene epoxydiols (IEPOX) are major gas-phase products from the atmospheric oxidation of isoprene that yield secondary organic aerosol (SOA) by reactive uptake onto acidic sulfate aerosol. We report a substantial contribution of IEPOX-derived SOA to the total fine aerosol collected during summer. IEPOX-derived SOA measured by online and offline mass spectrometry techniques is correlated with acidic sulfate aerosol, demonstrating the critical role of anthropogenic emissions in its formation.
K. F. Ho, R.-J. Huang, K. Kawamura, E. Tachibana, S. C. Lee, S. S. H. Ho, T. Zhu, and L. Tian
Atmos. Chem. Phys., 15, 3111–3123, https://doi.org/10.5194/acp-15-3111-2015, https://doi.org/10.5194/acp-15-3111-2015, 2015
Short summary
Short summary
The objective of this study is to identify the influence of traffic emissions and regional transport to the atmosphere in Beijing during the CAREBeijing-2007 in summer. This study demonstrates that even when primary exhaust was controlled by traffic restrictions, the contribution of secondary organic species formed from photochemical processes was critical with long-range atmospheric transport of pollutants.
Y. Liu, B. Yuan, X. Li, M. Shao, S. Lu, Y. Li, C.-C. Chang, Z. Wang, W. Hu, X. Huang, L. He, L. Zeng, M. Hu, and T. Zhu
Atmos. Chem. Phys., 15, 3045–3062, https://doi.org/10.5194/acp-15-3045-2015, https://doi.org/10.5194/acp-15-3045-2015, 2015
D. B. Collins, D. F. Zhao, M. J. Ruppel, O. Laskina, J. R. Grandquist, R. L. Modini, M. D. Stokes, L. M. Russell, T. H. Bertram, V. H. Grassian, G. B. Deane, and K. A. Prather
Atmos. Meas. Tech., 7, 3667–3683, https://doi.org/10.5194/amt-7-3667-2014, https://doi.org/10.5194/amt-7-3667-2014, 2014
Short summary
Short summary
Sea spray aerosol particles represent a system of relatively high chemical complexity. The chemical composition of sea spray aerosol particles was shown in this study to be directly determined by the method used to produce bubbles, which produce aerosol upon bursting at the sea surface. Using methods which deviate from natural breaking waves directly translated into differences in the measured particle sizes and the chemical mixing state of laboratory-generated sea spray aerosol particles.
K. D. Lu, F. Rohrer, F. Holland, H. Fuchs, T. Brauers, A. Oebel, R. Dlugi, M. Hu, X. Li, S. R. Lou, M. Shao, T. Zhu, A. Wahner, Y. H. Zhang, and A. Hofzumahaus
Atmos. Chem. Phys., 14, 4979–4999, https://doi.org/10.5194/acp-14-4979-2014, https://doi.org/10.5194/acp-14-4979-2014, 2014
W. Zhang, T. Zhu, W. Yang, Z. Bai, Y. L. Sun, Y. Xu, B. Yin, and X. Zhao
Atmos. Chem. Phys., 14, 301–316, https://doi.org/10.5194/acp-14-301-2014, https://doi.org/10.5194/acp-14-301-2014, 2014
C.-C. Chang, M. Shao, C. C. K. Chou, S.-C. Liu, J.-L. Wang, K.-Z. Lee, C.-H. Lai, T. Zhu, and P.-H. Lin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-25939-2013, https://doi.org/10.5194/acpd-13-25939-2013, 2013
Revised manuscript not accepted
Y. J. Liu, I. Herdlinger-Blatt, K. A. McKinney, and S. T. Martin
Atmos. Chem. Phys., 13, 5715–5730, https://doi.org/10.5194/acp-13-5715-2013, https://doi.org/10.5194/acp-13-5715-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
The role of surface-active macromolecules in the ice-nucleating ability of lignin, Snomax, and agricultural soil extracts
Secondary organic aerosol formation from nitrate radical oxidation of styrene: aerosol yields, chemical composition, and hydrolysis of organic nitrates
Hydrogen peroxide photoformation in particulate matter and its contribution to S(IV) oxidation during winter in Fairbanks, Alaska
Laboratory studies on the optical, physical, and chemical properties of fresh and aged biomass burning aerosols
The importance of burning conditions on the composition of domestic biomass-burning organic aerosol and the impact of atmospheric ageing
Heterogeneous phototransformation of halogenated polycyclic aromatic hydrocarbons: influencing factors, mechanisms and products
Initiation of linoleic acid autoxidation with ozone exposure in levitated aerosol particles
Measurement Report: Seasonal trends and chemical speciation of chromium (III/VI) in different fractions of urban particulate matter – a case study of Radom, Poland
Boosting aerosol surface effects: strongly enhanced cooperative surface propensity of atmospherically relevant organic molecular ions in aqueous solution
Potential contribution to secondary aerosols from benzothiazoles in the atmospheric aqueous phase based on oxidation and oligomerization mechanisms
Molecular insight into aqueous-phase photolysis and photooxidation of water-soluble organic matter emitted from biomass burning and coal combustion
Roles of pH, ionic strength, and sulfate in the aqueous nitrate-mediated photooxidation of green leaf volatiles
The lifetimes and potential change in planetary albedo owing to the oxidation of thin surfactant organic films extracted from atmospheric aerosol by hydroxyl (OH) radicals at the air–water interface of particles
Gas-particle partitioning of m-xylene and naphthalene oxidation products: temperature and NOx influence
Surprisingly Robust Photochemistry in Subarctic Particles During Winter: Evidence from Photooxidants
Exometabolomic exploration of culturable airborne microorganisms from an urban atmosphere
Ozonolysis of primary biomass burning organic aerosol particles: Insights into reactivity and phase state
Measurement Report: Changes in ammonia emissions since the 18th century in south-eastern Europe inferred from an Elbrus (Caucasus, Russia) ice-core record
Atmospheric oxidation of 1,3-butadiene: influence of seed aerosol acidity and relative humidity on SOA composition and the production of air toxic compounds
Formation and composition of organic aerosols from the uptake of glyoxal on natural mineral dust aerosols: a laboratory study
Enhanced sulfate formation in mixed biomass burning and sea-salt interactions mediated by photosensitization: effects of chloride, nitrogen-containing compounds, and atmospheric aging
Photochemical aging of aviation emissions: transformation of chemical and physical properties of exhaust emissions from a laboratory-scale jet engine combustion chamber
Heterogeneous formation and light absorption of secondary organic aerosols from acetone photochemical reactions: remarkably enhancing effects of seeds and ammonia
Experimental observation of the impact of nanostructure on hygroscopicity and reactivity of fatty acid atmospheric aerosol proxies
Technical note: High-resolution analyses of concentrations and sizes of refractory black carbon particles deposited in northwestern Greenland over the past 350 years – Part 1: Continuous flow analysis of the SIGMA-D ice core using the wide-range Single-Particle Soot Photometer and a high-efficiency nebulizer
HOMs and SOA formation from the oxidation of α- and β-phellandrenes by NO3 radicals
Particulate emissions from cooking: emission factors, emission dynamics, and mass spectrometric analysis for different cooking methods
Copper accelerates photochemically induced radical chemistry of iron-containing SOA
Nocturnal atmospheric synergistic oxidation reduces the formation of low-volatility organic compounds from biogenic emissions
The interplay between aqueous replacement reaction and the phase state of internally mixed organic/ammonium aerosols
Measurement report: The Fifth International Workshop on Ice Nucleation phase 1 (FIN-01): intercomparison of single-particle mass spectrometers
Characterization of the particle size distribution, mineralogy, and Fe mode of occurrence of dust-emitting sediments from the Mojave Desert, California, USA
Measurement report: Effects of transition metal ions on the optical properties of humic-like substances (HULIS) reveal a structural preference – a case study of PM2.5 in Beijing, China
Probing Iceland's dust-emitting sediments: particle size distribution, mineralogy, cohesion, Fe mode of occurrence, and reflectance spectra signatures
Photoenhanced sulfate formation by the heterogeneous uptake of SO2 on non-photoactive mineral dust
Comparison of water-soluble and water-insoluble organic compositions attributing to different light absorption efficiency between residential coal and biomass burning emissions
Suppressed atmospheric chemical aging of cooking organic aerosol particles in wintertime conditions
Formation and loss of light absorbance by phenolic aqueous SOA by ●OH and an organic triplet excited state
Technical Note: A technique to convert NO2 to NO2− with S(IV) and its application to measuring nitrate photolysis
Distribution, chemical, and molecular composition of high and low molecular weight humic-like substances in ambient aerosols
Desorption lifetimes and activation energies influencing gas–surface interactions and multiphase chemical kinetics
Molecular analysis of secondary organic aerosol and brown carbon from the oxidation of indole
Secondary organic aerosol formed by Euro 5 gasoline vehicle emissions: chemical composition and gas-to-particle phase partitioning
Assessment of the contribution of residential waste burning to ambient PM10 concentrations in Hungary and Romania
Source differences in the components and cytotoxicity of PM2.5 from automobile exhaust, coal combustion, and biomass burning contributing to urban aerosol toxicity
Chamber studies of OH + dimethyl sulfoxide and dimethyl disulfide: insights into the dimethyl sulfide oxidation mechanism
Low-temperature ice nucleation of sea spray and secondary marine aerosols under cirrus cloud conditions
Temperature-dependent aqueous OH kinetics of C2–C10 linear and terpenoid alcohols and diols: new rate coefficients, structure–activity relationship, and atmospheric lifetimes
A possible unaccounted source of nitrogen-containing compound formation in aerosols: amines reacting with secondary ozonides
Seasonal variations in photooxidant formation and light absorption in aqueous extracts of ambient particles
Kathleen A. Alden, Paul Bieber, Anna J. Miller, Nicole Link, Benjamin J. Murray, and Nadine Borduas-Dedekind
Atmos. Chem. Phys., 25, 6179–6195, https://doi.org/10.5194/acp-25-6179-2025, https://doi.org/10.5194/acp-25-6179-2025, 2025
Short summary
Short summary
Lignin and Snomax are surface-active macromolecules that show a relationship between increasing concentrations, decreasing surface tension, and increasing ice-nucleating ability. However, this relationship did not hold for agricultural soil extracts collected in the UK and Canada. To explain this difference, we propose that as the complexity of the sample increases, the hydrophobic interfaces in the bulk compete with the air–water interface.
Yuchen Wang, Xiang Zhang, Yuanlong Huang, Yutong Liang, and Nga L. Ng
Atmos. Chem. Phys., 25, 5215–5231, https://doi.org/10.5194/acp-25-5215-2025, https://doi.org/10.5194/acp-25-5215-2025, 2025
Short summary
Short summary
This work provides the first fundamental laboratory data to evaluate SOA (secondary organic aerosol) production from styrene and NO3 chemistry. Additionally, the formation mechanisms of aromatic organic nitrates (ONs) are reported, highlighting that previously identified nitroaromatics in ambient field campaigns can be aromatic ONs. Finally, the hydrolysis lifetimes observed for ONs generated from styrene and NO3 oxidation can serve as experimentally constrained parameters for modeling hydrolysis of aromatic ONs in general.
Michael Oluwatoyin Sunday, Laura Marie Dahler Heinlein, Junwei He, Allison Moon, Sukriti Kapur, Ting Fang, Kasey C. Edwards, Fangzhou Guo, Jack Dibb, James H. Flynn III, Becky Alexander, Manabu Shiraiwa, and Cort Anastasio
Atmos. Chem. Phys., 25, 5087–5100, https://doi.org/10.5194/acp-25-5087-2025, https://doi.org/10.5194/acp-25-5087-2025, 2025
Short summary
Short summary
Hydrogen peroxide (HOOH) is an important oxidant that forms atmospheric sulfate. We demonstrate that the illumination of brown carbon can rapidly form HOOH within particles, even under the low-sunlight conditions of Fairbanks, Alaska, during winter. This in-particle formation of HOOH is fast enough that it forms sulfate at significant rates. In contrast, the formation of HOOH in the gas phase during the campaign is expected to be negligible because of high NOx levels.
Zheng Yang, Qiaoqiao Wang, Qiyuan Wang, Nan Ma, Jie Tian, Yaqing Zhou, Ge Xu, Miao Gao, Xiaoxian Zhou, Yang Zhang, Weikang Ran, Ning Yang, Jiangchuan Tao, Juan Hong, Yunfei Wu, Junji Cao, Hang Su, and Yafang Cheng
EGUsphere, https://doi.org/10.5194/egusphere-2025-1020, https://doi.org/10.5194/egusphere-2025-1020, 2025
Short summary
Short summary
Our results demonstrate that the reduction in mass absorption efficiency from biomass burning is mainly driven by the decline in the imaginary part, with particle size playing a minor role. And light absorption of oxygenated BrC increases significantly with aging, but hydrocarbon-like BrC decrease over time. These results emphasize the necessity to classify BrC into different groups based on their mass absorption efficiency and atmospheric behavior in climate models.
Rhianna L. Evans, Daniel J. Bryant, Aristeidis Voliotis, Dawei Hu, Huihui Wu, Sara Aisyah Syafira, Osayomwanbor E. Oghama, Gordon McFiggans, Jacqueline F. Hamilton, and Andrew R. Rickard
Atmos. Chem. Phys., 25, 4367–4389, https://doi.org/10.5194/acp-25-4367-2025, https://doi.org/10.5194/acp-25-4367-2025, 2025
Short summary
Short summary
The chemical composition of organic aerosol derived from wood-burning emissions under different burning conditions was characterised. Fresh emissions from flaming and smouldering were largely aromatic in nature, whereas upon aging the aromatic content decreased. This decrease was greater for smouldering due to the loss of toxic polyaromatic species, whereas under flaming conditions highly toxic polyaromatic species were produced. These differences present an important challenge for future policy.
Yueyao Yang, Yahui Liu, Guohua Zhu, Bingcheng Lin, Shanshan Zhang, Xin Li, Fangxi Xu, He Niu, Rong Jin, and Minghui Zheng
Atmos. Chem. Phys., 25, 3981–3994, https://doi.org/10.5194/acp-25-3981-2025, https://doi.org/10.5194/acp-25-3981-2025, 2025
Short summary
Short summary
Halogenated polycyclic aromatic hydrocarbons (XPAHs) are emerging pollutants. Stability during atmospheric transformation processes is crucial for predicting their environmental fate and assessing the associated risks. Here, we conducted field studies and laboratory simulation experiments to reveal the mechanisms, influencing factors and products for XPAHs' heterogeneous phototransformation. Results revealed that the conversion of XPAHs led to a reduction in environmental risk.
Marcel Müller, Marcel Reichmuth, and Ulrich Karl Krieger
EGUsphere, https://doi.org/10.5194/egusphere-2025-1238, https://doi.org/10.5194/egusphere-2025-1238, 2025
Short summary
Short summary
The initiation of autoxidation by ozonolysis was investigated on levitated linoleic acid droplets using electrodynamic balance–mass spectrometry. Exposing the droplets to ozone for one hour before switching the gas phase to air without ozone led to a shortening of the autoxidation initiation phase in comparison to experiments without ozone exposure. Results were compared to a bulk reaction model to investigate the synergistic effects of ozonolysis and autoxidation.
Monika Łożyńska, Marzena Trojanowska, Artur Molik, and Ryszard Świetlik
EGUsphere, https://doi.org/10.5194/egusphere-2025-541, https://doi.org/10.5194/egusphere-2025-541, 2025
Short summary
Short summary
The assessment of chromium occurrence in particulate matter in cities: PM10, PM2.5, PM1 and PM0.25 during the calendar year was presented. The seasonality of both pseudototal chromium content and its valence speciation was examined. Seasonality of changes in Crtot and Cr(VI) concentrations was observed. Maximum in the winter season, most likely due to the greater share of fuel combustion sources. Regardless of the season, the risk levels for Radom residents were within the acceptable risk range.
Harmanjot Kaur, Stephan Thürmer, Shirin Gholami, Bruno Credidio, Florian Trinter, Debora Vasconcelos, Ricardo Marinho, Joel Pinheiro, Hendrik Bluhm, Arnaldo Naves de Brito, Gunnar Öhrwall, Bernd Winter, and Olle Björneholm
Atmos. Chem. Phys., 25, 3503–3518, https://doi.org/10.5194/acp-25-3503-2025, https://doi.org/10.5194/acp-25-3503-2025, 2025
Short summary
Short summary
Understanding the surface composition of aerosols is crucial for advancing climate models. We investigated the interface of single-component and mixed aqueous solutions of atmospherically relevant carboxylic acid and alkyl-ammonium ions using liquid-jet photoelectron spectroscopy. An exponential increase in surface propensity as a function of chain length was found for the single species, and cooperative effects in the mixtures cause a further drastic increase in surface solute concentration.
Qun Zhang, Wei Zhou, Shanshan Tang, Kai Huang, Jie Fu, Zechen Yu, Yunhe Teng, Shuyi Shen, Yang Mei, Xuezhi Yang, Jianjie Fu, and Guibin Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1028, https://doi.org/10.5194/egusphere-2025-1028, 2025
Short summary
Short summary
This article comprehensively investigates the aqueous-phase OH oxidation of benzothiazoles (BTs), common rubber additives found in urban air, through laboratory simulation experiments. BTs can rapidly degrade, leading to light absorption, high yields of sulfate, and the formation of highly oxidized and/or oligomerized organic compounds. The results reveal that aqueous-phase BTs can contribute to secondary aerosols, altering the chemical and optical properties of atmospheric particles.
Tao Cao, Cuncun Xu, Hao Chen, Jianzhong Song, Jun Li, Haiyan Song, Bin Jiang, Yin Zhong, and Ping’an Peng
EGUsphere, https://doi.org/10.5194/egusphere-2025-561, https://doi.org/10.5194/egusphere-2025-561, 2025
Short summary
Short summary
This study investigated the evolution of biomass and coal combustion-derived WSOM during aqueous photochemical process. The results indicate that photochemical aging induces distinct changes in the optical and molecular properties of WSOM and more pronounced alterations were observed during ·OH photooxidation than direct photolysis. Notably, our results also demostrated that atmospheric photooxidation may represent a significant source of BC-like substances.
Yuting Lyu, Taekyu Joo, Ruihan Ma, Mark Kristan Espejo Cabello, Tianye Zhou, Shun Yeung, Cheuk Ki Wong, Yifang Gu, Yiming Qin, and Theodora Nah
EGUsphere, https://doi.org/10.5194/egusphere-2025-570, https://doi.org/10.5194/egusphere-2025-570, 2025
Short summary
Short summary
We investigated the aqueous nitrate-mediated photooxidation of four green leaf volatiles (GLVs). The aqueous reaction medium conditions, dilute cloud/fog vs. concentrated aqueous aerosol conditions, governed the effects that pH, ionic strength, and sulfate have on the GLV degradation rates and aqSOA mass yields. Most notably, reactions initiated by sulfate photolysis have significant effects in aqueous aerosols, but not in cloud/fog droplets.
Rosalie H. Shepherd, Martin D. King, Andrew D. Ward, Edward J. Stuckey, Rebecca J. L. Welbourn, Neil Brough, Adam Milsom, Christian Pfrang, and Thomas Arnold
Atmos. Chem. Phys., 25, 2569–2588, https://doi.org/10.5194/acp-25-2569-2025, https://doi.org/10.5194/acp-25-2569-2025, 2025
Short summary
Short summary
Thin film formation at the air–water interface from material extracted from atmospheric aerosol was demonstrated, supporting the core–shell morphology. Film thicknesses were approximately 10 Å and 17 Å for urban and remote extracts, respectively. Exposure to gas-phase OH radicals showed fast reactions and short lifetimes of around 1 h. The effect on the Earth's radiative balance indicated that removing half of the film could significantly increase the top-of-atmosphere albedo for urban films.
Marwa Shahin, Julien Kammer, Brice Temime-Roussel, and Barbara D'Anna
EGUsphere, https://doi.org/10.5194/egusphere-2025-833, https://doi.org/10.5194/egusphere-2025-833, 2025
Short summary
Short summary
Air pollution and climate change are influenced by tiny airborne particles called aerosols. This study explores how pollutants from urban sources, as m-xylene and naphthalene, form new particles in the atmosphere under different conditions. Using advanced techniques, we show how temperature and nitrogen oxides affect the formation and behaviour of these particles. Our findings will improve our understanding on secondary organic particle and air quality models.
Laura Marie Dahler Heinlein, Junwei He, Michael Oluwatoyin Sunday, Fangzhou Guo, James Campbell, Allison Moon, Sukriti Kapur, Ting Fang, Kasey Edwards, Meeta Cesler-Maloney, Alyssa J. Burns, Jack Dibb, William Simpson, Manabu Shiraiwa, Becky Alexander, Jingqiu Mao, James H. Flynn III, Jochen Stutz, and Cort Anastasio
EGUsphere, https://doi.org/10.5194/egusphere-2025-824, https://doi.org/10.5194/egusphere-2025-824, 2025
Short summary
Short summary
High-latitude cities like Fairbanks, Alaska, experience severe wintertime pollution episodes. While conventional wisdom holds that oxidation is slow under these conditions, field measurements find oxidized products in particles. To explore this, we measured oxidants in aqueous extracts of winter particles from Fairbanks. We find high concentrations of oxidants during illumination, indicating that particle photochemistry can be significant even in high latitudes during winter.
Rui Jin, Wei Hu, Peimin Duan, Ming Sheng, Dandan Liu, Ziye Huang, Mutong Niu, Libin Wu, Junjun Deng, and Pingqing Fu
Atmos. Chem. Phys., 25, 1805–1829, https://doi.org/10.5194/acp-25-1805-2025, https://doi.org/10.5194/acp-25-1805-2025, 2025
Short summary
Short summary
The metabolic capacity of atmospheric microorganisms after settling into habitats is poorly understood. We studied the molecular composition of exometabolites for cultured typical airborne microbes and traced their metabolic processes. Bacteria and fungi produce highly oxidized exometabolites and have significant variations in metabolism among different strains. These insights are pivotal for assessing the biogeochemical impacts of atmospheric microorganisms following their deposition.
Sophie Bogler, Jun Zhang, Rico K. Y. Cheung, Kun Li, Andre S. H. Prevot, Imad El Haddad, and David M. Bell
EGUsphere, https://doi.org/10.5194/egusphere-2025-385, https://doi.org/10.5194/egusphere-2025-385, 2025
Short summary
Short summary
Authentic aerosols emitted from residential wood stoves and open burning processes are only slightly oxidized by ozone in the atmosphere. Under dry conditions the reaction does not proceed to completion, while under high humidity conditions the reactivity proceeds further. These results indicate the reactivity with ozone is likely impacted by aerosol phase state (e.g. aerosol viscosity).
Michel Legrand, Mstislav Vorobyev, Daria Bokuchava, Stanislav Kutuzov, Andreas Plach, Andreas Stohl, Alexandra Khairedinova, Vladimir Mikhalenko, Maria Vinogradova, Sabine Eckhardt, and Susanne Preunkert
Atmos. Chem. Phys., 25, 1385–1399, https://doi.org/10.5194/acp-25-1385-2025, https://doi.org/10.5194/acp-25-1385-2025, 2025
Short summary
Short summary
Past atmospheric NH3 pollution in south-eastern Europe was reconstructed by analysing ammonium in an ice core drilled at the Mount Elbrus (Caucasus, Russia). The observed 3.5-fold increase in ice concentrations between 1750 and 1990 CE is in good agreement with estimated past dominant ammonia emissions from agriculture, mainly from south European Russia and Türkiye. In contrast to present-day conditions, the ammonium level observed in 1750 CE indicates significant natural emissions at that time.
Mohammed Jaoui, Klara Nestorowicz, Krzysztof J. Rudzinski, Michael Lewandowski, Tadeusz E. Kleindienst, Julio Torres, Ewa Bulska, Witold Danikiewicz, and Rafal Szmigielski
Atmos. Chem. Phys., 25, 1401–1432, https://doi.org/10.5194/acp-25-1401-2025, https://doi.org/10.5194/acp-25-1401-2025, 2025
Short summary
Short summary
Recent research has established the contribution of 1,3-butadiene (13BD) to organic aerosol formation with negative implications for urban air quality. Health effect studies have focused on whole particulate matter, but compounds responsible for adverse health effects remain uncertain. This study provides the effect of relative humidity and seed aerosol acidity on the chemical composition of aerosol formed from 13BD photooxidation.
Francesco Battaglia, Paola Formenti, Chiara Giorio, Mathieu Cazaunau, Edouard Pangui, Antonin Bergé, Aline Gratien, Thomas Bertin, Joël F. de Brito, Manolis N. Romanias, Vincent Michoud, Clarissa Baldo, Servanne Chevaillier, Gaël Noyalet, Philippe Decorse, Bénédicte Picquet-Varrault, and Jean-François Doussin
EGUsphere, https://doi.org/10.5194/egusphere-2024-4073, https://doi.org/10.5194/egusphere-2024-4073, 2025
Short summary
Short summary
This paper presents an experimental investigation of the interactions between glyoxal, an important volatile organic compound, and mineral dust particles of size and composition typical of natural conditions. We show that their interactions modifies in a definitive way the concentrations of the gas phase and the properties of the dust, which could have important implications of the atmospheric composition and the Earth's climate.
Rongzhi Tang, Jialiang Ma, Ruifeng Zhang, Weizhen Cui, Yuanyuan Qin, Yangxi Chu, Yiming Qin, Alexander L. Vogel, and Chak K. Chan
Atmos. Chem. Phys., 25, 425–439, https://doi.org/10.5194/acp-25-425-2025, https://doi.org/10.5194/acp-25-425-2025, 2025
Short summary
Short summary
This study provides laboratory evidence that the photosensitizers in biomass burning extracts can enhance sulfate formation in NaCl particles, primarily by triggering the formation of secondary oxidants under light and air conditions, with a lower contribution of direct photosensitization via triplets.
Anni Hartikainen, Mika Ihalainen, Deeksha Shukla, Marius Rohkamp, Arya Mukherjee, Quanfu He, Sandra Piel, Aki Virkkula, Delun Li, Tuukka Kokkola, Seongho Jeong, Hanna Koponen, Uwe Etzien, Anusmita Das, Krista Luoma, Lukas Schwalb, Thomas Gröger, Alexandre Barth, Martin Sklorz, Thorsten Streibel, Hendryk Czech, Benedikt Gündling, Markus Kalberer, Bert Buchholz, Andreas Hupfer, Thomas Adam, Thorsten Hohaus, Johan Øvrevik, Ralf Zimmermann, and Olli Sippula
EGUsphere, https://doi.org/10.5194/egusphere-2024-3836, https://doi.org/10.5194/egusphere-2024-3836, 2025
Short summary
Short summary
Photochemical reactions altered the properties of kerosene-operated jet engine burner exhaust emissions, which were studied in laboratory using an oxidation flow reactor. Particle mass increased 300-fold as particles and gases became more oxidized. Light absorption increased, but the total direct radiative forcing efficiency was estimated to shift from positive to negative. The results highlight the importance of considering secondary aerosol formation when assessing the impacts of aviation.
Si Zhang, Yining Gao, Xinbei Xu, Luyao Chen, Can Wu, Zheng Li, Rongjie Li, Binyu Xiao, Xiaodi Liu, Rui Li, Fan Zhang, and Gehui Wang
Atmos. Chem. Phys., 24, 14177–14190, https://doi.org/10.5194/acp-24-14177-2024, https://doi.org/10.5194/acp-24-14177-2024, 2024
Short summary
Short summary
Secondary organic aerosols (SOAs) from acetone photooxidation in the presence of various seeds were studied to illustrate SOA formation kinetics under ammonia-rich conditions. The oxidation mechanism of acetone was investigated using an observation-based model incorporating a Master Chemical Mechanism model. A higher SOA yield of acetone was observed compared to methylglyoxal due to an enhanced uptake of the small photooxidation products of acetone.
Adam Milsom, Adam M. Squires, Ben Laurence, Ben Wōden, Andrew J. Smith, Andrew D. Ward, and Christian Pfrang
Atmos. Chem. Phys., 24, 13571–13586, https://doi.org/10.5194/acp-24-13571-2024, https://doi.org/10.5194/acp-24-13571-2024, 2024
Short summary
Short summary
We followed nano-structural changes in mixtures found in urban organic aerosol emissions (oleic acid, sodium oleate and fructose) during humidity change and ozone exposure. We demonstrate that self-assembly of fatty acid nanostructures can impact water uptake and chemical reactivity, affecting atmospheric lifetimes, urban air quality (preventing harmful emissions from degradation and enabling their long-range transport) and climate (affecting cloud formation), with implications for human health.
Kumiko Goto-Azuma, Remi Dallmayr, Yoshimi Ogawa-Tsukagawa, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Motohiro Hirabayashi, Jun Ogata, Kyotaro Kitamura, Kenji Kawamura, Koji Fujita, Sumito Matoba, Naoko Nagatsuka, Akane Tsushima, Kaori Fukuda, and Teruo Aoki
Atmos. Chem. Phys., 24, 12985–13000, https://doi.org/10.5194/acp-24-12985-2024, https://doi.org/10.5194/acp-24-12985-2024, 2024
Short summary
Short summary
We developed a continuous flow analysis system to analyze an ice core from northwestern Greenland and coupled it with an improved refractory black carbon (rBC) measurement technique. This allowed accurate high-resolution analyses of size distributions and concentrations of rBC particles with diameters of 70 nm–4 μm for the past 350 years. Our results provide crucial insights into rBC's climatic effects. We also found previous ice core studies substantially underestimated rBC mass concentrations.
Sergio Harb, Manuela Cirtog, Stéphanie Alage, Christopher Cantrell, Mathieu Cazaunau, Vincent Michoud, Edouard Pangui, Antonin Bergé, Chiara Giorio, Francesco Battaglia, and Bénédicte Picquet-Varrault
EGUsphere, https://doi.org/10.5194/egusphere-2024-3419, https://doi.org/10.5194/egusphere-2024-3419, 2024
Short summary
Short summary
We investigated the reactions of α- and β-phellandrenes (from vegetation emissions) with NO3 radicals, a major nighttime oxidant from human activities. Using lab-based simulations, we examined these reactions and measured particle formation and by-products. Our findings reveal that α- and β-phellandrenes are efficient particle sources and enhance our understanding of biogenic-anthropogenic interactions and their contributions to atmospheric changes affecting climate and health.
Julia Pikmann, Frank Drewnick, Friederike Fachinger, and Stephan Borrmann
Atmos. Chem. Phys., 24, 12295–12321, https://doi.org/10.5194/acp-24-12295-2024, https://doi.org/10.5194/acp-24-12295-2024, 2024
Short summary
Short summary
Cooking activities can contribute substantially to indoor and ambient aerosol. We performed a comprehensive study with laboratory measurements cooking 19 different dishes and ambient measurements at two Christmas markets measuring various particle properties and trace gases of emissions in real time. Similar emission characteristics were observed for dishes with the same preparation method, mainly due to similar cooking temperature and use of oil, with barbecuing as an especially strong source.
Kevin Kilchhofer, Markus Ammann, Laura Torrent, Ka Yuen Cheung, and Peter Aaron Alpert
EGUsphere, https://doi.org/10.5194/egusphere-2024-3226, https://doi.org/10.5194/egusphere-2024-3226, 2024
Short summary
Short summary
Aerosol particles composed of metal complexes generate radicals as the result of photochemical reactions. Reactive species generated are hazardous to human health. We report microscopy data with particles composed of an organic proxy exposed to UV light. We found that copper influenced the reoxidation and initial iron reduction via photolysis of the complex. New model results suggest that we need to account a decreased photochemical activity and use a copper-induced reoxidation reaction.
Han Zang, Zekun Luo, Chenxi Li, Ziyue Li, Dandan Huang, and Yue Zhao
Atmos. Chem. Phys., 24, 11701–11716, https://doi.org/10.5194/acp-24-11701-2024, https://doi.org/10.5194/acp-24-11701-2024, 2024
Short summary
Short summary
Atmospheric organics are subject to synergistic oxidation by different oxidants, yet the mechanisms of such processes are poorly understood. Here, using direct measurements and kinetic modeling, we probe the nocturnal synergistic-oxidation mechanism of α-pinene by O3 and NO3 radicals and in particular the fate of peroxy radical intermediates of different origins, which will deepen our understanding of the monoterpene oxidation chemistry and its contribution to atmospheric particle formation.
Hui Yang, Fengfeng Dong, Li Xia, Qishen Huang, Shufeng Pang, and Yunhong Zhang
Atmos. Chem. Phys., 24, 11619–11635, https://doi.org/10.5194/acp-24-11619-2024, https://doi.org/10.5194/acp-24-11619-2024, 2024
Short summary
Short summary
Atmospheric secondary aerosols, composed of organic and inorganic components, undergo complex reactions that impact their phase state. Using molecular spectroscopy, we showed that ammonium-promoted aqueous replacement reaction, unique to these aerosols, is closely linked to phase behavior. The interplay between reactions and aerosol phase state can cause atypical phase transition and irreversible changes in aerosol composition during hygroscopic cycles, further impacting atmospheric processes.
Xiaoli Shen, David M. Bell, Hugh Coe, Naruki Hiranuma, Fabian Mahrt, Nicholas A. Marsden, Claudia Mohr, Daniel M. Murphy, Harald Saathoff, Johannes Schneider, Jacqueline Wilson, Maria A. Zawadowicz, Alla Zelenyuk, Paul J. DeMott, Ottmar Möhler, and Daniel J. Cziczo
Atmos. Chem. Phys., 24, 10869–10891, https://doi.org/10.5194/acp-24-10869-2024, https://doi.org/10.5194/acp-24-10869-2024, 2024
Short summary
Short summary
Single-particle mass spectrometry (SPMS) is commonly used to measure the chemical composition and mixing state of aerosol particles. Intercomparison of SPMS instruments was conducted. All instruments reported similar size ranges and common spectral features. The instrument-specific detection efficiency was found to be more dependent on particle size than type. All differentiated secondary organic aerosol, soot, and soil dust but had difficulties differentiating among minerals and dusts.
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Patricia Córdoba, Andres Alastuey, Natalia Moreno, Melani Hernández-Chiriboga, Konrad Kandler, Martina Klose, Roger N. Clark, Bethany L. Ehlmann, Rebecca N. Greenberger, Abigail M. Keebler, Phil Brodrick, Robert Green, Paul Ginoux, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 9155–9176, https://doi.org/10.5194/acp-24-9155-2024, https://doi.org/10.5194/acp-24-9155-2024, 2024
Short summary
Short summary
In this research, we studied the dust-emitting properties of crusts and aeolian ripples from the Mojave Desert. These properties are key to understanding the effect of dust upon climate. We found two different playa lakes according to the groundwater regime, which implies differences in crusts' cohesion state and mineralogy, which can affect the dust emission potential and properties. We also compare them with Moroccan Sahara crusts and Icelandic top sediments.
Juanjuan Qin, Leiming Zhang, Yuanyuan Qin, Shaoxuan Shi, Jingnan Li, Zhao Shu, Yuwei Gao, Ting Qi, Jihua Tan, and Xinming Wang
Atmos. Chem. Phys., 24, 7575–7589, https://doi.org/10.5194/acp-24-7575-2024, https://doi.org/10.5194/acp-24-7575-2024, 2024
Short summary
Short summary
The present research unveiled that acidity dominates while transition metal ions harmonize with the light absorption properties of humic-like substances (HULIS). Cu2+ has quenching effects on HULIS by complexation, hydrogen substitution, or electrostatic adsorption, with aromatic structures of HULIS. Such effects are less pronounced if from Mn2+, Ni2+, Zn2+, and Cu2+. Oxidized HULIS might contain electron-donating groups, whereas N-containing compounds might contain electron-withdrawing groups.
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Patricia Córdoba, Andres Alastuey, Natalia Moreno, Konrad Kandler, Martina Klose, Roger N. Clark, Bethany L. Ehlmann, Rebecca N. Greenberger, Abigail M. Keebler, Phil Brodrick, Robert O. Green, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 6883–6910, https://doi.org/10.5194/acp-24-6883-2024, https://doi.org/10.5194/acp-24-6883-2024, 2024
Short summary
Short summary
The knowledge of properties from dust emitted in high latitudes such as in Iceland is scarce. This study focuses on the particle size, mineralogy, cohesion, and iron mode of occurrence and reflectance spectra of dust-emitting sediments. Icelandic top sediments have lower cohesion state, coarser particle size, distinctive mineralogy, and 3-fold bulk Fe content, with a large presence of magnetite compared to Saharan crusts.
Wangjin Yang, Jiawei Ma, Hongxing Yang, Fu Li, and Chong Han
Atmos. Chem. Phys., 24, 6757–6768, https://doi.org/10.5194/acp-24-6757-2024, https://doi.org/10.5194/acp-24-6757-2024, 2024
Short summary
Short summary
We provide evidence that light enhances the conversion of SO2 to sulfates on non-photoactive mineral dust, where triplet states of SO2 (3SO2) can act as a pivotal trigger to generate sulfates. Photochemical sulfate formation depends on H2O, O2, and basicity of mineral dust. The SO2 photochemistry on non-photoactive mineral dust contributes to sulfates, highlighting previously unknown pathways to better explain the missing sources of atmospheric sulfates.
Lu Zhang, Jin Li, Yaojie Li, Xinlei Liu, Zhihan Luo, Guofeng Shen, and Shu Tao
Atmos. Chem. Phys., 24, 6323–6337, https://doi.org/10.5194/acp-24-6323-2024, https://doi.org/10.5194/acp-24-6323-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is related to radiative forcing and climate change. The BrC fraction from residential coal and biomass burning emissions, which were the major source of BrC, was characterized at the molecular level. The CHOS aromatic compounds explained higher light absorption efficiencies of biomass burning emissions compared to coal. The unique formulas of coal combustion aerosols were characterized by higher unsaturated compounds, and such information could be used for source appointment.
Wenli Liu, Longkun He, Yingjun Liu, Keren Liao, Qi Chen, and Mikinori Kuwata
Atmos. Chem. Phys., 24, 5625–5636, https://doi.org/10.5194/acp-24-5625-2024, https://doi.org/10.5194/acp-24-5625-2024, 2024
Short summary
Short summary
Cooking is a major source of particles in urban areas. Previous studies demonstrated that the chemical lifetimes of cooking organic aerosols (COAs) were much shorter (~minutes) than the values reported by field observations (~hours). We conducted laboratory experiments to resolve the discrepancy by considering suppressed reactivity under low temperature. The parameterized k2–T relationships and observed surface temperature data were used to estimate the chemical lifetimes of COA particles.
Stephanie Arciva, Lan Ma, Camille Mavis, Chrystal Guzman, and Cort Anastasio
Atmos. Chem. Phys., 24, 4473–4485, https://doi.org/10.5194/acp-24-4473-2024, https://doi.org/10.5194/acp-24-4473-2024, 2024
Short summary
Short summary
We measured changes in light absorption during the aqueous oxidation of six phenols with hydroxyl radical (●OH) or an organic triplet excited state (3C*). All the phenols formed light-absorbing secondary brown carbon (BrC), which then decayed with continued oxidation. Extrapolation to ambient conditions suggest ●OH is the dominant sink of secondary phenolic BrC in fog/cloud drops, while 3C* controls the lifetime of this light absorption in particle water.
Aaron Lieberman, Julietta Picco, Murat Onder, and Cort Anastasio
Atmos. Chem. Phys., 24, 4411–4419, https://doi.org/10.5194/acp-24-4411-2024, https://doi.org/10.5194/acp-24-4411-2024, 2024
Short summary
Short summary
We developed a method that uses aqueous S(IV) to quantitatively convert NO2 to NO2−, which allows both species to be quantified using the Griess method. As an example of the utility of the method, we quantified both photolysis channels of nitrate, with and without a scavenger for hydroxyl radical (·OH). The results show that without a scavenger, ·OH reacts with nitrite to form nitrogen dioxide, suppressing the apparent quantum yield of NO2− and enhancing that of NO2.
Xingjun Fan, Ao Cheng, Xufang Yu, Tao Cao, Dan Chen, Wenchao Ji, Yongbing Cai, Fande Meng, Jianzhong Song, and Ping'an Peng
Atmos. Chem. Phys., 24, 3769–3783, https://doi.org/10.5194/acp-24-3769-2024, https://doi.org/10.5194/acp-24-3769-2024, 2024
Short summary
Short summary
Molecular-level characteristics of high molecular weight (HMW) and low MW (LMW) humic-like substances (HULIS) were comprehensively investigated, where HMW HULIS had larger chromophores and larger molecular size than LMW HULIS and exhibited higher aromaticity and humification. Electrospray ionization high-resolution mass spectrometry revealed more aromatic molecules in HMW HULIS. HMW HULIS had more CHON compounds, while LMW HULIS had more CHO compounds.
Daniel A. Knopf, Markus Ammann, Thomas Berkemeier, Ulrich Pöschl, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 3445–3528, https://doi.org/10.5194/acp-24-3445-2024, https://doi.org/10.5194/acp-24-3445-2024, 2024
Short summary
Short summary
The initial step of interfacial and multiphase chemical processes involves adsorption and desorption of gas species. This study demonstrates the role of desorption energy governing the residence time of the gas species at the environmental interface. A parameterization is formulated that enables the prediction of desorption energy based on the molecular weight, polarizability, and oxygen-to-carbon ratio of the desorbing chemical species. Its application to gas–particle interactions is discussed.
Feng Jiang, Kyla Siemens, Claudia Linke, Yanxia Li, Yiwei Gong, Thomas Leisner, Alexander Laskin, and Harald Saathoff
Atmos. Chem. Phys., 24, 2639–2649, https://doi.org/10.5194/acp-24-2639-2024, https://doi.org/10.5194/acp-24-2639-2024, 2024
Short summary
Short summary
We investigated the optical properties, chemical composition, and formation mechanisms of secondary organic aerosol (SOA) and brown carbon (BrC) from the oxidation of indole with and without NO2 in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) simulation chamber. This work is one of the very few to link the optical properties and chemical composition of indole SOA with and without NO2 by simulation chamber experiments.
Evangelia Kostenidou, Baptiste Marques, Brice Temime-Roussel, Yao Liu, Boris Vansevenant, Karine Sartelet, and Barbara D'Anna
Atmos. Chem. Phys., 24, 2705–2729, https://doi.org/10.5194/acp-24-2705-2024, https://doi.org/10.5194/acp-24-2705-2024, 2024
Short summary
Short summary
Secondary organic aerosol (SOA) from gasoline vehicles can be a significant source of particulate matter in urban areas. Here the chemical composition of secondary volatile organic compounds and SOA produced by photo-oxidation of Euro 5 gasoline vehicle emissions was studied. The volatility of the SOA formed was calculated. Except for the temperature and the concentration of the aerosol, additional parameters may play a role in the gas-to-particle partitioning.
András Hoffer, Aida Meiramova, Ádám Tóth, Beatrix Jancsek-Turóczi, Gyula Kiss, Ágnes Rostási, Erika Andrea Levei, Luminita Marmureanu, Attila Machon, and András Gelencsér
Atmos. Chem. Phys., 24, 1659–1671, https://doi.org/10.5194/acp-24-1659-2024, https://doi.org/10.5194/acp-24-1659-2024, 2024
Short summary
Short summary
Specific tracer compounds identified previously in controlled test burnings of different waste types in the laboratory were detected and quantified in ambient PM10 samples collected in five Hungarian and four Romanian settlements. Back-of-the-envelope calculations based on the relative emission factors of individual tracers suggested that the contribution of solid waste burning particulate emissions to ambient PM10 mass concentrations may be as high as a few percent.
Xiao-San Luo, Weijie Huang, Guofeng Shen, Yuting Pang, Mingwei Tang, Weijun Li, Zhen Zhao, Hanhan Li, Yaqian Wei, Longjiao Xie, and Tariq Mehmood
Atmos. Chem. Phys., 24, 1345–1360, https://doi.org/10.5194/acp-24-1345-2024, https://doi.org/10.5194/acp-24-1345-2024, 2024
Short summary
Short summary
PM2.5 are air pollutants threatening health globally, but they are a mixture of chemical compositions from many sources and result in unequal toxicity. Which composition from which source of PM2.5 as the most hazardous object is a question hindering effective pollution control policy-making. With chemical and toxicity experiments, we found automobile exhaust and coal combustion to be priority emissions with higher toxic compositions for precise air pollution control, ensuring public health.
Matthew B. Goss and Jesse H. Kroll
Atmos. Chem. Phys., 24, 1299–1314, https://doi.org/10.5194/acp-24-1299-2024, https://doi.org/10.5194/acp-24-1299-2024, 2024
Short summary
Short summary
The chemistry driving dimethyl sulfide (DMS) oxidation and subsequent sulfate particle formation in the atmosphere is poorly constrained. We oxidized two related compounds (dimethyl sulfoxide and dimethyl disulfide) in the laboratory under varied NOx conditions and measured the gas- and particle-phase products. These results demonstrate that both the OH addition and OH abstraction pathways for DMS oxidation contribute to particle formation via mechanisms that do not involve the SO2 intermediate.
Ryan J. Patnaude, Kathryn A. Moore, Russell J. Perkins, Thomas C. J. Hill, Paul J. DeMott, and Sonia M. Kreidenweis
Atmos. Chem. Phys., 24, 911–928, https://doi.org/10.5194/acp-24-911-2024, https://doi.org/10.5194/acp-24-911-2024, 2024
Short summary
Short summary
In this study we examined the effect of atmospheric aging on sea spray aerosols (SSAs) to form ice and how newly formed secondary marine aerosols (SMAs) may freeze at cirrus temperatures (< −38 °C). Results show that SSAs freeze at different relative humidities (RHs) depending on the temperature and that the ice-nucleating ability of SSA was not hindered by atmospheric aging. SMAs are shown to freeze at high RHs and are likely inefficient at forming ice at cirrus temperatures.
Bartłomiej Witkowski, Priyanka Jain, Beata Wileńska, and Tomasz Gierczak
Atmos. Chem. Phys., 24, 663–688, https://doi.org/10.5194/acp-24-663-2024, https://doi.org/10.5194/acp-24-663-2024, 2024
Short summary
Short summary
This article reports the results of the kinetic measurements for the aqueous oxidation of the 29 aliphatic alcohols by hydroxyl radical (OH) at different temperatures. The data acquired and the literature data were used to optimize a model for predicting the aqueous OH reactivity of alcohols and carboxylic acids and to estimate the atmospheric lifetimes of five terpenoic alcohols. The kinetic data provided new insights into the mechanism of aqueous oxidation of aliphatic molecules by the OH.
Junting Qiu, Xinlin Shen, Jiangyao Chen, Guiying Li, and Taicheng An
Atmos. Chem. Phys., 24, 155–166, https://doi.org/10.5194/acp-24-155-2024, https://doi.org/10.5194/acp-24-155-2024, 2024
Short summary
Short summary
We studied reactions of secondary ozonides (SOZs) with amines. SOZs formed from ozonolysis of β-caryophyllene and α-humulene are found to be reactive to ethylamine and methylamine. Products from SOZs with various conformations reacting with the same amine had different functional groups. Our findings indicate that interaction of SOZs with amines in the atmosphere is very complicated, which is potentially a hitherto unrecognized source of N-containing compound formation.
Lan Ma, Reed Worland, Laura Heinlein, Chrystal Guzman, Wenqing Jiang, Christopher Niedek, Keith J. Bein, Qi Zhang, and Cort Anastasio
Atmos. Chem. Phys., 24, 1–21, https://doi.org/10.5194/acp-24-1-2024, https://doi.org/10.5194/acp-24-1-2024, 2024
Short summary
Short summary
We measured concentrations of three photooxidants – the hydroxyl radical, triplet excited states of organic carbon, and singlet molecular oxygen – in fine particles collected over a year. Concentrations are highest in extracts of fresh biomass burning particles, largely because they have the highest particle concentrations and highest light absorption. When normalized by light absorption, rates of formation for each oxidant are generally similar for the four particle types we observed.
Cited articles
Al-Abadleh, H. A., Krueger, B. J., Ross, J. L., and Grassian, V. H.: Phase transitions in calcium nitrate thin films, Chem. Commun., 2003, 2796–2797, https://doi.org/10.1039/B308632A, 2003.
Cao, J. J., Lee, S. C., Zhang, X. Y., Chow, J. C., An, Z. S., Ho, K. F., Watson, J. G., Fung, K., Wang, Y. Q., and Shen, Z. X.: Characterization of airborne carbonate over a site near Asian dust source regions during spring 2002 and its climatic and environmental significance, J. Geophys. Res., 110, D03203, https://doi.org/10.1029/2004jd005244, 2005.
Cheng, Y. F., Zheng, G. J., Wei, C., Mu, Q., Zheng, B., Wang, Z. B., Gao, M., Zhang, Q., He, K. B., Carmichael, G., Pöschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China, Science Advances, 2, e1601530, https://doi.org/10.1126/sciadv.1601530, 2016.
Chu, B., Zhang, X., Liu, Y., He, H., Sun, Y., Jiang, J., Li, J., and Hao, J.: Synergetic formation of secondary inorganic and organic aerosol: effect of SO2 and NH3 on particle formation and growth, Atmos. Chem. Phys., 16, 14219–14230, https://doi.org/10.5194/acp-16-14219-2016, 2016.
Clifton, C. L., Altstein, N., and Huie, R. E.: Rate-constant for the reaction of NO2 with sulfur(IV) over the pH range 5.3–13, Environ. Sci. Technol., 22, 586–589, https://doi.org/10.1021/es00170a018, 1988.
Cui, H. X., Cheng, T. T., Chen, J. M., Xu, Y. F., and Fang, W.: A Simulated Heterogeneous Reaction of SO2 on the Surface of Hematite at Different Temperatures, Acta Physico-Chimica Sinica, 24, 2331–2336, https://doi.org/10.3866/pku.whxb20081231, 2008.
Davidovits, P., Kolb, C. E., Williams, L. R., Jayne, J. T., and Worsnop, D. R.: Mass accommodation and chemical reactions at gas-liquid interfaces, Chem. Rev., 106, 1323–1354, https://doi.org/10.1021/cr040366k, 2006.
Ellison, T. K. and Eckert, C. A.: The oxidation of aqueous sulfur dioxide. 4. The influence of nitrogen dioxide at low pH, J. Phys. Chem., 88, 2335–2339, https://doi.org/10.1021/j150655a030, 1984.
Finlayson-Pitts, B. and Pitts Jr., J.: Chemistry of the upper and lower atmosphere: theory, experiments, and applications, Academic Press, San Diego, 969 pp., 1999.
Fu, X., Wang, S. X., Chang, X., Cai, S. Y., Xing, J., and Hao, J. M.: Modeling analysis of secondary inorganic aerosols over China: pollution characteristics, and meteorological and dust impacts, Scientific Reports, 6, 35992, https://doi.org/10.1038/srep35992, 2016.
Gao, M., Carmichael, G. R., Wang, Y., Ji, D., Liu, Z., and Wang, Z.: Improving simulations of sulfate aerosols during winter haze over Northern China: the impacts of heterogeneous oxidation by NO2, Front. Env. Sci. Eng., 10, 16, https://doi.org/10.1007/s11783-016-0878-2, 2016.
Good, R. J. and Koo, M. N.: Effect of drop size on contact-angle, J. Colloid Interf. Sci., 71, 283–292, 1979.
Goodman, A. L., Li, P., Usher, C. R., and Grassian, V. H.: Heterogeneous uptake of sulfur dioxide on aluminum and magnesium oxide particles, J. Phys. Chem. A, 105, 6109–6120, 2001.
Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao, M., Zeng, L., Molina, M. J., and Zhang, R.: Elucidating severe urban haze formation in China, P. Natl. Acad. Sci. USA, 111, 17373–17378, https://doi.org/10.1073/pnas.1419604111, 2014.
He, H., Wang, Y., Ma, Q., Ma, J., Chu, B., Ji, D., Tang, G., Liu, C., Zhang, H., and Hao, J.: Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days, Scientific Reports, 4, 4172, https://doi.org/10.1038/srep04172, 2014.
Huang, L., Zhao, Y., Li, H., and Chen, Z.: Kinetics of Heterogeneous Reaction of Sulfur Dioxide on Authentic Mineral Dust: Effects of Relative Humidity and Hydrogen Peroxide, Environ. Sci. Technol., 49, 10797–10805, https://doi.org/10.1021/acs.est.5b03930, 2015.
Huang, L. B., Zhao, Y., Li, H., and Chen, Z. M.: Hydrogen peroxide maintains the heterogeneous reaction of sulfur dioxide on mineral dust proxy particles, Atmos. Environ., 141, 552–559, https://doi.org/10.1016/j.atmosenv.2016.07.035, 2016.
Huang, X., Song, Y., Zhao, C., Li, M., Zhu, T., Zhang, Q., and Zhang, X.: Pathways of sulfate enhancement by natural and anthropogenic mineral aerosols in China, J. Geophys. Res.-Atmos., 119, 14165–114179, https://doi.org/10.1002/2014jd022301, 2014.
Hwang, H. J. and Ro, C. U.: Direct observation of nitrate and sulfate formations from mineral dust and sea-salts using low-Z particle electron probe X-ray microanalysis, Atmos. Environ., 40, 3869–3880, https://doi.org/10.1016/j.atmosenv.2006.02.022, 2006.
Kong, L. D., Zhao, X., Sun, Z. Y., Yang, Y. W., Fu, H. B., Zhang, S. C., Cheng, T. T., Yang, X., Wang, L., and Chen, J. M.: The effects of nitrate on the heterogeneous uptake of sulfur dioxide on hematite, Atmos. Chem. Phys., 14, 9451–9467, https://doi.org/10.5194/acp-14-9451-2014, 2014.
Krueger, B. J., Grassian, V. H., Cowin, J. P., and Laskin, A.: Heterogeneous chemistry of individual mineral dust particles from different dust source regions: the importance of particle mineralogy, Atmos. Environ., 38, 6253–6261, https://doi.org/10.1016/j.atmosenv.2004.07.010, 2004.
Laskin, A., Iedema, M. J., Ichkovich, A., Graber, E. R., Taraniuk, I., and Rudich, Y.: Direct observation of completely processed calcium carbonate dust particles, Faraday Discuss., 130, 453-468, https://doi.org/10.1039/b417366j, 2005.
Lee, Y.-N. and Schwartz, S. E.: Kinetics of oxidation of aqueous sulfur (IV) by nitrogen dioxide, in: Precipitation Scavenging, Dry Deposition and Resuspension, edited by: Pruppacher, H. R., Semonin, R. G., and Slinn, W. G. N., Elsevier, New York, 453–466, 1983.
Lelieveld, J., Gromov, S., Pozzer, A., and Taraborrelli, D.: Global tropospheric hydroxyl distribution, budget and reactivity, Atmos. Chem. Phys., 16, 12477–12493, https://doi.org/10.5194/acp-16-12477-2016, 2016.
Li, H. J., Zhu, T., Zhao, D. F., Zhang, Z. F., and Chen, Z. M.: Kinetics and mechanisms of heterogeneous reaction of NO2 on CaCO3 surfaces under dry and wet conditions, Atmos. Chem. Phys., 10, 463–474, https://doi.org/10.5194/acp-10-463-2010, 2010.
Li, J., Shang, J., and Zhu, T.: Heterogeneous reactions of SO2 on ZnO particle surfaces, Sci. China Chem., 54, 161–166, https://doi.org/10.1007/s11426-010-4167-9, 2011.
Li, L., Chen, Z. M., Ding, J., Zhu, T., and Zhang, Y. H.: A DRIFTS study of SO2 oxidation on the surface of CaCO3 particles, Spectrosc. Spect. Anal., 24, 1556–1559, 2004.
Li, L., Chen, Z. M., Zhang, Y. H., Zhu, T., Li, J. L., and Ding, J.: Kinetics and mechanism of heterogeneous oxidation of sulfur dioxide by ozone on surface of calcium carbonate, Atmos. Chem. Phys., 6, 2453–2464, https://doi.org/10.5194/acp-6-2453-2006, 2006.
Li, L., Chen, Z. M., Zhang, Y. H., Zhu, T., Li, S., Li, H. J., Zhu, L. H., and Xu, B. Y.: Heterogeneous oxidation of sulfur dioxide by ozone on the surface of sodium chloride and its mixtures with other components, J. Geophys. Res., 112, D18301, https://doi.org/10.1029/2006jd008207, 2007.
Li, W. J. and Shao, L. Y.: Observation of nitrate coatings on atmospheric mineral dust particles, Atmos. Chem. Phys., 9, 1863–1871, https://doi.org/10.5194/acp-9-1863-2009, 2009.
Lide, D. R.: CRC Handbook of Chemistry and Physics, 89th Edn., CRC Press/Taylor and Francis, Boca Raton, FL, 2009.
Littlejohn, D., Wang, Y. Z., and Chang, S. G.: Oxidation of aqueous sulfite ion by nitrogen-dioxide, Environ. Sci. Technol., 27, 2162–2167, https://doi.org/10.1021/es00047a024, 1993.
Liu, C., Ma, Q. X., Liu, Y. C., Ma, J. Z., and He, H.: Synergistic reaction between SO2 and NO2 on mineral oxides: a potential formation pathway of sulfate aerosol, Phys. Chem. Chem. Phys., 14, 1668–1676, https://doi.org/10.1039/c1cp22217a, 2012.
Liu, Y. J., Zhu, T., Zhao, D. F., and Zhang, Z. F.: Investigation of the hygroscopic properties of Ca(NO3)2 and internally mixed Ca(NO3)2/CaCO3 particles by micro-Raman spectrometry, Atmos. Chem. Phys., 8, 7205–7215, https://doi.org/10.5194/acp-8-7205-2008, 2008.
Ma, Q., He, H., Liu, Y., Liu, C., and Grassian, V. H.: Heterogeneous and multiphase formation pathways of gypsum in the atmosphere, Phys. Chem. Chem. Phys., 15, 19196–19204, https://doi.org/10.1039/c3cp53424c, 2013.
Ma, Q., Wang, T., Liu, C., He, H., Wang, Z., Wang, W., and Liang, Y.: SO2 Initiates the Efficient Conversion of NO2 to HONO on MgO Surface, Environ. Sci. Technol., 51, 3767–3775, https://doi.org/10.1021/acs.est.6b05724, 2017.
Ma, Q. X., Liu, Y. C., and He, H.: Synergistic effect between NO2 and SO2 in their adsorption and reaction on gamma-alumina, J. Phys. Chem. A, 112, 6630–6635, https://doi.org/10.1021/jp802025z, 2008.
Ma, Q. X., He, H., Liu, Y. C., Liu, C., and Grassian, V. H.: Heterogeneous and multiphase formation pathways of gypsum in the atmosphere, Phys. Chem. Chem. Phys., 15, 19196–19204, https://doi.org/10.1039/c3cp53424c, 2013.
Martin, L. R., Damschen, D. E., and Judeikis, H. S.: The reactions of nitrogen-oxides with SO2 in aqueous aerosols, Atmos. Environ., 15, 191–195, https://doi.org/10.1016/0004-6981(81)90010-x, 1981.
Meyer, B., Ospina, M., and Peter, L. B.: Raman spectrometric determination of oxysulfur anions in aqueous systems, Anal. Chim. Acta, 117, 301–311, https://doi.org/10.1016/0003-2670(80)87030-9, 1980.
Nakamoto, K.: Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley & Sons, New York, 1997.
Nash, T.: Effect of nitrogen-dioxide and of some transition-metals on the oxidation of dilute bisulfite solutions, Atmos. Environ., 13, 1149–1154, https://doi.org/10.1016/0004-6981(79)90038-6, 1979.
Okada, K., Qin, Y., and Kai, K.: Elemental composition and mixing properties of atmospheric mineral particles collected in Hohhot, China, Atmos. Res., 73, 45–67, 2005.
Park, J. Y. and Jang, M.: Heterogeneous photooxidation of sulfur dioxide in the presence of airborne mineral dust particles, RSC Adv., 6, 58617–58627, https://doi.org/10.1039/c6ra09601h, 2016.
Passananti, M., Kong, L. D., Shang, J., Dupart, Y., Perrier, S., Chen, J. M., Donaldson, D. J., and George, C.: Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Fatty Acids and Long-Chain Alkenes, Angew. Chem. Int. Edit., 55, 10336–10339, https://doi.org/10.1002/anie.201605266, 2016.
Prince, A. P., Grassian, V. H., Kleiber, P., and Young, M. A.: Heterogeneous conversion of calcite aerosol by nitric acid, Phys. Chem. Chem. Phys., 9, 622–634, 2007a.
Prince, A. P., Kleiber, P., Grassian, V. H., and Young, M. A.: Heterogeneous interactions of calcite aerosol with sulfur dioxide and sulfur dioxide-nitric acid mixtures, Phys. Chem. Chem. Phys., 9, 3432–3439, 2007b.
Prinn, R. G., Huang, J., Weiss, R. F., Cunnold, D. M., Fraser, P. J., Simmonds, P. G., McCulloch, A., Harth, C., Reimann, S., Salameh, P., O'Doherty, S., Wang, R. H. J., Porter, L. W., Miller, B. R., and Krummel, P. B.: Evidence for variability of atmospheric hydroxyl radicals over the past quarter century, Geophys. Res. Lett., 32, L07809, https://doi.org/10.1029/2004gl022228, 2005.
Rosenberg, H. S. and Grotta, H. M.: Nitrogen oxides (NOx) influence on sulfite oxidation and scaling in lime/limestone flue gas desulfurization (FGD) systems, Environ. Sci. Technol., 14, 470–472, https://doi.org/10.1021/es60164a011, 1980.
Sarma, L. P., Prasad, P. S. R., and Ravikumar, N.: Raman spectroscopic study of phase transitions in natural gypsum, J. Raman Spectrosc., 29, 851–856, https://doi.org/10.1002/(sici)1097-4555(199809)29:9<851::aid-jrs313>3.0.co;2-s, 1998.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from air pollution to climate change, 2nd Edn., John Wiley & Sons. Inc., 2006.
Shang, J., Li, J., and Zhu, T.: Heterogeneous reaction of SO2 on TiO2 particles, Sci. China Chem., 53, 2637–2643, https://doi.org/10.1007/s11426-010-4160-3, 2010.
Shen, C. H. and Rochelle, G. T.: Nitrogen Dioxide Absorption and Sulfite Oxidation in Aqueous Sulfite, Environ. Sci. Technol., 32, 1994–2003, https://doi.org/10.1021/es970466q, 1998.
Song, C. H., Maxwell-Meier, K., Weber, R. J., Kapustin, V., and Clarke, A.: Dust composition and mixing state inferred from airborne composition measurements during ACE-Asia C130 Flight #6, Atmos. Environ., 39, 359–369, 2005.
Sorimachi, A., Sakai, M., Ishitani, O., Nishikawa, M., and Sakamoto, K.: Study on dry deposition of SO2-NOx onto loess, Water Air Soil Pollut., 130, 541–546, https://doi.org/10.1023/a:1013834729728, 2001.
Stafford, R. G., Chang, R. K., and Kindlmann, P. J.: Laser-Raman monitoring of ambient sulfate aerosols, in: Methods and standards for environmentalmeasurement: Proceedings of the 8th Materials Research Symposium, Gaithersburg, Maryland, USA, 20–24 September 1976, edited by: Kirchhoff, W. H., National Bureau of Standards, Washington, 1976.
Sullivan, R. C., Guazzotti, S. A., Sodeman, D. A., and Prather, K. A.: Direct observations of the atmospheric processing of Asian mineral dust, Atmos. Chem. Phys., 7, 1213–1236, https://doi.org/10.5194/acp-7-1213-2007, 2007.
Takeuchi, H., Ando, M., and Kizawa, N.: Absorption of Nitrogen Oxides in Aqueous Sodium Sulfite and Bisulfite Solutions, In. Eng. Chem. Proc. D.D., 16, 303–308, https://doi.org/10.1021/i260063a010, 1977.
Tan, F., Jing, B., Tong, S. R., and Ge, M. F.: The effects of coexisting Na2SO4 on heterogeneous uptake of NO2 on CaCO3 particles at various RHs, Sci. Total Environ., 586, 930–938, https://doi.org/10.1016/j.scitotenv.2017.02.072, 2017.
Tang, I. N. and Fung, K. H.: Hydration and Raman scattering studies of levitated microparticles: Ba(NO3)2, Sr(NO3)2, and Ca(NO3)2, J. Chem. Phys., 106, 1653–1660, 1997.
Tursic, J. and Grgic, I.: Influence of NO2 on S(IV) oxidation in aqueous suspensions of aerosol particles from two different origins, Atmos. Environ., 35, 3897–3904, https://doi.org/10.1016/s1352-2310(01)00142-x, 2001.
Ullerstam, M., Vogt, R., Langer, S., and Ljungstrom, E.: The kinetics and mechanism of SO2 oxidation by O3 on mineral dust, Phys. Chem. Chem. Phys., 4, 4694–4699, https://doi.org/10.1039/b203529b, 2002.
Ullerstam, M., Johnson, M. S., Vogt, R., and Ljungström, E.: DRIFTS and Knudsen cell study of the heterogeneous reactivity of SO2 and NO2 on mineral dust, Atmos. Chem. Phys., 3, 2043–2051, https://doi.org/10.5194/acp-3-2043-2003, 2003.
Wang, G., Zhang, R., Gomez, M. E., Yang, L., Levy Zamora, M., Hu, M., Lin, Y., Peng, J., Guo, S., Meng, J., Li, J., Cheng, C., Hu, T., Ren, Y., Wang, Y., Gao, J., Cao, J., An, Z., Zhou, W., Li, G., Wang, J., Tian, P., Marrero-Ortiz, W., Secrest, J., Du, Z., Zheng, J., Shang, D., Zeng, L., Shao, M., Wang, W., Huang, Y., Wang, Y., Zhu, Y., Li, Y., Hu, J., Pan, B., Cai, L., Cheng, Y., Ji, Y., Zhang, F., Rosenfeld, D., Liss, P. S., Duce, R. A., Kolb, C. E., and Molina, M. J.: Persistent sulfate formation from London Fog to Chinese haze, P. Natl. Acad. Sci. USA, 113, 13630–13635, https://doi.org/10.1073/pnas.1616540113, 2016.
Wang, Y. S., Yao, L., Wang, L. L., Liu, Z. R., Ji, D. S., Tang, G. Q., Zhang, J. K., Sun, Y., Hu, B., and Xin, J. Y.: Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China, Sci. China Earth Sci., 57, 14–25, https://doi.org/10.1007/s11430-013-4773-4, 2014.
Wang, Y. X., Zhang, Q. Q., Jiang, J. K., Zhou, W., Wang, B. Y., He, K. B., Duan, F. K., Zhang, Q., Philip, S., and Xie, Y. Y.: Enhanced sulfate formation during China's severe winter haze episode in January 2013 missing from current models, J. Geophys. Res.-Atmos., 119, 10425–10440, https://doi.org/10.1002/2013jd021426, 2014.
Wehner, B., Birmili, W., Ditas, F., Wu, Z., Hu, M., Liu, X., Mao, J., Sugimoto, N., and Wiedensohler, A.: Relationships between submicrometer particulate air pollution and air mass history in Beijing, China, 2004–2006, Atmos. Chem. Phys., 8, 6155–6168, https://doi.org/10.5194/acp-8-6155-2008, 2008.
Wright, M. L.: Feasibility study of in-situ souce monitoring of particulate composition by Raman or fluorescence scatter, U.S. Environmental Protection Agency, Washington, D.C., 1973.
Wu, L. Y., Tong, S. R., Wang, W. G., and Ge, M. F.: Effects of temperature on the heterogeneous oxidation of sulfur dioxide by ozone on calcium carbonate, Atmos. Chem. Phys., 11, 6593–6605, https://doi.org/10.5194/acp-11-6593-2011, 2011.
Wu, L. Y., Tong, S. R., Zhou, L., Wang, W. G., and Ge, M. F.: Synergistic Effects between SO2 and HCOOH on α-Fe2O3, J. Phys. Chem. A, 117, 3972–3979, https://doi.org/10.1021/jp400195f, 2013.
Wu, L. Y., Tong, S. R., and Ge, M. F.: Synergistic Effect between SO2 and HCOOH on the Surface of CaO, Acta Chim. Sinica 73, 131–136, https://doi.org/10.6023/a14120875, 2015.
Xie, Y. N., Ding, A. J., Nie, W., Mao, H. T., Qi, X. M., Huang, X., Xu, Z., Kerminen, V. M., Petaja, T., Chi, X. G., Virkkula, A., Boy, M., Xue, L. K., Guo, J., Sun, J. N., Yang, X. Q., Kulmala, M., and Fu, C. B.: Enhanced sulfate formation by nitrogen dioxide: Implications from in situ observations at the SORPES station, J. Geophys. Res.-Atmos., 120, 12679–12694, https://doi.org/10.1002/2015jd023607, 2015.
Xue, J., Yuan, Z. B., Griffith, S. M., Yu, X., Lau, A. K. H., and Yu, J. Z.: Sulfate Formation Enhanced by a Cocktail of High NOx, SO2, Particulate Matter, and Droplet pH during Haze-Fog Events in Megacities in China: An Observation-Based Modeling Investigation, Environ. Sci. Technol., 50, 7325–7334, https://doi.org/10.1021/acs.est.6b00768, 2016.
Zhang, D. Z., Shi, G. Y., Iwasaka, Y., and Hu, M.: Mixture of sulfate and nitrate in coastal atmospheric aerosols: individual particle studies in Qingdao (36°04′ N, 120°21′ E), China, Atmos. Environ., 34, 2669–2679, https://doi.org/10.1016/s1352-2310(00)00078-9, 2000.
Zhang, D. Z., Zang, J. Y., Shi, G. Y., Iwasaka, Y., Matsuki, A., and Trochkine, D.: Mixture state of individual Asian dust particles at a coastal site of Qingdao, China, Atmos. Environ., 37, 3895–3901, https://doi.org/10.1016/s1352-2310(03)00506-5, 2003.
Zhang, J. K., Sun, Y., Liu, Z. R., Ji, D. S., Hu, B., Liu, Q., and Wang, Y. S.: Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013, Atmos. Chem. Phys., 14, 2887–2903, https://doi.org/10.5194/acp-14-2887-2014, 2014.
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R.: Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys. Res. Lett., 34, L13801, https://doi.org/10.1029/2007gl029979, 2007.
Zhao, D. F., Zhu, T., Chen, Q., Liu, Y. J., and Zhang, Z. F.: Raman micro-spectrometry as a technique for investigating heterogeneous reactions on individual atmospheric particles, Sci. China Chem., 54, 154–160, https://doi.org/10.1007/s11426-010-4182-x, 2011.
Zhao, X., Kong, L. D., Sun, Z. Y., Ding, X. X., Cheng, T. T., Yang, X., and Chen, J. M.: Interactions between Heterogeneous Uptake and Adsorption of Sulfur Dioxide and Acetaldehyde on Hematite, J. Phys. Chem. A, 119, 4001-4008, https://doi.org/10.1021/acs.jpca.5b01359, 2015.
Zheng, B., Zhang, Q., Zhang, Y., He, K. B., Wang, K., Zheng, G. J., Duan, F. K., Ma, Y. L., and Kimoto, T.: Heterogeneous chemistry: a mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China, Atmos. Chem. Phys., 15, 2031–2049, https://doi.org/10.5194/acp-15-2031-2015, 2015.
Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., Kimoto, T., Chang, D., Pöschl, U., Cheng, Y. F., and He, K. B.: Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions, Atmos. Chem. Phys., 15, 2969–2983, https://doi.org/10.5194/acp-15-2969-2015, 2015.
Zhou, L., Wang, W. G., Gai, Y. B., and Ge, M. F.: Knudsen cell and smog chamber study of the heterogeneous uptake of sulfur dioxide on Chinese mineral dust, J. Environ. Sci., 26, 2423–2433, https://doi.org/10.1016/j.jes.2014.04.005, 2014.
Zhu, T., Shang, J., and Zhao, D. F.: The roles of heterogeneous chemical processes in the formation of an air pollution complex and gray haze, Sci. China Chem., 54, 145–153, https://doi.org/10.1007/s11426-010-4181-y, 2011.
Short summary
The oxidation of SO2 directly by NO2 on solid/liquid particles is proposed to be a major pathway of particle sulfate formation in the polluted atmosphere. We found that the reaction of SO2 and NO2 on CaCO3 particles produced Ca(NO3)2 aqueous droplets, providing a site for the multiphase oxidation of SO2. The direct multiphase oxidation of SO2 by NO2 led to a reactive uptake coefficient of SO2 on the order of 10-8, which is unlikely to be an important source of sulfate in the ambient atmosphere.
The oxidation of SO2 directly by NO2 on solid/liquid particles is proposed to be a major pathway...
Altmetrics
Final-revised paper
Preprint