Articles | Volume 16, issue 2
Atmos. Chem. Phys., 16, 989–1002, 2016
https://doi.org/10.5194/acp-16-989-2016

Special issue: Haze-fog forecasts and near real time (NRT) data application...

Atmos. Chem. Phys., 16, 989–1002, 2016
https://doi.org/10.5194/acp-16-989-2016

Research article 27 Jan 2016

Research article | 27 Jan 2016

Inverse modeling of black carbon emissions over China using ensemble data assimilation

P. Wang et al.

Related authors

Development and application of a street-level meteorology and pollutant tracking system (S-TRACK)
Huan Zhang, Sunling Gong, Lei Zhang, Jianjun He, Yaqiang Wang, Lixin Shi, Jingyue Mo, Huabing Ke, and Shuhua Lu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-725,https://doi.org/10.5194/acp-2021-725, 2021
Preprint under review for ACP
Short summary
Three-dimensional climatology, trends and meteorological drivers of global and regional tropospheric type-dependent aerosols: Insights from 13 years (2007–2019) of CALIOP observations
Ke Gui, Huizheng Che, Yu Zheng, Hujia Zhao, Wenrui Yao, Lei Li, Lei Zhang, Hong Wang, Yaqiang Wang, and Xiaoye Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-467,https://doi.org/10.5194/acp-2021-467, 2021
Revised manuscript under review for ACP
Short summary
Impact of modified turbulent diffusion of PM2.5 aerosol in WRF-Chem simulations in Eastern China
Wenxing Jia and Xiaoye Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-435,https://doi.org/10.5194/acp-2021-435, 2021
Revised manuscript under review for ACP
Short summary
Separating emission and meteorological contributions to long-term PM2.5 trends over eastern China during 2000–2018
Qingyang Xiao, Yixuan Zheng, Guannan Geng, Cuihong Chen, Xiaomeng Huang, Huizheng Che, Xiaoye Zhang, Kebin He, and Qiang Zhang
Atmos. Chem. Phys., 21, 9475–9496, https://doi.org/10.5194/acp-21-9475-2021,https://doi.org/10.5194/acp-21-9475-2021, 2021
Short summary
Enhancement of nanoparticle formation and growth during the COVID-19 lockdown period in urban Beijing
Xiaojing Shen, Junying Sun, Fangqun Yu, Ying Wang, Junting Zhong, Yangmei Zhang, Xinyao Hu, Can Xia, Sinan Zhang, and Xiaoye Zhang
Atmos. Chem. Phys., 21, 7039–7052, https://doi.org/10.5194/acp-21-7039-2021,https://doi.org/10.5194/acp-21-7039-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
A comprehensive observation-based multiphase chemical model analysis of sulfur dioxide oxidations in both summer and winter
Huan Song, Keding Lu, Can Ye, Huabin Dong, Shule Li, Shiyi Chen, Zhijun Wu, Mei Zheng, Limin Zeng, Min Hu, and Yuanhang Zhang
Atmos. Chem. Phys., 21, 13713–13727, https://doi.org/10.5194/acp-21-13713-2021,https://doi.org/10.5194/acp-21-13713-2021, 2021
Short summary
Predicting gas–particle partitioning coefficients of atmospheric molecules with machine learning
Emma Lumiaro, Milica Todorović, Theo Kurten, Hanna Vehkamäki, and Patrick Rinke
Atmos. Chem. Phys., 21, 13227–13246, https://doi.org/10.5194/acp-21-13227-2021,https://doi.org/10.5194/acp-21-13227-2021, 2021
Short summary
Development of a new emission reallocation method for industrial sources in China
Yun Fat Lam, Chi Chiu Cheung, Xuguo Zhang, Joshua S. Fu, and Jimmy Chi Hung Fung
Atmos. Chem. Phys., 21, 12895–12908, https://doi.org/10.5194/acp-21-12895-2021,https://doi.org/10.5194/acp-21-12895-2021, 2021
Short summary
Projections of shipping emissions and the related impact on air pollution and human health in the Nordic region
Camilla Geels, Morten Winther, Camilla Andersson, Jukka-Pekka Jalkanen, Jørgen Brandt, Lise M. Frohn, Ulas Im, Wing Leung, and Jesper H. Christensen
Atmos. Chem. Phys., 21, 12495–12519, https://doi.org/10.5194/acp-21-12495-2021,https://doi.org/10.5194/acp-21-12495-2021, 2021
Short summary
A predictive model for salt nanoparticle formation using heterodimer stability calculations
Sabrina Chee, Kelley Barsanti, James N. Smith, and Nanna Myllys
Atmos. Chem. Phys., 21, 11637–11654, https://doi.org/10.5194/acp-21-11637-2021,https://doi.org/10.5194/acp-21-11637-2021, 2021
Short summary

Cited articles

Bond, T. C. and Bergstrom, R. W.: Light absorption by carbonaceous particles: An investigative review, Aerosol Sci. Technol., 40, 27–67, https://doi.org/10.1080/02786820500421521, 2006.
Cao, G., Zhang, X., and Zheng, F.: Inventory of black carbon and organic carbon emissions from China, Atmos. Environ., 40, 6516–6527, https://doi.org/10.1016/j.atmosenv.2006.05.070, 2006.
Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics, J. Geophys. Res., 99, 10143–10162, 1994.
Fu, T.-M., Cao, J. J., Zhang, X. Y., Lee, S. C., Zhang, Q., Han, Y. M., Qu, W. J., Han, Z., Zhang, R., Wang, Y. X., Chen, D., and Henze, D. K.: Carbonaceous aerosols in China: top-down constraints on primary sources and estimation of secondary contribution, Atmos. Chem. Phys., 12, 2725–2746, https://doi.org/10.5194/acp-12-2725-2012, 2012.
Download
Short summary
An ensemble optimal interpolation (EnOI) data assimilation technique is used to investigate the possibility of optimally recovering the spatially resolved emissions bias of BC. The inversed emission over China in January is 240.1 Gg, and annual emission is about 2539 Gg. Even though only monthly mean BC measurements are employed to inverse the emissions, the accuracy of the daily model simulation improves. We finds that EnOI is a useful and computation-free method to make top-down estimation.
Altmetrics
Final-revised paper
Preprint