Articles | Volume 16, issue 13
https://doi.org/10.5194/acp-16-8571-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-16-8571-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Imbalanced phosphorus and nitrogen deposition in China's forests
State Key Laboratory of Earth Surface Processes and Resource Ecology,
and College of Resources Science & Technology, Beijing Normal University,
100875 Beijing, China
Wim de Vries
Environmental Systems Analysis Group, Wageningen University, P.O. Box
47, 6700 AA Wageningen, the Netherlands
Alterra, Wageningen University and Research Center, P.O. Box 47, 6700 AA
Wageningen, the Netherlands
Wenxuan Han
College of Resources and Environmental Sciences, China Agricultural
University, 100193 Beijing, China
Xuejun Liu
College of Resources and Environmental Sciences, China Agricultural
University, 100193 Beijing, China
Zhengbing Yan
Department of Ecology, and Key Laboratory for Earth Surface Processes
of the Ministry of Education, Peking University, 100871 Beijing, China
Yuan Jiang
CORRESPONDING AUTHOR
State Key Laboratory of Earth Surface Processes and Resource Ecology,
and College of Resources Science & Technology, Beijing Normal University,
100875 Beijing, China
Related authors
No articles found.
Marleen A. E. Vos, Wim de Vries, G. F. (Ciska) Veen, Marcel R. Hoosbeek, and Frank J. Sterck
Atmos. Meas. Tech., 17, 6579–6594, https://doi.org/10.5194/amt-17-6579-2024, https://doi.org/10.5194/amt-17-6579-2024, 2024
Short summary
Short summary
Atmospheric deposition poses risks with high anthropogenic inputs. Current deposition measurement methods are labor-intensive. Ion exchange resin (IER) offers a promising, cost-effective alternative. We assessed IER for bulk deposition and throughfall, testing adsorption capacity, recovery efficiency and field performance. IER showed good adsorption and recovery and was unaffected by environmental conditions, showing potential for robust and efficient measurements of atmospheric deposition.
Kaiyue Zhou, Wen Xu, Lin Zhang, Mingrui Ma, Xuejun Liu, and Yu Zhao
Atmos. Chem. Phys., 23, 8531–8551, https://doi.org/10.5194/acp-23-8531-2023, https://doi.org/10.5194/acp-23-8531-2023, 2023
Short summary
Short summary
We developed a dataset of the long-term (2005–2020) variabilities of China’s nitrogen and sulfur deposition, with multiple statistical models that combine available observations and chemistry transport modeling. We demonstrated the strong impact of human activities and national pollution control actions on the spatiotemporal changes in deposition and indicated a relatively small benefit of emission abatement on deposition (and thereby ecological risk) for China compared to Europe and the USA.
Chuanhua Ren, Xin Huang, Tengyu Liu, Yu Song, Zhang Wen, Xuejun Liu, Aijun Ding, and Tong Zhu
Geosci. Model Dev., 16, 1641–1659, https://doi.org/10.5194/gmd-16-1641-2023, https://doi.org/10.5194/gmd-16-1641-2023, 2023
Short summary
Short summary
Ammonia in the atmosphere has wide impacts on the ecological environment and air quality, and its emission from soil volatilization is highly sensitive to meteorology, making it challenging to be well captured in models. We developed a dynamic emission model capable of calculating ammonia emission interactively with meteorological and soil conditions. Such a coupling of soil emission with meteorology provides a better understanding of ammonia emission and its contribution to atmospheric aerosol.
Pu Liu, Jia Ding, Lei Liu, Wen Xu, and Xuejun Liu
Atmos. Chem. Phys., 22, 9099–9110, https://doi.org/10.5194/acp-22-9099-2022, https://doi.org/10.5194/acp-22-9099-2022, 2022
Short summary
Short summary
Ammonia (NH3) is the important alkaline gas and the key component of fine particulate matter. We used satellite-based observations to analyze the changes in hourly NH3 concentrations and estimated surface NH3 concentrations and NH3 emissions in China. This study shows enormous potential for using satellite data to estimate surface NH3 concentrations and NH3 emissions and provides an important reference for understanding NH3 variation in China.
Fanlei Meng, Yibo Zhang, Jiahui Kang, Mathew R. Heal, Stefan Reis, Mengru Wang, Lei Liu, Kai Wang, Shaocai Yu, Pengfei Li, Jing Wei, Yong Hou, Ying Zhang, Xuejun Liu, Zhenling Cui, Wen Xu, and Fusuo Zhang
Atmos. Chem. Phys., 22, 6291–6308, https://doi.org/10.5194/acp-22-6291-2022, https://doi.org/10.5194/acp-22-6291-2022, 2022
Short summary
Short summary
PM2.5 pollution is a pressing environmental issue threatening human health and food security globally. We combined a meta-analysis of nationwide measurements and air quality modeling to identify efficiency gains by striking a balance between controlling NH3 and acid gas emissions. Persistent secondary inorganic aerosol pollution in China is limited by acid gas emissions, while an additional control on NH3 emissions would become more important as reductions in SO2 and NOx emissions progress.
Zixun Chen, Xuejun Liu, Xiaoqing Cui, Yaowen Han, Guoan Wang, and Jiazhu Li
Biogeosciences, 18, 2859–2870, https://doi.org/10.5194/bg-18-2859-2021, https://doi.org/10.5194/bg-18-2859-2021, 2021
Short summary
Short summary
δ13C in plants is a sensitive long-term indicator of physiological acclimatization. The present study suggests that precipitation change and increasing atmospheric N deposition have little impact on δ13C of H. ammodendron, a dominant plant in central Asian deserts, but affect its gas exchange. In addition, this study shows that δ13C of H. ammodendron could not indicate its water use efficiency (WUE), suggesting that whether δ13C of C4 plants indicates WUE is species-specific.
Pooja V. Pawar, Sachin D. Ghude, Chinmay Jena, Andrea Móring, Mark A. Sutton, Santosh Kulkarni, Deen Mani Lal, Divya Surendran, Martin Van Damme, Lieven Clarisse, Pierre-François Coheur, Xuejun Liu, Gaurav Govardhan, Wen Xu, Jize Jiang, and Tapan Kumar Adhya
Atmos. Chem. Phys., 21, 6389–6409, https://doi.org/10.5194/acp-21-6389-2021, https://doi.org/10.5194/acp-21-6389-2021, 2021
Short summary
Short summary
In this study, simulations of atmospheric ammonia (NH3) with MOZART-4 and HTAP-v2 are compared with satellite (IASI) and ground-based measurements to understand the spatial and temporal variability of NH3 over two emission hotspot regions of Asia, the IGP and the NCP. Our simulations indicate that the formation of ammonium aerosols is quicker over the NCP than the IGP, leading to smaller NH3 columns over the higher NH3-emitting NCP compared to the IGP region for comparable emissions.
Cited articles
Anderson, K. A. and Downing, J. A.: Dry and wet atmospheric deposition of nitrogen, phosphorus and silicon in an agricultural region, Water Air Soil Poll., 176, 351–374, 2006.
Brahney, J., Mahowald, N., Ward, D. S., Ballantyne, A. P., and Neff, J. C.: Is atmospheric phosphorus pollution altering global alpine Lake stoichiometry?, Global Biogeochem. Cy., 29, 1369–1383, 2015.
Braun, S., Thomas, V. F., Quiring, R., and Flückiger, W.: Does nitrogen deposition increase forest production? The role of phosphorus, Environ. Pollut., 158, 2043–2052, 2010.
Chantara, S. and Chunsuk, N.: Comparison of wet-only and bulk deposition at Chiang Mai (Thailand) based on rainwater chemical composition, Atmos. Environ., 42, 5511–5518, 2008.
Cleveland, C. C., Houlton, B. Z., Smith, W. K., Marklein, A. R., Reed, S. C., Parton, W., Del Grosso, S. J., and Running, S. W.: Patterns of new versus recycled primary production in the terrestrial biosphere, P. Natl. Aca. Sci. USA, 110, 12733–12737, 2013.
Crowley, K. F., McNeil, B. E., Lovett, G. M., Canham, C. D., Driscoll, C. T., Rustad, L. E., Denny, E., Hallett, R. A., Arthur, M. A., Boggs, J. L., Goodale, C. L., Kahl, J. S., McNulty, S. G., Ollinger, S. V., Pardo, L. H., Schaberg, P. G., Stoddard, J. L., Weand, M. P., and Weathers, K. C.: Do nutrient limitation patterns shift from nitrogen toward phosphorus with increasing nitrogen deposition across the northeastern United States?, Ecosystems, 15, 940–957, 2012.
Cui, S. H., Shi, Y. L., Groffman, P. M., Schlesinger, W. H., and Zhu, Y. G.: Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910–2010), P. Natl. Acad. Sci. USA, 110, 2052–2057, 2013.
Das, R., Lawrence, D., D'Odorico, P., and DeLonge, M.: Impact of land use change on atmospheric P inputs in a tropical dry forest, J. Geophys. Res., 116, G01027, https://doi.org/10.1029/2010JG001403, 2011.
DeLonge, M., D'Odorico, P., and Lawrence, D.: Feedbacks between phosphorous deposition and canopy cover: the emergence of multiple stable states in dry tropical forests, Glob. Change Biol., 14, 154–160, 2008.
De Vries, W., Solberg, S., Dobbertin, M., Sterbad, H., Laubhannd, D., van Oijene, M., Evansf, C., Gunderseng, P., Krosa, J., Wamelinka, G. W. W., Reindsa, G. J., and Sutton, M. A.: The impact of nitrogen deposition on carbon sequestration by European forests and heathlands, Forest Ecol. Manage., 258, 1814–1823, 2009.
Draaijers, G. P. J., Erisman, J. W., Sprangert, T., and Wyers, G. P.: The application of throughfall measurements for atmospheric deposition monitoring, Atmos. Environ., 30, 3349–3361, 1996.
Du, E., Jiang, Y., Fang, J., and de Vries, W.: Inorganic nitrogen deposition in China's forests: Status and characteristics, Atmos. Environ., 98, 474–482, 2014.
Du, E., de Vries, W., Liu, X., Fang, J., Galloway, J. N. and Jiang, Y.: Spatial boundary of urban “acid islands” in southern China, Sci. Rep., 5, 12625, https://doi.org/10.1038/srep12625, 2015.
Du, E. Z. and Liu, X. J.: High rates of wet nitrogen deposition in China: A synthesis, in: Nitrogen Deposition, Critical Loads and Biodiversity, edited by: Sutton, M. A., Mason, K. E., Sheppard, L. J., Sverdrup, H., Haeuber, R., Hicks, W. K., Springer, the Netherlands, 49–56, 2014.
Elser, J. J., Bracken, M. E., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., Ngai J. T., Seabloom, E. W., Shurin, J. B., and Smith, J. E.: Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems, Ecol. Lett., 10, 1135–1142, 2007.
Han, W., Fang, J., Guo, D., and Zhang, Y.: Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China, New Phytol., 168, 377–385, 2005.
Högberg, P.: Environmental Science: Nitrogen impacts on forest carbon, Nature, 447, 781–782, 2007.
Jia, Y., Yu, G., He, N., Zhan, X., Fang, H., Sheng, W., Zuo, Y., Zhang, D., and Wang, Q.: Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity, Sci. Rep., 4, 3763, https://doi.org/10.1038/srep03763, 2014.
Jiang, B., Lu, R., and Li, Q.: Map of soil phosphorus potential of China, in: Institute of Soil Science, Academia Sinica, The Soil Atlas of China, Beijing, China: Cartographic Publishing House, 36, 1986.
Kulshrestha, U. C., Sarkar, A. K., Srivastava, S. S., and Parashar, D. C.: Wet-only and bulk deposition studies at New Delhi (India), Water Air Soil Poll., 85, 2137–2142, 1995.
Li, Y., Niu, S., and Yu, G.: Aggravated phosphorus limitation on biomass production under increasing N addition: A meta-analysis, Glob. Change Biol., 22, 934–943, 2016.
Liu, X., Duan, L., Mo, J., Du, E., Shen, J., Lu, X., Zhang, Y., Zhou, X., He, C., and Zhang, F: Nitrogen deposition and its ecological impact in China: An overview, Environ. Pollut., 159, 2251–2264, 2011.
Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., Vitousek, P., Erisman, J. W., Goulding, K., Christie, P., Fangmeier, A., and Zhang, F.: Enhanced nitrogen deposition over China, Nature, 494, 459–462, 2013.
Lu, C. and Tian, H.: Half-century nitrogen deposition increase across China: A gridded time-series data set for regional environmental assessments, Atmos. Environ., 97, 68–74, 2014.
Mahowald, N., Jickells, T. D., Baker, A. R., Artaxo, P., Benitez-Nelson, C. R., Bergametti, G., Bond, T. C., Chen, Y., Cohen, D. D., Herut, B., Kubilay, N., Losno, R., Luo, C., Maenhaut, W., McGee, K. A., Okin, G. S., Siefert, R. L., and Tsukuda, S.: Global distribution of atmospheric phosphorus sources, concentrations, and deposition rates, and anthropogenic impacts, Global Biogeochem. Cy., 22, GB4026, https://doi.org/10.1029/2008GB003240, 2008.
Mellert, K. H. and Göttlein, A.: Comparison of new foliar nutrient thresholds derived from van den Burg's literature compilation with established central European references, Eur. J. Forest Res., 131, 1461–1472, 2012.
Newman, E. I.: Phosphorus inputs to terrestrial ecosystems, J. Ecol., 83, 713–726, 1995.
Okin, G. S., Mahowald, N., Chadwick, O. A., and Artaxo, P.: Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems, Global Biogeochem. Cy., 18, GB2005, https://doi.org/10.1029/2003GB002145, 2004.
Peñuelas, J., Poulter, B., Sardans, J., Ciais, P., van der Velde, M., Bopp, L., Boucher, O., Godderis, Y., Hinsinger, P., Llusia, J., Nardin, E., Vicca, S., Obersteiner, M., and Janssens, I. A.: Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe, Nat. Commun., 4, 2934, https://doi.org/10.1038/ncomms3934, 2013.
Reddy, S. E. and Majmudar, A. M.: Response of mango (Mangifera indica L.) to foliar application of phosphorus, Fert. Res., 4), 281–285, 1983.
Reich, P. B., Oleksyn, J., and Wright, I. J.: Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species, Oecologia, 160, 207–212, 2009.
Sparks, J. P.: Ecological ramifications of the direct foliar uptake of nitrogen, Oecologia, 159, 1–13, 2009.
Staelens, J., De Schrijver, A., Van Avermaet, P., Genouw, G., and Verhoest, N.: A comparison of bulk and wet-only deposition at two adjacent sites in Melle (Belgium), Atmos. Environ., 39, 7–15, 2005.
Talkner, U., Krämer I., Hölscher D., and Beese, F. O.: Deposition and canopy exchange processes in central-German beech forests differing in tree species diversity, Plant Soil, 336, 405–420, 2010.
Thomas, R. Q., Canham, C. D., Weathers, K. C., and Goodale, C.L.: Increased tree carbon storage in response to nitrogen deposition in the US, Nat. Geosci., 3, 13–17, 2010.
Tian, H., Melillo, J., Lu, C., Kicklighter, D., Liu, M., Ren, W., Xu, X., Chen, G., Zhang, C., Pan, S., Liu, J., and Running, S.: China's terrestrial carbon balance: contributions from multiple global change factors, Global Biogeochem. Cy., 25, GB1007, https://doi.org/10.1029/2010GB003838, 2011.
Tipping, E., Benham, S., Boyle, J. F., Crow, P., Davies, J., Fischer, U., Guyatt H., Helliwell R., Jackson-Blake L., Lawlor A. J., Monteith D. T., and Toberman, H.: Atmospheric deposition of phosphorus to land and freshwater, Environ. Sci.-Proc. Imp., 16, 1608–1617, 2014.
Vet, R., Artz, R. S., Carou, S., Shaw, M., Ro, C. U., Aas, W., Baker, A., Bowersox, V. C., Dentener, F., Galy-Lacaux, C., Hou, A., Pienaar, J. J., Gillett, R., Forti, M. C., Gromov, S., Hara, H., Khodzher, T., Mahowald, N., Nickovic, S., Rao, P. S. P., and Reid, N. W.: A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus, Atmos. Environ., 93, 3–100, 2014.
Vitousek, P. M., Porder, S., Houlton, B. Z., and Chadwick, O. A.: Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions, Ecol. Appl., 20, 5–15, 2010.
Wang, R., Balkanski, Y., Boucher, O., Ciais, P., Peñuelas, J., and Tao, S.: Significant contribution of combustion-related emissions to the atmospheric phosphorus budget, Nat. Geosci., 8, 48–54, 2015.
Wieder, W. R., Cleveland, C. C., Smith, W. K., and Todd-Brown, K.: Future productivity and carbon storage limited by terrestrial nutrient availability, Nat. Geosci., 8, 441–444, 2015.
Xu, W., Luo, X. S., Pan, Y. P., Zhang, L., Tang, A. H., Shen, J. L., Zhang, Y., Li, K. H., Wu, Q. H., Yang, D. W., Zhang, Y. Y., Xue, J., Li, W. Q., Li, Q. Q., Tang, L., Lu, S. H., Liang, T., Tong, Y. A., Liu, P., Zhang, Q., Xiong, Z. Q., Shi, X. J., Wu, L. H., Shi, W. Q., Tian, K., Zhong, X. H., Shi, K., Tang, Q. Y., Zhang, L. J., Huang, J. L., He, C. E., Kuang, F. H., Zhu, B., Liu, H., Jin, X., Xin, Y. J., Shi, X. K., Du, E. Z., Dore, A. J., Tang, S., Collett Jr., J. L., Goulding, K., Sun, Y. X., Ren, J., Zhang, F. S., and Liu, X. J.: Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China, Atmos. Chem. Phys., 15, 12345–12360, https://doi.org/10.5194/acp-15-12345-2015, 2015.
Yao, F., Chen, Y., Yan, Z., Li, P., Han, W., and Fang, J.: Biogeographic patterns of structural traits and C : N : P stoichiometry of tree twigs in China's forests, PloS One, 10, e0116391, https://doi.org/10.1371/journal.pone.0116391, 2015.
Zhang, Z. Q., Wang, C., Wang, F., Wen, Q., Zuo, L., Dong, T., Zhou, W., Zhang, S., Wu, S., and Yan, C.: Remote Sensing Monitoring of Land Cover in China. Planet Map Publishing House: Beijing, China, 7–8, 2010.
Zhu, J., He, N., Wang, Q., Yuan, G., Wen, D., Yu, G., and Jia, Y.: The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems, Sci. Total Environ., 511, 777–785, 2015.
Short summary
Accelerated N emissions in China may lead to an imbalance of atmospheric nutrient inputs in various ecosystems. Our assessment of P and N deposition in China's forests showed relatively high rates of P deposition, but they were accompanied by even much higher N deposition, resulting in high N : P deposition ratios. P and N deposition both showed a power-law increase with closer distance to the nearest large cities. Our results suggest an anthropogenic imbalance of regional N and P cycling.
Accelerated N emissions in China may lead to an imbalance of atmospheric nutrient inputs in...
Altmetrics
Final-revised paper
Preprint