Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 16, issue 14
Atmos. Chem. Phys., 16, 9201–9219, 2016
https://doi.org/10.5194/acp-16-9201-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Coupled chemistry–meteorology modelling: status and...

Atmos. Chem. Phys., 16, 9201–9219, 2016
https://doi.org/10.5194/acp-16-9201-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 26 Jul 2016

Research article | 26 Jul 2016

The importance of plume rise on the concentrations and atmospheric impacts of biomass burning aerosol

Carolin Walter et al.

Viewed

Total article views: 2,348 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,317 876 155 2,348 41 52
  • HTML: 1,317
  • PDF: 876
  • XML: 155
  • Total: 2,348
  • BibTeX: 41
  • EndNote: 52
Views and downloads (calculated since 19 Jan 2016)
Cumulative views and downloads (calculated since 19 Jan 2016)

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 26 Nov 2020
Publications Copernicus
Download
Short summary
Buoyancy produced by vegetation fires can lead to substantial plume rise with consequences for the dispersion of aerosol emitted by the fires. To study this effect a 1-D plume rise model was included into the regional online integrated model system COSMO-ART. Comparing model results and satellite data for a case study of 2010 Canadian wildfires shows, that the plume rise model outperforms prescribed emission height. The radiative impact of the aerosol leads to a pronounced temperature change.
Buoyancy produced by vegetation fires can lead to substantial plume rise with consequences for...
Citation
Altmetrics
Final-revised paper
Preprint