Articles | Volume 16, issue 13
https://doi.org/10.5194/acp-16-8571-2016
https://doi.org/10.5194/acp-16-8571-2016
Research article
 | 
14 Jul 2016
Research article |  | 14 Jul 2016

Imbalanced phosphorus and nitrogen deposition in China's forests

Enzai Du, Wim de Vries, Wenxuan Han, Xuejun Liu, Zhengbing Yan, and Yuan Jiang

Related authors

Testing ion exchange resin for quantifying bulk and throughfall deposition of macro- and micro-elements in forests
Marleen A. E. Vos, Wim de Vries, G. F. (Ciska) Veen, Marcel R. Hoosbeek, and Frank J. Sterck
Atmos. Meas. Tech., 17, 6579–6594, https://doi.org/10.5194/amt-17-6579-2024,https://doi.org/10.5194/amt-17-6579-2024, 2024
Short summary
Estimating nitrogen and sulfur deposition across China during 2005 to 2020 based on multiple statistical models
Kaiyue Zhou, Wen Xu, Lin Zhang, Mingrui Ma, Xuejun Liu, and Yu Zhao
Atmos. Chem. Phys., 23, 8531–8551, https://doi.org/10.5194/acp-23-8531-2023,https://doi.org/10.5194/acp-23-8531-2023, 2023
Short summary
A dynamic ammonia emission model and the online coupling with WRF–Chem (WRF–SoilN–Chem v1.0): development and regional evaluation in China
Chuanhua Ren, Xin Huang, Tengyu Liu, Yu Song, Zhang Wen, Xuejun Liu, Aijun Ding, and Tong Zhu
Geosci. Model Dev., 16, 1641–1659, https://doi.org/10.5194/gmd-16-1641-2023,https://doi.org/10.5194/gmd-16-1641-2023, 2023
Short summary
Estimation of surface ammonia concentrations and emissions in China from the polar-orbiting Infrared Atmospheric Sounding Interferometer and the FY-4A Geostationary Interferometric Infrared Sounder
Pu Liu, Jia Ding, Lei Liu, Wen Xu, and Xuejun Liu
Atmos. Chem. Phys., 22, 9099–9110, https://doi.org/10.5194/acp-22-9099-2022,https://doi.org/10.5194/acp-22-9099-2022, 2022
Short summary
Trends in secondary inorganic aerosol pollution in China and its responses to emission controls of precursors in wintertime
Fanlei Meng, Yibo Zhang, Jiahui Kang, Mathew R. Heal, Stefan Reis, Mengru Wang, Lei Liu, Kai Wang, Shaocai Yu, Pengfei Li, Jing Wei, Yong Hou, Ying Zhang, Xuejun Liu, Zhenling Cui, Wen Xu, and Fusuo Zhang
Atmos. Chem. Phys., 22, 6291–6308, https://doi.org/10.5194/acp-22-6291-2022,https://doi.org/10.5194/acp-22-6291-2022, 2022
Short summary

Cited articles

Anderson, K. A. and Downing, J. A.: Dry and wet atmospheric deposition of nitrogen, phosphorus and silicon in an agricultural region, Water Air Soil Poll., 176, 351–374, 2006.
Brahney, J., Mahowald, N., Ward, D. S., Ballantyne, A. P., and Neff, J. C.: Is atmospheric phosphorus pollution altering global alpine Lake stoichiometry?, Global Biogeochem. Cy., 29, 1369–1383, 2015.
Braun, S., Thomas, V. F., Quiring, R., and Flückiger, W.: Does nitrogen deposition increase forest production? The role of phosphorus, Environ. Pollut., 158, 2043–2052, 2010.
Chantara, S. and Chunsuk, N.: Comparison of wet-only and bulk deposition at Chiang Mai (Thailand) based on rainwater chemical composition, Atmos. Environ., 42, 5511–5518, 2008.
Cleveland, C. C., Houlton, B. Z., Smith, W. K., Marklein, A. R., Reed, S. C., Parton, W., Del Grosso, S. J., and Running, S. W.: Patterns of new versus recycled primary production in the terrestrial biosphere, P. Natl. Aca. Sci. USA, 110, 12733–12737, 2013.
Download
Short summary
Accelerated N emissions in China may lead to an imbalance of atmospheric nutrient inputs in various ecosystems. Our assessment of P and N deposition in China's forests showed relatively high rates of P deposition, but they were accompanied by even much higher N deposition, resulting in high N : P deposition ratios. P and N deposition both showed a power-law increase with closer distance to the nearest large cities. Our results suggest an anthropogenic imbalance of regional N and P cycling.
Share
Altmetrics
Final-revised paper
Preprint