Articles | Volume 16, issue 21
Atmos. Chem. Phys., 16, 13491–13507, 2016
https://doi.org/10.5194/acp-16-13491-2016
Atmos. Chem. Phys., 16, 13491–13507, 2016
https://doi.org/10.5194/acp-16-13491-2016

Research article 01 Nov 2016

Research article | 01 Nov 2016

Measurement of size-dependent single scattering albedo of fresh biomass burning aerosols using the extinction-minus-scattering technique with a combination of cavity ring-down spectroscopy and nephelometry

Sujeeta Singh et al.

Related authors

Laboratory studies of fresh and aged biomass burning aerosol emitted from east African biomass fuels – Part 1: Optical properties
Damon M. Smith, Marc N. Fiddler, Rudra P. Pokhrel, and Solomon Bililign
Atmos. Chem. Phys., 20, 10149–10168, https://doi.org/10.5194/acp-20-10149-2020,https://doi.org/10.5194/acp-20-10149-2020, 2020
Short summary
Laboratory studies of fresh and aged biomass burning aerosol emitted from east African biomass fuels – Part 2: Chemical properties and characterization
Damon M. Smith, Tianqu Cui, Marc N. Fiddler, Rudra P. Pokhrel, Jason D. Surratt, and Solomon Bililign
Atmos. Chem. Phys., 20, 10169–10191, https://doi.org/10.5194/acp-20-10169-2020,https://doi.org/10.5194/acp-20-10169-2020, 2020
Short summary
Construction and Characterization of an Indoor Smog Chamber for the Measurement of the Optical and Physicochemical Properties of Aging Biomass Burning Aerosols Native to sub-Saharan Africa
Damon M. Smith, Marc N. Fiddler, Kenneth G. Sexton, and Solomon Bililign
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-43,https://doi.org/10.5194/amt-2018-43, 2018
Revised manuscript not accepted
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Toward closure between predicted and observed particle viscosity over a wide range of temperatures and relative humidity
Sabin Kasparoglu, Ying Li, Manabu Shiraiwa, and Markus D. Petters
Atmos. Chem. Phys., 21, 1127–1141, https://doi.org/10.5194/acp-21-1127-2021,https://doi.org/10.5194/acp-21-1127-2021, 2021
Short summary
The effects of morphology, mobility size, and secondary organic aerosol (SOA) material coating on the ice nucleation activity of black carbon in the cirrus regime
Cuiqi Zhang, Yue Zhang, Martin J. Wolf, Leonid Nichman, Chuanyang Shen, Timothy B. Onasch, Longfei Chen, and Daniel J. Cziczo
Atmos. Chem. Phys., 20, 13957–13984, https://doi.org/10.5194/acp-20-13957-2020,https://doi.org/10.5194/acp-20-13957-2020, 2020
Short summary
The ice-nucleating activity of Arctic sea surface microlayer samples and marine algal cultures
Luisa Ickes, Grace C. E. Porter, Robert Wagner, Michael P. Adams, Sascha Bierbauer, Allan K. Bertram, Merete Bilde, Sigurd Christiansen, Annica M. L. Ekman, Elena Gorokhova, Kristina Höhler, Alexei A. Kiselev, Caroline Leck, Ottmar Möhler, Benjamin J. Murray, Thea Schiebel, Romy Ullrich, and Matthew E. Salter
Atmos. Chem. Phys., 20, 11089–11117, https://doi.org/10.5194/acp-20-11089-2020,https://doi.org/10.5194/acp-20-11089-2020, 2020
Short summary
Size-Resolved Atmospheric Ice Nucleating Particles during East Asian Dust Events
Jingchuan Chen, Zhijun Wu, Jie Chen, Naama Reicher, Xin Fang, Yinon Rudich, and Min Hu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-678,https://doi.org/10.5194/acp-2020-678, 2020
Revised manuscript accepted for ACP
Short summary
Comparing secondary organic aerosol (SOA) volatility distributions derived from isothermal SOA particle evaporation data and FIGAERO–CIMS measurements
Olli-Pekka Tikkanen, Angela Buchholz, Arttu Ylisirniö, Siegfried Schobesberger, Annele Virtanen, and Taina Yli-Juuti
Atmos. Chem. Phys., 20, 10441–10458, https://doi.org/10.5194/acp-20-10441-2020,https://doi.org/10.5194/acp-20-10441-2020, 2020
Short summary

Cited articles

Abo Riziq, A., Erlick, C., Dinar, E., and Rudich, Y.: Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy, Atmos. Chem. Phys., 7, 1523–1536, https://doi.org/10.5194/acp-7-1523-2007, 2007.
Abo Riziq, A., Trainic, M., Erlick, C., Segre, E., and Rudich, Y.: Extinction efficiencies of coated absorbing aerosols measured by cavity ring down aerosol spectrometry, Atmos. Chem. Phys., 8, 1823–1833, https://doi.org/10.5194/acp-8-1823-2008, 2008.
Alonso-Blanco, E., Calvo, A. I., Pont, V., Mallet, M., Fraile, R., and Castro, A.: Impact of biomass burning on aerosol size distribution, aerosol optical properties and associated radiative forcing, Aerosol Air Qual. Res., 14, 708–724, https://doi.org/10.4209/aaqr.2013.05.0163, 2014.
Anderson, T. L. and Ogren, J. A.: Determining aerosol radiative properties using the TSI 3563 integrating nephelometer, Aerosol Sci. Technol., 29, 57–69, https://doi.org/10.1080/02786829808965551, 1998.
Arnott, W., Moosmüller, H., Fred Rogers, C., Jin, T., and Bruch, R.: Photoacoustic spectrometer for measuring light absorption by aerosol: Instrument description, Atmos. Environ., 33, 2845–2852, https://doi.org/10.1016/S1352-2310(98)00361-6, 1999.
Download
Short summary
An accurate measurement of optical properties of aerosols is critical for quantifying the effect of aerosols on climate. Uncertainties still persist and measurement results vary significantly. The factors that affect measurement accuracy and the resulting uncertainties of the extinction-minus-scattering method are evaluated using a combination of cavity ring-down spectroscopy (CRDS) and integrating nephelometry, and applied to measure the optical properties of fresh soot (size 300 and 400 nm).
Altmetrics
Final-revised paper
Preprint