Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 16, issue 14
Atmos. Chem. Phys., 16, 9201–9219, 2016
https://doi.org/10.5194/acp-16-9201-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Coupled chemistry–meteorology modelling: status and...

Atmos. Chem. Phys., 16, 9201–9219, 2016
https://doi.org/10.5194/acp-16-9201-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 26 Jul 2016

Research article | 26 Jul 2016

The importance of plume rise on the concentrations and atmospheric impacts of biomass burning aerosol

Carolin Walter et al.

Related authors

Revealing the meteorological drivers of the September 2015 severe dust event in the Eastern Mediterranean
Philipp Gasch, Daniel Rieger, Carolin Walter, Pavel Khain, Yoav Levi, Peter Knippertz, and Bernhard Vogel
Atmos. Chem. Phys., 17, 13573–13604, https://doi.org/10.5194/acp-17-13573-2017,https://doi.org/10.5194/acp-17-13573-2017, 2017
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Assessment of regional aerosol radiative effects under the SWAAMI campaign – Part 2: Clear-sky direct shortwave radiative forcing using multi-year assimilated data over the Indian subcontinent
Harshavardhana Sunil Pathak, Sreedharan Krishnakumari Satheesh, Krishnaswamy Krishna Moorthy, and Ravi Shankar Nanjundiah
Atmos. Chem. Phys., 20, 14237–14252, https://doi.org/10.5194/acp-20-14237-2020,https://doi.org/10.5194/acp-20-14237-2020, 2020
Short summary
The determination of highly time-resolved and source-separated black carbon emission rates using radon as a tracer of atmospheric dynamics
Asta Gregorič, Luka Drinovec, Irena Ježek, Janja Vaupotič, Matevž Lenarčič, Domen Grauf, Longlong Wang, Maruška Mole, Samo Stanič, and Griša Močnik
Atmos. Chem. Phys., 20, 14139–14162, https://doi.org/10.5194/acp-20-14139-2020,https://doi.org/10.5194/acp-20-14139-2020, 2020
Short summary
Understanding processes that control dust spatial distributions with global climate models and satellite observations
Mingxuan Wu, Xiaohong Liu, Hongbin Yu, Hailong Wang, Yang Shi, Kang Yang, Anton Darmenov, Chenglai Wu, Zhien Wang, Tao Luo, Yan Feng, and Ziming Ke
Atmos. Chem. Phys., 20, 13835–13855, https://doi.org/10.5194/acp-20-13835-2020,https://doi.org/10.5194/acp-20-13835-2020, 2020
Short summary
Heterogeneous nucleation of water vapor on different types of black carbon particles
Ari Laaksonen, Jussi Malila, and Athanasios Nenes
Atmos. Chem. Phys., 20, 13579–13589, https://doi.org/10.5194/acp-20-13579-2020,https://doi.org/10.5194/acp-20-13579-2020, 2020
Short summary
Impacts of atmospheric transport and biomass burning on the inter-annual variation in black carbon aerosols over the Tibetan Plateau
Han Han, Yue Wu, Jane Liu, Tianliang Zhao, Bingliang Zhuang, Honglei Wang, Yichen Li, Huimin Chen, Ye Zhu, Hongnian Liu, Qin'geng Wang, Shu Li, Tijian Wang, Min Xie, and Mengmeng Li
Atmos. Chem. Phys., 20, 13591–13610, https://doi.org/10.5194/acp-20-13591-2020,https://doi.org/10.5194/acp-20-13591-2020, 2020
Short summary

Cited articles

Ackerman, A. S., Toon, O., Stevens, D., Heymsfield, A., Ramanathan, V., and Welton, E.: Reduction of tropical cloudiness by soot, Science, 288, 1042–1047, https://doi.org/10.1126/science.288.5468.1042, 2000.
Andela, N., Kaiser, J. W., van der Werf, G. R., and Wooster, M. J.: New fire diurnal cycle characterizations to improve fire radiative energy assessments made from MODIS observations, Atmos. Chem. Phys., 15, 8831–8846, https://doi.org/10.5194/acp-15-8831-2015, 2015.
Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo, K. M., and Silva-Dias, M. A. F.: Smoking rain clouds over the Amazon. Science, 303, 1337–1342, https://doi.org/10.1126/science.1092779, 2004.
Athanasopoulou, E., Vogel, H., Vogel, B., Tsimpidi, A. P., Pandis, S. N., Knote, C., and Fountoukis, C.: Modeling the meteorological and chemical effects of secondary organic aerosols during an EUCAARI campaign, Atmos. Chem. Phys., 13, 625–645, https://doi.org/10.5194/acp-13-625-2013, 2013.
Athanasopoulou, E., Rieger, D., Walter, C., Vogel, H., Karali, A., Hatzaki, M., Gerasopoulos, E., Vogel, B., Giannakopoulos, C., Gratsea, M., and Roussos, A.: Fire risk, atmospheric chemistry and radiative forcing assessment of wildfires in eastern Mediterranean, Atmos. Environ., 95, 113–125, https://doi.org/10.1016/j.atmosenv.2014.05.077, 2014.
Publications Copernicus
Download
Short summary
Buoyancy produced by vegetation fires can lead to substantial plume rise with consequences for the dispersion of aerosol emitted by the fires. To study this effect a 1-D plume rise model was included into the regional online integrated model system COSMO-ART. Comparing model results and satellite data for a case study of 2010 Canadian wildfires shows, that the plume rise model outperforms prescribed emission height. The radiative impact of the aerosol leads to a pronounced temperature change.
Buoyancy produced by vegetation fires can lead to substantial plume rise with consequences for...
Citation
Altmetrics
Final-revised paper
Preprint