Research article
| Highlight paper
10 Jun 2014
Research article
| Highlight paper
| 10 Jun 2014
Global emission projections for the transportation sector using dynamic technology modeling
F. Yan et al.
Related authors
Jason Schroeder, Chenxia Cai, Jin Xu, David Ridley, Jin Lu, Nancy Bui, Fang Yan, and Jeremy Avise
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-178, https://doi.org/10.5194/acp-2022-178, 2022
Preprint under review for ACP
Short summary
Short summary
Ozone, a key component of smog, has plagued the Los Angeles region for decades. Ozone is created by complex chemical reactions that can be greatly impacted by anthropogenic emissions. This study makes use of the COVID-19 period to study the sensitivity of ozone chemistry in LA to certain anthropogenic emissions, notably from vehicles. We find that vehicular emissions of key pollutants dropped by up to 25 % during COVID-19, which caused a fundamental shift in ozone chemistry in the region.
Chandan Sarangi, Yun Qian, Ruby Leung, Yang Zhang, Yufei Zou, and Yuhang Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-324, https://doi.org/10.5194/acp-2022-324, 2022
Preprint under review for ACP
Short summary
Short summary
We show that for air quality, the densely-populated eastern US may see even larger impacts of wildfires due to long-distance smoke transport and associated positive climatic impacts, partially compensating the improvements from regulations in anthropogenic emissions. This study highlights the tension between natural and anthropogenic contributions and the non-local nature of air pollution that complicate regulatory strategies for improving future regional air quality for human health.
Jason Schroeder, Chenxia Cai, Jin Xu, David Ridley, Jin Lu, Nancy Bui, Fang Yan, and Jeremy Avise
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-178, https://doi.org/10.5194/acp-2022-178, 2022
Preprint under review for ACP
Short summary
Short summary
Ozone, a key component of smog, has plagued the Los Angeles region for decades. Ozone is created by complex chemical reactions that can be greatly impacted by anthropogenic emissions. This study makes use of the COVID-19 period to study the sensitivity of ozone chemistry in LA to certain anthropogenic emissions, notably from vehicles. We find that vehicular emissions of key pollutants dropped by up to 25 % during COVID-19, which caused a fundamental shift in ozone chemistry in the region.
Sally S.-C. Wang, Yun Qian, L. Ruby Leung, and Yang Zhang
Atmos. Chem. Phys., 22, 3445–3468, https://doi.org/10.5194/acp-22-3445-2022, https://doi.org/10.5194/acp-22-3445-2022, 2022
Short summary
Short summary
This study develops an interpretable machine learning (ML) model predicting monthly PM2.5 fire emission over the contiguous US at 0.25° resolution and compares the prediction skills of the ML and process-based models. The comparison facilitates attributions of model biases and better understanding of the strengths and uncertainties in the two types of models at regional scales, for informing future model development and their applications in fire emission projection.
Youngseob Kim, Lya Lugon, Alice Maison, Thibaud Sarica, Yelva Roustan, Myrto Valari, Yang Zhang, Michel André, and Karine Sartelet
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-26, https://doi.org/10.5194/gmd-2022-26, 2022
Preprint under review for GMD
Short summary
Short summary
This paper presents the last version of the street-network model, MUNICH v2.0. The description of MUNICH v1.0, which modelled gas-phase pollutants in street network, was published in GMD in 2018. Since then, major modifications were implemented in MUNICH. The comprehensive aerosol model SSH-aerosol is coupled to MUNICH to simulate the concentrations of primary and secondary aerosols. New parameterisations are also introduced. Test cases are defined to illustrate the new model functionalities.
Ruili Wu, Christopher W. Tessum, Yang Zhang, Chaopeng Hong, Yixuan Zheng, Xinyin Qin, Shigan Liu, and Qiang Zhang
Geosci. Model Dev., 14, 7621–7638, https://doi.org/10.5194/gmd-14-7621-2021, https://doi.org/10.5194/gmd-14-7621-2021, 2021
Short summary
Short summary
Reduced-complexity air quality models are less computationally intensive and easier to use. We developed a reduced-complexity air quality Intervention Model for Air Pollution over China (InMAP-China) to rapidly predict the air quality and estimate the health impacts of emission sources in China. We believe that this work will be of great interest to a broad audience, including environmentalists in China and scientists in relevant fields at both national and local institutes.
Kai Wang, Yang Zhang, Shaocai Yu, David C. Wong, Jonathan Pleim, Rohit Mathur, James T. Kelly, and Michelle Bell
Geosci. Model Dev., 14, 7189–7221, https://doi.org/10.5194/gmd-14-7189-2021, https://doi.org/10.5194/gmd-14-7189-2021, 2021
Short summary
Short summary
The two-way coupled WRF-CMAQ model accounting for complex chemistry–meteorology feedbacks has been applied to the long-term predictions of regional meteorology and air quality over the US. The model results show superior performance and importance of chemistry–meteorology feedbacks when compared to the offline coupled WRF and CMAQ simulations, which suggests that feedbacks should be considered along with other factors in developing future model applications to inform policy making.
Mariam Fawaz, Anita Avery, Timothy B. Onasch, Leah R. Williams, and Tami C. Bond
Atmos. Chem. Phys., 21, 15605–15618, https://doi.org/10.5194/acp-21-15605-2021, https://doi.org/10.5194/acp-21-15605-2021, 2021
Short summary
Short summary
Biomass burning is responsible for 90 % of the emissions of primary organic aerosols to the atmosphere. Emissions from biomass burning sources are considered chaotic. In this work, we developed a controlled experimental approach to understand the controlling factors in emission. Our results showed that emissions are repeatable and deterministic and that emissions from wood can be constrained.
Syuichi Itahashi, Rohit Mathur, Christian Hogrefe, Sergey L. Napelenok, and Yang Zhang
Geosci. Model Dev., 14, 5751–5768, https://doi.org/10.5194/gmd-14-5751-2021, https://doi.org/10.5194/gmd-14-5751-2021, 2021
Short summary
Short summary
The Community Multiscale Air Quality (CMAQ) modeling system extended for hemispheric-scale applications (H-CMAQ) incorporated the satellite-constrained degassing SO2 emissions from 50 volcanos across the Northern Hemisphere. The impact on tropospheric sulfate aerosol (SO42−) is assessed for 2010. Although the considered volcanic emissions occurred at or below the middle of free troposphere (500 hPa), SO42− enhancements of more than 10 % were detected up to the top of free troposphere (250 hPa).
Xiaoyang Chen, Yang Zhang, Kai Wang, Daniel Tong, Pius Lee, Youhua Tang, Jianping Huang, Patrick C. Campbell, Jeff Mcqueen, Havala O. T. Pye, Benjamin N. Murphy, and Daiwen Kang
Geosci. Model Dev., 14, 3969–3993, https://doi.org/10.5194/gmd-14-3969-2021, https://doi.org/10.5194/gmd-14-3969-2021, 2021
Short summary
Short summary
The continuously updated National Air Quality Forecast Capability (NAQFC) provides air quality forecasts. To support the development of the next-generation NAQFC, we evaluate a prototype of GFSv15-CMAQv5.0.2. The performance and the potential improvements for the system are discussed. This study can provide a scientific basis for further development of NAQFC and help it to provide more accurate air quality forecasts to the public over the contiguous United States.
Mario Eduardo Gavidia-Calderón, Sergio Ibarra-Espinosa, Youngseob Kim, Yang Zhang, and Maria de Fatima Andrade
Geosci. Model Dev., 14, 3251–3268, https://doi.org/10.5194/gmd-14-3251-2021, https://doi.org/10.5194/gmd-14-3251-2021, 2021
Short summary
Short summary
The MUNICH model was used to calculate pollutant concentrations inside the streets of São Paulo. The VEIN emission model provided the vehicular emissions and the coordinates of the streets. We used information from an air quality station to account for pollutant concentrations over the street rooftops. Results showed that when emissions are calibrated, MUNICH satisfied the performance criteria. MUNICH can be used to evaluate the impact of traffic-related air pollution on public health.
Yohei Shinozuka, Pablo E. Saide, Gonzalo A. Ferrada, Sharon P. Burton, Richard Ferrare, Sarah J. Doherty, Hamish Gordon, Karla Longo, Marc Mallet, Yan Feng, Qiaoqiao Wang, Yafang Cheng, Amie Dobracki, Steffen Freitag, Steven G. Howell, Samuel LeBlanc, Connor Flynn, Michal Segal-Rosenhaimer, Kristina Pistone, James R. Podolske, Eric J. Stith, Joseph Ryan Bennett, Gregory R. Carmichael, Arlindo da Silva, Ravi Govindaraju, Ruby Leung, Yang Zhang, Leonhard Pfister, Ju-Mee Ryoo, Jens Redemann, Robert Wood, and Paquita Zuidema
Atmos. Chem. Phys., 20, 11491–11526, https://doi.org/10.5194/acp-20-11491-2020, https://doi.org/10.5194/acp-20-11491-2020, 2020
Short summary
Short summary
In the southeast Atlantic, well-defined smoke plumes from Africa advect over marine boundary layer cloud decks; both are most extensive around September, when most of the smoke resides in the free troposphere. A framework is put forth for evaluating the performance of a range of global and regional atmospheric composition models against observations made during the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) airborne mission in September 2016.
Pablo E. Saide, Meng Gao, Zifeng Lu, Daniel L. Goldberg, David G. Streets, Jung-Hun Woo, Andreas Beyersdorf, Chelsea A. Corr, Kenneth L. Thornhill, Bruce Anderson, Johnathan W. Hair, Amin R. Nehrir, Glenn S. Diskin, Jose L. Jimenez, Benjamin A. Nault, Pedro Campuzano-Jost, Jack Dibb, Eric Heim, Kara D. Lamb, Joshua P. Schwarz, Anne E. Perring, Jhoon Kim, Myungje Choi, Brent Holben, Gabriele Pfister, Alma Hodzic, Gregory R. Carmichael, Louisa Emmons, and James H. Crawford
Atmos. Chem. Phys., 20, 6455–6478, https://doi.org/10.5194/acp-20-6455-2020, https://doi.org/10.5194/acp-20-6455-2020, 2020
Short summary
Short summary
Air quality forecasts over the Korean Peninsula captured aerosol optical depth but largely overpredicted surface PM during a Chinese haze transport event. Model deficiency was related to the calculation of optical properties. In order to improve it, aerosol size representation needs to be refined in the calculations, and the representation of aerosol properties, such as size distribution, chemical composition, refractive index, hygroscopicity parameter, and density, needs to be improved.
Syuichi Itahashi, Rohit Mathur, Christian Hogrefe, and Yang Zhang
Atmos. Chem. Phys., 20, 3373–3396, https://doi.org/10.5194/acp-20-3373-2020, https://doi.org/10.5194/acp-20-3373-2020, 2020
Short summary
Short summary
The state-of-the-science Community Multiscale Air Quality model extended for hemispheric applications (H-CMAQ) is used to model the trans-Pacific transport which has been recognized as a potential source of air pollutants over the US. In Part 1, modeled ozone is evaluated with observations at surface, by ozonesonde and airplane, and by satellite across the Northern Hemisphere. In addition, a newly developed air mass characterization method to estimate stratospheric intrusion is presented.
Syuichi Itahashi, Rohit Mathur, Christian Hogrefe, Sergey L. Napelenok, and Yang Zhang
Atmos. Chem. Phys., 20, 3397–3413, https://doi.org/10.5194/acp-20-3397-2020, https://doi.org/10.5194/acp-20-3397-2020, 2020
Short summary
Short summary
The state-of-the-science Community Multiscale Air Quality model extended for hemispheric applications (H-CMAQ) is used to model the trans-Pacific transport which has been recognized as a potential source of air pollutants over the US. In Part 2, the higher-order decoupled direct method (HDDM) is applied to investigate the emission impacts from east Asia and the US during April 2010. Furthermore, changes in trans-Pacific transport caused by the recent emissions are examined.
Fei Liu, Bryan N. Duncan, Nickolay A. Krotkov, Lok N. Lamsal, Steffen Beirle, Debora Griffin, Chris A. McLinden, Daniel L. Goldberg, and Zifeng Lu
Atmos. Chem. Phys., 20, 99–116, https://doi.org/10.5194/acp-20-99-2020, https://doi.org/10.5194/acp-20-99-2020, 2020
Short summary
Short summary
We present a novel method to infer CO2 emissions from individual power plants, based on satellite observations of co-emitted NO2. We find that the CO2 emissions estimated by our satellite-based method during 2005–2017 are in reasonable agreement with the CEMS measurements for US power plants. The broader implication of our methodology is that it has the potential to provide an additional constraint on CO2 emissions from power plants in regions of the world without reliable emissions accounting.
Brigitte Rooney, Ran Zhao, Yuan Wang, Kelvin H. Bates, Ajay Pillarisetti, Sumit Sharma, Seema Kundu, Tami C. Bond, Nicholas L. Lam, Bora Ozaltun, Li Xu, Varun Goel, Lauren T. Fleming, Robert Weltman, Simone Meinardi, Donald R. Blake, Sergey A. Nizkorodov, Rufus D. Edwards, Ankit Yadav, Narendra K. Arora, Kirk R. Smith, and John H. Seinfeld
Atmos. Chem. Phys., 19, 7719–7742, https://doi.org/10.5194/acp-19-7719-2019, https://doi.org/10.5194/acp-19-7719-2019, 2019
Short summary
Short summary
Approximately 3 billion people worldwide cook with solid fuels, such as wood, charcoal, and agricultural residues, that are often combusted in inefficient cookstoves. Here, we simulate the distribution of the two major health-damaging outdoor pollution species (PM2.5 and O3) using state-of-the-science emissions databases and atmospheric chemical transport models to estimate the impact of household combustion on ambient air quality in India.
Daniel L. Goldberg, Pablo E. Saide, Lok N. Lamsal, Benjamin de Foy, Zifeng Lu, Jung-Hun Woo, Younha Kim, Jinseok Kim, Meng Gao, Gregory Carmichael, and David G. Streets
Atmos. Chem. Phys., 19, 1801–1818, https://doi.org/10.5194/acp-19-1801-2019, https://doi.org/10.5194/acp-19-1801-2019, 2019
Short summary
Short summary
Using satellite data, we are able to estimate the emissions of NOx (NOx=NO+NO2), a toxic group of air pollutants, in the Seoul metropolitan area. We first develop an enhanced satellite product that better observes NO2 in urban regions. Using this new product, we derive NOx emissions to be twice as large as the emissions reported by the South Korean government. The implication is that the measures taken to reduce NOx emissions in South Korea have not been as effective as regulators have thought.
Junxi Zhang, Yang Gao, Kun Luo, L. Ruby Leung, Yang Zhang, Kai Wang, and Jianren Fan
Atmos. Chem. Phys., 18, 9861–9877, https://doi.org/10.5194/acp-18-9861-2018, https://doi.org/10.5194/acp-18-9861-2018, 2018
Short summary
Short summary
We used a regional model to investigate the impact of atmosphere with high temperature and low wind speed on ozone concentration. When these compound events (heat waves and stagnant weather) occur simultaneously, a striking ozone enhancement is revealed. This type of compound event is projected to increase more dominantly compared to single events in the future over the US, Europe, and China, implying the importance of reducing emissions in order to alleviate the impact from the compound events.
Pieternel F. Levelt, Joanna Joiner, Johanna Tamminen, J. Pepijn Veefkind, Pawan K. Bhartia, Deborah C. Stein Zweers, Bryan N. Duncan, David G. Streets, Henk Eskes, Ronald van der A, Chris McLinden, Vitali Fioletov, Simon Carn, Jos de Laat, Matthew DeLand, Sergey Marchenko, Richard McPeters, Jerald Ziemke, Dejian Fu, Xiong Liu, Kenneth Pickering, Arnoud Apituley, Gonzalo González Abad, Antti Arola, Folkert Boersma, Christopher Chan Miller, Kelly Chance, Martin de Graaf, Janne Hakkarainen, Seppo Hassinen, Iolanda Ialongo, Quintus Kleipool, Nickolay Krotkov, Can Li, Lok Lamsal, Paul Newman, Caroline Nowlan, Raid Suleiman, Lieuwe Gijsbert Tilstra, Omar Torres, Huiqun Wang, and Krzysztof Wargan
Atmos. Chem. Phys., 18, 5699–5745, https://doi.org/10.5194/acp-18-5699-2018, https://doi.org/10.5194/acp-18-5699-2018, 2018
Short summary
Short summary
The aim of this paper is to highlight the many successes of the Ozone Monitoring Instrument (OMI) spanning more than 13 years. Data from OMI have been used in a wide range of applications. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. OMI data continue to be used for new research and applications.
Rachel M. Hoesly, Steven J. Smith, Leyang Feng, Zbigniew Klimont, Greet Janssens-Maenhout, Tyler Pitkanen, Jonathan J. Seibert, Linh Vu, Robert J. Andres, Ryan M. Bolt, Tami C. Bond, Laura Dawidowski, Nazar Kholod, June-ichi Kurokawa, Meng Li, Liang Liu, Zifeng Lu, Maria Cecilia P. Moura, Patrick R. O'Rourke, and Qiang Zhang
Geosci. Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, https://doi.org/10.5194/gmd-11-369-2018, 2018
Short summary
Short summary
Historical emission trends are key inputs to Earth systems and atmospheric chemistry models. We present a new data set of historical (1750–2014) anthropogenic gases (CO, CH4, NH3, NOx, SO2, NMVOCs, BC, OC, and CO2) developed with the Community Emissions Data System (CEDS). This improves on existing inventories as it uses consistent methods and data across emissions species, has annual resolution for a longer and more recent time series, and is designed to be transparent and reproducible.
Kai Duan, Ge Sun, Steven G. McNulty, Peter V. Caldwell, Erika C. Cohen, Shanlei Sun, Heather D. Aldridge, Decheng Zhou, Liangxia Zhang, and Yang Zhang
Hydrol. Earth Syst. Sci., 21, 5517–5529, https://doi.org/10.5194/hess-21-5517-2017, https://doi.org/10.5194/hess-21-5517-2017, 2017
Short summary
Short summary
We examined the potential roles of major climatic variables (including precipitation, air temperature, solar radiation, specific humidity, and wind speed) in altering annual runoff, which is an important indicator of freshwater supply, in the United States through the 21st century. Increasing temperature, precipitation, and humidity are recognized as three major climatic factors that drive runoff to change in different directions across the country.
Daniel L. Goldberg, Lok N. Lamsal, Christopher P. Loughner, William H. Swartz, Zifeng Lu, and David G. Streets
Atmos. Chem. Phys., 17, 11403–11421, https://doi.org/10.5194/acp-17-11403-2017, https://doi.org/10.5194/acp-17-11403-2017, 2017
Short summary
Short summary
We developed a new satellite NO2 product using a high spatial resolution (1.33 × 1.33 km) model simulation constrained by aircraft observations. The high-resolution satellite product is now able to observe the spatial heterogeneities of NO2 pollution over a large area with more clarity. The satellite is now in better agreement with monitors at ground level observing the same pollution.
Francisco Mena, Tami C. Bond, and Nicole Riemer
Atmos. Chem. Phys., 17, 9399–9415, https://doi.org/10.5194/acp-17-9399-2017, https://doi.org/10.5194/acp-17-9399-2017, 2017
Short summary
Short summary
We estimate how biofuel burning may contribute to cloud droplet numbers by modeling the evolution of the size and composition of each particle in a biofuel burning plume from emission until it reaches ambient temperature and humidity. Condensation of semi-volatile gases homogenizes composition so that particles without water affinity can form cloud droplets. Coagulation barely changes properties relevant to clouds, except for limiting the number of emitted particles or enhancing homogenization.
Chaopeng Hong, Qiang Zhang, Yang Zhang, Youhua Tang, Daniel Tong, and Kebin He
Geosci. Model Dev., 10, 2447–2470, https://doi.org/10.5194/gmd-10-2447-2017, https://doi.org/10.5194/gmd-10-2447-2017, 2017
Short summary
Short summary
A regional coupled climate–chemistry modeling system using the dynamical downscaling technique was established and evaluated. The modeling system performed well for both the climatological and the short-term air quality applications over east Asia. Regional models outperformed global models in regional climate and air quality predictions. The coupled modeling system improved the model performance, although some biases remained in the aerosol–cloud–radiation variables.
Khairunnisa Yahya, Timothy Glotfelty, Kai Wang, Yang Zhang, and Athanasios Nenes
Geosci. Model Dev., 10, 2333–2363, https://doi.org/10.5194/gmd-10-2333-2017, https://doi.org/10.5194/gmd-10-2333-2017, 2017
Meng Li, Qiang Zhang, Jun-ichi Kurokawa, Jung-Hun Woo, Kebin He, Zifeng Lu, Toshimasa Ohara, Yu Song, David G. Streets, Gregory R. Carmichael, Yafang Cheng, Chaopeng Hong, Hong Huo, Xujia Jiang, Sicong Kang, Fei Liu, Hang Su, and Bo Zheng
Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, https://doi.org/10.5194/acp-17-935-2017, 2017
Short summary
Short summary
An anthropogenic emission inventory for Asia is developed for the years 2008 and 2010 to support the Model Inter-Comparison Study for Asia (MICS-Asia) and the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) projects by a mosaic of up-to-date regional emission inventories. The total Asian emissions in 2010 are estimated as follows: 51.3 Tg SO2, 52.1 Tg NOx, 336.5 Tg CO, 67.0 Tg NMVOC, 28.7 Tg NH3, 31.7 Tg PM10, 22.7 Tg PM2.5, 3.5 Tg BC, 8.3 Tg OC, and 17.3 Pg CO2.
Provat K. Saha, Andrey Khlystov, Khairunnisa Yahya, Yang Zhang, Lu Xu, Nga L. Ng, and Andrew P. Grieshop
Atmos. Chem. Phys., 17, 501–520, https://doi.org/10.5194/acp-17-501-2017, https://doi.org/10.5194/acp-17-501-2017, 2017
Kai Duan, Ge Sun, Steven G. McNulty, Peter V. Caldwell, Erika C. Cohen, Shanlei Sun, Heather D. Aldridge, Decheng Zhou, Liangxia Zhang, and Yang Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-493, https://doi.org/10.5194/hess-2016-493, 2016
Revised manuscript not accepted
Short summary
Short summary
This study examines the potential shift of the relative roles of changing precipitation and temperature in controlling freshwater availability in the USA. The influence of temperature is projected to outweigh that of precipitation in a continued warming future in the 21st century, although precipitation has been the primary control in recent decades. The vast croplands and grasslands across the central and forests in the northwestern regions might be particularly vulnerable to climate change.
Meng Gao, Gregory R. Carmichael, Pablo E. Saide, Zifeng Lu, Man Yu, David G. Streets, and Zifa Wang
Atmos. Chem. Phys., 16, 11837–11851, https://doi.org/10.5194/acp-16-11837-2016, https://doi.org/10.5194/acp-16-11837-2016, 2016
Short summary
Short summary
The WRF-Chem model was used to examine how the winter PM2.5 concentrations change in response to changes in emissions and meteorology in North China from 1960 to 2010. The discussions in this study indicate that dramatic changes in emissions are the main cause of increasing haze events in North China, and long-term trends in atmospheric circulations maybe another important cause. We also found aerosol feedbacks have been significantly enhanced from 1960 to 2010, due to higher aerosol loadings.
Nickolay A. Krotkov, Chris A. McLinden, Can Li, Lok N. Lamsal, Edward A. Celarier, Sergey V. Marchenko, William H. Swartz, Eric J. Bucsela, Joanna Joiner, Bryan N. Duncan, K. Folkert Boersma, J. Pepijn Veefkind, Pieternel F. Levelt, Vitali E. Fioletov, Russell R. Dickerson, Hao He, Zifeng Lu, and David G. Streets
Atmos. Chem. Phys., 16, 4605–4629, https://doi.org/10.5194/acp-16-4605-2016, https://doi.org/10.5194/acp-16-4605-2016, 2016
Short summary
Short summary
We examine changes in SO2 and NO2 over the world's most polluted regions during the first decade of Aura OMI observations. Over the eastern US, both NO2 and SO2 levels decreased by 40 % and 80 %, respectively. OMI confirmed large reductions in SO2 over eastern Europe's largest coal power plants. The North China Plain has the world's most severe SO2 pollution, but a decreasing trend been observed since 2011, with a 50 % reduction in 2012–2014. India's SO2 and NO2 levels are growing at a fast pace.
Shanlei Sun, Ge Sun, Erika Cohen, Steven G. McNulty, Peter V. Caldwell, Kai Duan, and Yang Zhang
Hydrol. Earth Syst. Sci., 20, 935–952, https://doi.org/10.5194/hess-20-935-2016, https://doi.org/10.5194/hess-20-935-2016, 2016
Short summary
Short summary
This study links an ecohydrological model with WRF (Weather Research and Forecasting Model) dynamically downscaled climate projections of the HadCM3 model under the IPCC SRES A2 emission scenario. Water yield and ecosystem productivity response to climate change were highly variable with an increasing trend across the 82 773 watersheds. Results are useful for policy-makers and land managers in formulating appropriate watershed-specific strategies for sustaining water and carbon sources.
Khairunnisa Yahya, Kai Wang, Patrick Campbell, Timothy Glotfelty, Jian He, and Yang Zhang
Geosci. Model Dev., 9, 671–695, https://doi.org/10.5194/gmd-9-671-2016, https://doi.org/10.5194/gmd-9-671-2016, 2016
Short summary
Short summary
The Weather Research and Forecasting model with Chemistry (WRF/Chem) v3.6.1 is evaluated for its first decadal application during 2001 to 2010 using the Representative Concentration Pathway 8.5 emissions. The model evaluation shows acceptable performance for long-term climatological simulations of most meteorological variables and chemical concentrations. Larger biases exist for aerosol-cloud-radiation variables, which future model improvement should focus on.
J. He, Y. Zhang, S. Tilmes, L. Emmons, J.-F. Lamarque, T. Glotfelty, A. Hodzic, and F. Vitt
Geosci. Model Dev., 8, 3999–4025, https://doi.org/10.5194/gmd-8-3999-2015, https://doi.org/10.5194/gmd-8-3999-2015, 2015
Short summary
Short summary
The global simulations with CB05_GE and MOZART-4x predict similar chemical profiles for major gases compared to aircraft measurements, with better agreement for the NOy profile by CB05_GE. The SOA concentrations of SOA at four sites in CONUS and organic carbon over the IMPROVE sites are better predicted by MOZART-4x. The two simulations result in a global average difference of 0.5W m-2 in simulated shortwave cloud radiative forcing, with up to 13.6W m-2 over subtropical regions.
R. Gonzalez-Abraham, S. H. Chung, J. Avise, B. Lamb, E. P. Salathé Jr., C. G. Nolte, D. Loughlin, A. Guenther, C. Wiedinmyer, T. Duhl, Y. Zhang, and D. G. Streets
Atmos. Chem. Phys., 15, 12645–12665, https://doi.org/10.5194/acp-15-12645-2015, https://doi.org/10.5194/acp-15-12645-2015, 2015
J. He, R. He, and Y. Zhang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-8-9965-2015, https://doi.org/10.5194/gmdd-8-9965-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
WRF/Chem simulations are performed to understand the impacts of cumulus parameterizations and air-sea interactions on coastal air quality. The use of different cumulus parameterizations gives different vertical mixing and wet scavenging. The use of different air-sea interaction treatments also gives different predictions of O3 and PM2.5 by up to 17.3 ppb and 7.9 μg m-3, respectively. WRF/Chem-ROMS improves model predictions, illustrating the benefits and needs of using coupled atmospheric-ocean
Z. Lu, D. G. Streets, B. de Foy, L. N. Lamsal, B. N. Duncan, and J. Xing
Atmos. Chem. Phys., 15, 10367–10383, https://doi.org/10.5194/acp-15-10367-2015, https://doi.org/10.5194/acp-15-10367-2015, 2015
Short summary
Short summary
Using an exponentially modified Gaussian method and taking into account the effect of wind on NO2 distributions, we estimate 3-year moving-average emissions of summertime NOx from 35 US urban areas directly from NO2 retrievals of the OMI during 2005−2014. Total OMI-derived NOx emissions over US urban areas decreased by 49%, consistent with reductions of 43, 49, and 44% in the bottom-up NOx emissions, the weak-wind OMI NO2 burdens, and the averaged NO2 concentrations, respectively.
K. Yahya, K. Wang, Y. Zhang, and T. E. Kleindienst
Geosci. Model Dev., 8, 2095–2117, https://doi.org/10.5194/gmd-8-2095-2015, https://doi.org/10.5194/gmd-8-2095-2015, 2015
Short summary
Short summary
The application of WRF/Chem to North America shows that it can reproduce most observations and their variation trends from 2006 to 2010. The inclusion of chemical feedbacks reduces biases in meteorological predictions in 2010 but increases errors in comparison to WRF. The net changes in meteorology from 2006 to 2010 are mostly influenced by changes in meteorology and those of ozone and fine particles are influenced by changes in emissions and chemical BCONs, and to a lesser extent meteorology.
R. Kumar, M. C. Barth, V. S. Nair, G. G. Pfister, S. Suresh Babu, S. K. Satheesh, K. Krishna Moorthy, G. R. Carmichael, Z. Lu, and D. G. Streets
Atmos. Chem. Phys., 15, 5415–5428, https://doi.org/10.5194/acp-15-5415-2015, https://doi.org/10.5194/acp-15-5415-2015, 2015
Short summary
Short summary
We examine differences in the surface BC between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identify dominant sources of BC in South Asia during ICARB. Anthropogenic emissions were the main source of BC during ICARB and had about 5 times stronger influence on the BoB compared to the AS. Regional-scale transport contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions.
L. Fierce, N. Riemer, and T. C. Bond
Atmos. Chem. Phys., 15, 3173–3191, https://doi.org/10.5194/acp-15-3173-2015, https://doi.org/10.5194/acp-15-3173-2015, 2015
Short summary
Short summary
The timescale for particles containing black carbon to age from hydrophobic to hygroscopic strongly influences black carbon's atmospheric lifetime and climate impact. This paper identifies the minimal set of independent variables needed to explain variance in this aging timescale. This work distills the complex interactions captured by a particle-resolved aerosol model to a few input variables and is a first step toward developing physically based parameterizations of aerosol aging.
B. Zheng, Q. Zhang, Y. Zhang, K. B. He, K. Wang, G. J. Zheng, F. K. Duan, Y. L. Ma, and T. Kimoto
Atmos. Chem. Phys., 15, 2031–2049, https://doi.org/10.5194/acp-15-2031-2015, https://doi.org/10.5194/acp-15-2031-2015, 2015
S. Kulkarni, N. Sobhani, J. P. Miller-Schulze, M. M. Shafer, J. J. Schauer, P. A. Solomon, P. E. Saide, S. N. Spak, Y. F. Cheng, H. A. C. Denier van der Gon, Z. Lu, D. G. Streets, G. Janssens-Maenhout, C. Wiedinmyer, J. Lantz, M. Artamonova, B. Chen, S. Imashev, L. Sverdlik, J. T. Deminter, B. Adhikary, A. D'Allura, C. Wei, and G. R. Carmichael
Atmos. Chem. Phys., 15, 1683–1705, https://doi.org/10.5194/acp-15-1683-2015, https://doi.org/10.5194/acp-15-1683-2015, 2015
Short summary
Short summary
This study presents a regional-scale modeling analysis of aerosols in the Central Asia region including detailed characterization of seasonal source region and sector contributions along with the predicted changes in distribution of aerosols using 2030 future emission scenarios. The influence of long transport and impact of varied emission sources including dust, biomass burning, and anthropogenic sources on the regional aerosol distributions and the associated transport pathways are discussed.
C. Zhao, Z. Hu, Y. Qian, L. Ruby Leung, J. Huang, M. Huang, J. Jin, M. G. Flanner, R. Zhang, H. Wang, H. Yan, Z. Lu, and D. G. Streets
Atmos. Chem. Phys., 14, 11475–11491, https://doi.org/10.5194/acp-14-11475-2014, https://doi.org/10.5194/acp-14-11475-2014, 2014
T. Glotfelty, Y. Zhang, P. Karamchandani, and D. G. Streets
Atmos. Chem. Phys., 14, 9379–9402, https://doi.org/10.5194/acp-14-9379-2014, https://doi.org/10.5194/acp-14-9379-2014, 2014
J. He and Y. Zhang
Atmos. Chem. Phys., 14, 9171–9200, https://doi.org/10.5194/acp-14-9171-2014, https://doi.org/10.5194/acp-14-9171-2014, 2014
B. Gantt, J. He, X. Zhang, Y. Zhang, and A. Nenes
Atmos. Chem. Phys., 14, 7485–7497, https://doi.org/10.5194/acp-14-7485-2014, https://doi.org/10.5194/acp-14-7485-2014, 2014
C. He, Q. B. Li, K. N. Liou, J. Zhang, L. Qi, Y. Mao, M. Gao, Z. Lu, D. G. Streets, Q. Zhang, M. M. Sarin, and K. Ram
Atmos. Chem. Phys., 14, 7091–7112, https://doi.org/10.5194/acp-14-7091-2014, https://doi.org/10.5194/acp-14-7091-2014, 2014
M. Li, Q. Zhang, D. G. Streets, K. B. He, Y. F. Cheng, L. K. Emmons, H. Huo, S. C. Kang, Z. Lu, M. Shao, H. Su, X. Yu, and Y. Zhang
Atmos. Chem. Phys., 14, 5617–5638, https://doi.org/10.5194/acp-14-5617-2014, https://doi.org/10.5194/acp-14-5617-2014, 2014
M. Chin, T. Diehl, Q. Tan, J. M. Prospero, R. A. Kahn, L. A. Remer, H. Yu, A. M. Sayer, H. Bian, I. V. Geogdzhayev, B. N. Holben, S. G. Howell, B. J. Huebert, N. C. Hsu, D. Kim, T. L. Kucsera, R. C. Levy, M. I. Mishchenko, X. Pan, P. K. Quinn, G. L. Schuster, D. G. Streets, S. A. Strode, O. Torres, and X.-P. Zhao
Atmos. Chem. Phys., 14, 3657–3690, https://doi.org/10.5194/acp-14-3657-2014, https://doi.org/10.5194/acp-14-3657-2014, 2014
L. T. Wang, Z. Wei, J. Yang, Y. Zhang, F. F. Zhang, J. Su, C. C. Meng, and Q. Zhang
Atmos. Chem. Phys., 14, 3151–3173, https://doi.org/10.5194/acp-14-3151-2014, https://doi.org/10.5194/acp-14-3151-2014, 2014
S. J. Smith and T. C. Bond
Atmos. Chem. Phys., 14, 537–549, https://doi.org/10.5194/acp-14-537-2014, https://doi.org/10.5194/acp-14-537-2014, 2014
A. Baklanov, K. Schlünzen, P. Suppan, J. Baldasano, D. Brunner, S. Aksoyoglu, G. Carmichael, J. Douros, J. Flemming, R. Forkel, S. Galmarini, M. Gauss, G. Grell, M. Hirtl, S. Joffre, O. Jorba, E. Kaas, M. Kaasik, G. Kallos, X. Kong, U. Korsholm, A. Kurganskiy, J. Kushta, U. Lohmann, A. Mahura, A. Manders-Groot, A. Maurizi, N. Moussiopoulos, S. T. Rao, N. Savage, C. Seigneur, R. S. Sokhi, E. Solazzo, S. Solomos, B. Sørensen, G. Tsegas, E. Vignati, B. Vogel, and Y. Zhang
Atmos. Chem. Phys., 14, 317–398, https://doi.org/10.5194/acp-14-317-2014, https://doi.org/10.5194/acp-14-317-2014, 2014
Y. Zhang, K. Sartelet, S.-Y. Wu, and C. Seigneur
Atmos. Chem. Phys., 13, 6807–6843, https://doi.org/10.5194/acp-13-6807-2013, https://doi.org/10.5194/acp-13-6807-2013, 2013
Y. Zhang, K. Sartelet, S. Zhu, W. Wang, S.-Y. Wu, X. Zhang, K. Wang, P. Tran, C. Seigneur, and Z.-F. Wang
Atmos. Chem. Phys., 13, 6845–6875, https://doi.org/10.5194/acp-13-6845-2013, https://doi.org/10.5194/acp-13-6845-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Impact of stratospheric aerosol intervention geoengineering on surface air temperature in China: a surface energy budget perspective
Regional impacts of black carbon morphologies on shortwave aerosol–radiation interactions: a comparative study between the US and China
Tropospheric warming over the northern Indian Ocean caused by South Asian anthropogenic aerosols: possible impact on the upper troposphere and lower stratosphere
Intraseasonal variation of the northeast Asian anomalous anticyclone and its impacts on PM2.5 pollution in the North China Plain in early winter
Inverse modeling of the 2021 spring super dust storms in East Asia
Causal influences of El Niño–Southern Oscillation on global dust activities
Formation, radiative forcing, and climatic effects of severe regional haze
Advances in air quality research – current and emerging challenges
Large-eddy-simulation study on turbulent particle deposition and its dependence on atmospheric-boundary-layer stability
Aviation contrail climate effects in the North Atlantic from 2016–2021
Aerosol indirect effects in complex-orography areas: a numerical study over the Great Alpine Region
Modelling the size distribution of aggregated volcanic ash and implications for operational atmospheric dispersion modelling
The effect of BC on aerosol–boundary layer feedback: potential implications for urban pollution episodes
Relative importance of high-latitude local and long-range-transported dust for Arctic ice-nucleating particles and impacts on Arctic mixed-phase clouds
Technical note: Dispersion of cooking-generated aerosols from an urban street canyon
Comparison of six approaches to predicting droplet activation of surface active aerosol – Part 1: moderately surface active organics
The contribution of coral-reef-derived dimethyl sulfide to aerosol burden over the Great Barrier Reef: a modelling study
Development and application of a street-level meteorology and pollutant tracking system (S-TRACK)
How well do the CMIP6 models simulate dust aerosols?
Input-adaptive linear mixed-effects model for estimating alveolar lung-deposited surface area (LDSA) using multipollutant datasets
Simulated impacts of vertical distributions of black carbon aerosol on meteorology and PM2.5 concentrations in Beijing during severe haze events
Data assimilation of volcanic aerosol observations using FALL3D+PDAF
Simulation of the effects of low-volatility organic compounds on aerosol number concentrations in Europe
New particle formation event detection with Mask R-CNN
Contribution of traffic-originated nanoparticle emissions to regional and local aerosol levels
Reassessment of the radiocesium resuspension flux from contaminated ground surfaces in eastern Japan
Duff burning from wildfires in a moist region: different impacts on PM2.5 and ozone
Influence of emission size distribution and nucleation on number concentrations over Greater Paris
Assimilating spaceborne lidar dust extinction can improve dust forecasts
Assessing the value meteorological ensembles add to dispersion modelling using hypothetical releases
Effective radiative forcing of anthropogenic aerosols in E3SMv1: historical changes, causality, decomposition, and parameterization sensitivities
Effects of oligomerization and decomposition on the nanoparticle growth: a model study
The role of anthropogenic aerosols in the anomalous cooling from 1960 to 1990 in the CMIP6 Earth system models
Constant flux layers with gravitational settling: links to aerosols, fog and deposition velocities
Examination of aerosol impacts on convective clouds and precipitation in two metropolitan areas in East Asia; how varying depths of convective clouds between the areas diversify those aerosol effects?
Combining POLDER-3 satellite observations and WRF-Chem numerical simulations to derive biomass burning aerosol properties over the southeast Atlantic region
Is the Atlantic Ocean driving the recent variability in South Asian dust?
Molecular-scale description of interfacial mass transfer in phase-separated aqueous secondary organic aerosol
Exploring the uncertainties in the aviation soot–cirrus effect
Reduced effective radiative forcing from cloud–aerosol interactions (ERFaci) with improved treatment of early aerosol growth in an Earth system model
Hyperfine-resolution mapping of on-road vehicle emissions with comprehensive traffic monitoring and an intelligent transportation system
Less atmospheric radiative heating by dust due to the synergy of coarser size and aspherical shape
Air quality deterioration episode associated with a typhoon over the complex topographic environment in central Taiwan
Impact of modified turbulent diffusion of PM2.5 aerosol in WRF-Chem simulations in eastern China
What rainfall rates are most important to wet removal of different aerosol types?
A weather regime characterisation of winter biomass aerosol transport from southern Africa
15-year variability of desert dust optical depth on global and regional scales
Dipole pattern of summer ozone pollution in the east of China and its connection with climate variability
Aerosol absorption in global models from AeroCom phase III
A black carbon peak and its sources in the free troposphere of Beijing induced by cyclone lifting and transport from central China
Zhaochen Liu, Xianmei Lang, and Dabang Jiang
Atmos. Chem. Phys., 22, 7667–7680, https://doi.org/10.5194/acp-22-7667-2022, https://doi.org/10.5194/acp-22-7667-2022, 2022
Short summary
Short summary
Stratospheric aerosol intervention geoengineering is considered a potential means to counteract global warming. Here the impact of stratospheric aerosol intervention geoengineering on surface air temperature over China and related physical processes are investigated. Results show that the increased stratospheric aerosols cause surface cooling over China. The temperature responses vary with models, regions, and seasons and are largely related to net surface shortwave radiation changes.
Jie Luo, Zhengqiang Li, Chenchong Zhang, Qixing Zhang, Yongming Zhang, Ying Zhang, Gabriele Curci, and Rajan K. Chakrabarty
Atmos. Chem. Phys., 22, 7647–7666, https://doi.org/10.5194/acp-22-7647-2022, https://doi.org/10.5194/acp-22-7647-2022, 2022
Short summary
Short summary
The fractal black carbon was applied to re-evaluate the regional impacts of morphologies on aerosol–radiation interactions (ARIs), and the effects were compared between the US and China. The regional-mean clear-sky ARI is significantly affected by the BC morphology, and relative differences of 17.1 % and 38.7 % between the fractal model with a Df of 1.8 and the spherical model were observed in eastern China and the northwest US, respectively.
Suvarna Fadnavis, Prashant Chavan, Akash Joshi, Sunil M. Sonbawne, Asutosh Acharya, Panuganti C. S. Devara, Alexandru Rap, Felix Ploeger, and Rolf Müller
Atmos. Chem. Phys., 22, 7179–7191, https://doi.org/10.5194/acp-22-7179-2022, https://doi.org/10.5194/acp-22-7179-2022, 2022
Short summary
Short summary
We show that large amounts of anthropogenic aerosols are transported from South Asia to the northern Indian Ocean. These aerosols are then lifted into the UTLS by the ascending branch of the Hadley circulation. They are further transported to the Southern Hemisphere and downward via westerly ducts over the tropical Atlantic and Pacific. These aerosols increase tropospheric heating, resulting in an increase in water vapor, which is then transported to the UTLS.
Xiadong An, Wen Chen, Peng Hu, Shangfeng Chen, and Lifang Sheng
Atmos. Chem. Phys., 22, 6507–6521, https://doi.org/10.5194/acp-22-6507-2022, https://doi.org/10.5194/acp-22-6507-2022, 2022
Short summary
Short summary
The intraseasonal NAAA usually establishes quickly on day −3 with a life span of 8 days. Further results revealed that the probability of regional PM2.5 pollution related to the NAAA for at least 2 days in the NCP is 80% in NDJ period 2000–2021. Particularly, air quality in the NCP tends to deteriorate on day 2 prior to the peak day of the NAAA and reaches a peak on day −1 with a life cycle of 4 days. The corresponding meteorological conditions support these conclusions.
Jianbing Jin, Mijie Pang, Arjo Segers, Wei Han, Li Fang, Baojie Li, Haochuan Feng, Hai Xiang Lin, and Hong Liao
Atmos. Chem. Phys., 22, 6393–6410, https://doi.org/10.5194/acp-22-6393-2022, https://doi.org/10.5194/acp-22-6393-2022, 2022
Short summary
Short summary
Super dust storms reappeared in East Asia last spring after being absent for one and a half decades. Accurate simulation of such super sandstorms is valuable, but challenging due to imperfect emissions. In this study, the emissions of these dust storms are estimated by assimilating multiple observations. The results reveal that emissions originated from both China and Mongolia. However, for northern China, long-distance transport from Mongolia contributes much more dust than Chinese deserts.
Thanh Le and Deg-Hyo Bae
Atmos. Chem. Phys., 22, 5253–5263, https://doi.org/10.5194/acp-22-5253-2022, https://doi.org/10.5194/acp-22-5253-2022, 2022
Short summary
Short summary
Here we assess the response of dust activities to El Niño–Southern Oscillation (ENSO) over the 1850–2014 period using climate model outputs. Our results show that ENSO is an important driver of dust deposition and dust transportation with high consensus across models. However, the results indicate that ENSO is unlikely to show causal impacts on dust emissions of major dust sources. This study allows us to obtain further understanding of the linkages between ENSO and dust cycle at a global scale.
Yun Lin, Yuan Wang, Bowen Pan, Jiaxi Hu, Song Guo, Misti Levy Zamora, Pengfei Tian, Qiong Su, Yuemeng Ji, Jiayun Zhao, Mario Gomez-Hernandez, Min Hu, and Renyi Zhang
Atmos. Chem. Phys., 22, 4951–4967, https://doi.org/10.5194/acp-22-4951-2022, https://doi.org/10.5194/acp-22-4951-2022, 2022
Short summary
Short summary
Severe regional haze events, which are characterized by exceedingly high levels of fine particulate matter (PM), occur frequently in many developing countries (such as China and India), with profound implications for human health, weather, and climate. Our work establishes a synthetic view for the dominant regional features during severe haze events, unraveling rapid in situ PM production and inefficient transport, both of which are amplified by atmospheric stagnation.
Ranjeet S. Sokhi, Nicolas Moussiopoulos, Alexander Baklanov, John Bartzis, Isabelle Coll, Sandro Finardi, Rainer Friedrich, Camilla Geels, Tiia Grönholm, Tomas Halenka, Matthias Ketzel, Androniki Maragkidou, Volker Matthias, Jana Moldanova, Leonidas Ntziachristos, Klaus Schäfer, Peter Suppan, George Tsegas, Greg Carmichael, Vicente Franco, Steve Hanna, Jukka-Pekka Jalkanen, Guus J. M. Velders, and Jaakko Kukkonen
Atmos. Chem. Phys., 22, 4615–4703, https://doi.org/10.5194/acp-22-4615-2022, https://doi.org/10.5194/acp-22-4615-2022, 2022
Short summary
Short summary
This review of air quality research focuses on developments over the past decade. The article considers current and future challenges that are important from air quality research and policy perspectives and highlights emerging prominent gaps of knowledge. The review also examines how air pollution management needs to adapt to new challenges and makes recommendations to guide the direction for future air quality research within the wider community and to provide support for policy.
Xin Yin, Cong Jiang, Yaping Shao, Ning Huang, and Jie Zhang
Atmos. Chem. Phys., 22, 4509–4522, https://doi.org/10.5194/acp-22-4509-2022, https://doi.org/10.5194/acp-22-4509-2022, 2022
Short summary
Short summary
Through a series of numerical experiments using the large-eddy-simulation model, we have developed an improved particle deposition scheme that takes into account transient wind shear fluctuations. Statistical analysis of the simulation results shows that the shear stress can be well approximated by a Weibull distribution and that the new scheme provides more accurate predictions than the conventional scheme, particularly under weak wind conditions and strong convective atmospheric conditions.
Roger Teoh, Ulrich Schumann, Edward Gryspeerdt, Marc Shapiro, Jarlath Molloy, George Koudis, Christiane Voigt, and Marc Stettler
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-169, https://doi.org/10.5194/acp-2022-169, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Aircraft condensation trails (contrails) contribute to over half of the climate forcing attributable to aviation. This study uses historical air traffic and weather data to simulate contrails in the North Atlantic over 5 years, from 2016 to 2021. We found large intra- and inter-year variability in contrail radiative forcing and observed a 66 % reduction due to COVID-19. The most warming contrails predominantly result from night-time flights in winter.
Anna Napoli, Fabien Desbiolles, Antonio Parodi, and Claudia Pasquero
Atmos. Chem. Phys., 22, 3901–3909, https://doi.org/10.5194/acp-22-3901-2022, https://doi.org/10.5194/acp-22-3901-2022, 2022
Short summary
Short summary
Aerosols are liquid or solid particles suspended in the air that can interact with radiation and clouds, modifying the meteoclimatic conditions. Using an atmospheric model, we study the climatological impact of aerosols through their effects on clouds in the Alps, a region characterized by high pollution levels in the densely populated surrounding flatlands. Results show that cloud cover, temperature, and precipitation are affected by aerosols, and the response varies with elevation and season.
Frances Beckett, Eduardo Rossi, Benjamin Devenish, Claire Witham, and Costanza Bonadonna
Atmos. Chem. Phys., 22, 3409–3431, https://doi.org/10.5194/acp-22-3409-2022, https://doi.org/10.5194/acp-22-3409-2022, 2022
Short summary
Short summary
As volcanic ash is transported through the atmosphere, it may collide and stick together to form aggregates. Neglecting the process of aggregation in atmospheric dispersion models could lead to inaccurate forecasts used by civil aviation for hazard assessment. We developed an aggregation scheme for use with the model NAME, which is used by the London Volcanic Ash Advisory Centre. Using our scheme, we investigate the impact of aggregation on simulations of the 2010 Eyjafjallajökull ash cloud.
Jessica Slater, Hugh Coe, Gordon McFiggans, Juha Tonttila, and Sami Romakkaniemi
Atmos. Chem. Phys., 22, 2937–2953, https://doi.org/10.5194/acp-22-2937-2022, https://doi.org/10.5194/acp-22-2937-2022, 2022
Short summary
Short summary
This paper shows the specific impact of black carbon (BC) on the aerosol–planetary boundary layer (PBL) feedback and its influence on a Beijing haze episode. Overall, this paper shows that strong temperature inversions prevent BC heating within the PBL from significantly increasing PBL height, while BC above the PBL suppresses PBL development significantly through the day. From this we suggest a method by which both locally and regionally emitted BC may impact urban pollution episodes.
Yang Shi, Xiaohong Liu, Mingxuan Wu, Xi Zhao, Ziming Ke, and Hunter Brown
Atmos. Chem. Phys., 22, 2909–2935, https://doi.org/10.5194/acp-22-2909-2022, https://doi.org/10.5194/acp-22-2909-2022, 2022
Short summary
Short summary
We perform a modeling study to evaluate the contribution to Arctic dust loading and ice-nucleating particle (INP) population from high-latitude local and low-latitude dust. High-latitude dust has a large contribution in the lower troposphere, while low-latitude dust dominates the upper troposphere. The high-latitude dust INPs result in a net cooling effect on the Arctic surface by glaciating mixed-phase clouds. Our results highlight the contribution of high-latitude dust to the Arctic climate.
Shang Gao, Mona Kurppa, Chak K. Chan, and Keith Ngan
Atmos. Chem. Phys., 22, 2703–2726, https://doi.org/10.5194/acp-22-2703-2022, https://doi.org/10.5194/acp-22-2703-2022, 2022
Short summary
Short summary
The contribution of cooking emissions to organic aerosols may exceed that of motor vehicles. However, little is known about how cooking-generated aerosols evolve in the outdoor environment. In this paper, we present a numerical study of the dispersion of cooking emissions. For plausible choices of the emission strength, cooking can yield much higher concentrations than traffic. This has important implications for public health and city planning.
Sampo Vepsäläinen, Silvia M. Calderón, Jussi Malila, and Nønne L. Prisle
Atmos. Chem. Phys., 22, 2669–2687, https://doi.org/10.5194/acp-22-2669-2022, https://doi.org/10.5194/acp-22-2669-2022, 2022
Short summary
Short summary
Atmospheric aerosols act as seeds for cloud formation. Many aerosols contain surface active material that accumulates at the surface of growing droplets. This can affect cloud droplet activation, but the broad significance of the effect and the best way to model it are still debated. We compare predictions of six different model approaches to surface activity of organic aerosols and find significant differences between the models, especially with large fractions of organics in the dry particles.
Sonya L. Fiddes, Matthew T. Woodhouse, Steve Utembe, Robyn Schofield, Simon P. Alexander, Joel Alroe, Scott D. Chambers, Zhenyi Chen, Luke Cravigan, Erin Dunne, Ruhi S. Humphries, Graham Johnson, Melita D. Keywood, Todd P. Lane, Branka Miljevic, Yuko Omori, Alain Protat, Zoran Ristovski, Paul Selleck, Hilton B. Swan, Hiroshi Tanimoto, Jason P. Ward, and Alastair G. Williams
Atmos. Chem. Phys., 22, 2419–2445, https://doi.org/10.5194/acp-22-2419-2022, https://doi.org/10.5194/acp-22-2419-2022, 2022
Short summary
Short summary
Coral reefs have been found to produce the climatically relevant chemical compound dimethyl sulfide (DMS). It has been suggested that corals can modify their environment via the production of DMS. We use an atmospheric chemistry model to test this theory at a regional scale for the first time. We find that it is unlikely that coral-reef-derived DMS has an influence over local climate, in part due to the proximity to terrestrial and anthropogenic aerosol sources.
Huan Zhang, Sunling Gong, Lei Zhang, Jingwei Ni, Jianjun He, Yaqiang Wang, Xu Wang, Lixin Shi, Jingyue Mo, Huabing Ke, and Shuhua Lu
Atmos. Chem. Phys., 22, 2221–2236, https://doi.org/10.5194/acp-22-2221-2022, https://doi.org/10.5194/acp-22-2221-2022, 2022
Short summary
Short summary
This study established a multi-model simulation system for street-level circulation and pollutant tracking and applied to real building scenarios and atmospheric conditions. Results showed that for a particular site the potential contribution ratio varies with the height of the site, with a peak not at the ground but at a certain height. This work is of significance for urban planning and improvement of urban air quality.
Alcide Zhao, Claire L. Ryder, and Laura J. Wilcox
Atmos. Chem. Phys., 22, 2095–2119, https://doi.org/10.5194/acp-22-2095-2022, https://doi.org/10.5194/acp-22-2095-2022, 2022
Short summary
Short summary
The CMIP6 models' simulated dust processes are getting more uncertain as models become more sophisticated. Of particular challenge are the links between dust cycles and optical properties, and we recommend more detailed output relating to dust cycles in future intercomparison projects to constrain such links. Also, models struggle to capture certain key regional dust processes such as dust accumulation along the slope of the Himalayas and dust seasonal cycles in North China and North America.
Pak Lun Fung, Martha A. Zaidan, Jarkko V. Niemi, Erkka Saukko, Hilkka Timonen, Anu Kousa, Joel Kuula, Topi Rönkkö, Ari Karppinen, Sasu Tarkoma, Markku Kulmala, Tuukka Petäjä, and Tareq Hussein
Atmos. Chem. Phys., 22, 1861–1882, https://doi.org/10.5194/acp-22-1861-2022, https://doi.org/10.5194/acp-22-1861-2022, 2022
Short summary
Short summary
We developed an input-adaptive mixed-effects model, which was automatised to select the best combination of input variables, including up to three fixed effect variables and three time indictors as random effect variables. We tested the model to estimate lung-deposited surface area (LDSA), which correlates well with human health. The results show the inclusion of time indicators improved the sensitivity and the accuracy of the model so that it could serve as a network of virtual sensors.
Donglin Chen, Hong Liao, Yang Yang, Lei Chen, Delong Zhao, and Deping Ding
Atmos. Chem. Phys., 22, 1825–1844, https://doi.org/10.5194/acp-22-1825-2022, https://doi.org/10.5194/acp-22-1825-2022, 2022
Short summary
Short summary
The black carbon (BC) vertical profile plays a critical role in BC–meteorology interaction, which also influences PM2.5 concentrations. More BC mass was assigned into high altitudes (above 1000 m) in the model, which resulted in a stronger cooling effect near the surface, a larger temperature inversion below 421 m, more reductions in PBLH, and a larger increase in near-surface PM2.5 in the daytime caused by the direct radiative effect of BC.
Leonardo Mingari, Arnau Folch, Andrew T. Prata, Federica Pardini, Giovanni Macedonio, and Antonio Costa
Atmos. Chem. Phys., 22, 1773–1792, https://doi.org/10.5194/acp-22-1773-2022, https://doi.org/10.5194/acp-22-1773-2022, 2022
Short summary
Short summary
We present a new implementation of an ensemble-based data assimilation method to improve forecasting of volcanic aerosols. This system can be efficiently integrated into operational workflows by exploiting high-performance computing resources. We found a dramatic improvement of forecast quality when satellite retrievals are continuously assimilated. Management of volcanic risk and reduction of aviation impacts can strongly benefit from this research.
David Patoulias and Spyros N. Pandis
Atmos. Chem. Phys., 22, 1689–1706, https://doi.org/10.5194/acp-22-1689-2022, https://doi.org/10.5194/acp-22-1689-2022, 2022
Short summary
Short summary
Our simulations indicate that the recently identified production and subsequent condensation effect of extremely low-volatility organic compounds have a smaller-than-expected effect on the total concentration of atmospheric particles. On the other hand, the oxidation of intermediate-volatility organic compounds leads to decreases in the ultrafine-particle concentrations. These results improve our understanding of the links between secondary organic aerosol formation and ultrafine particles.
Peifeng Su, Jorma Joutsensaari, Lubna Dada, Martha Arbayani Zaidan, Tuomo Nieminen, Xinyang Li, Yusheng Wu, Stefano Decesari, Sasu Tarkoma, Tuukka Petäjä, Markku Kulmala, and Petri Pellikka
Atmos. Chem. Phys., 22, 1293–1309, https://doi.org/10.5194/acp-22-1293-2022, https://doi.org/10.5194/acp-22-1293-2022, 2022
Short summary
Short summary
We regarded the banana shapes in the surface plots as a special kind of object (similar to cats) and applied an instance segmentation technique to automatically identify the new particle formation (NPF) events (especially the strongest ones), in addition to their growth rates, start times, and end times. The automatic method generalized well on datasets collected in different sites, which is useful for long-term data series analysis and obtaining statistical properties of NPF events.
Miska Olin, David Patoulias, Heino Kuuluvainen, Jarkko V. Niemi, Topi Rönkkö, Spyros N. Pandis, Ilona Riipinen, and Miikka Dal Maso
Atmos. Chem. Phys., 22, 1131–1148, https://doi.org/10.5194/acp-22-1131-2022, https://doi.org/10.5194/acp-22-1131-2022, 2022
Short summary
Short summary
An emission factor particle size distribution was determined from the measurements at an urban traffic site. It was used in updating a pre-existing emission inventory, and regional modeling was performed after the update. Emission inventories typically underestimate nanoparticle emissions due to challenges in determining them with high certainty. This update reveals that the simulated aerosol levels have previously been underestimated especially for urban areas and for sub-50 nm particles.
Mizuo Kajino, Akira Watanabe, Masahide Ishizuka, Kazuyuki Kita, Yuji Zaizen, Takeshi Kinase, Rikuya Hirai, Kakeru Konnai, Akane Saya, Kazuki Iwaoka, Yoshitaka Shiroma, Hidenao Hasegawa, Naofumi Akata, Masahiro Hosoda, Shinji Tokonami, and Yasuhito Igarashi
Atmos. Chem. Phys., 22, 783–803, https://doi.org/10.5194/acp-22-783-2022, https://doi.org/10.5194/acp-22-783-2022, 2022
Short summary
Short summary
Using a numerical model and observations of surface concentration and depositions, the current study provides quantitative assessments of resuspension, transport, and deposition of radio-Cs in eastern Japan in 2013, which was once deposited to the ground surface after the Fukushima nuclear accident. The areal mean resuspension rate of radio-Cs from the ground to the air is estimated as 0.96 % per year, which is equivalent to 1–10 % of the decreasing rate of the ambient gamma dose in Fukushima.
Aoxing Zhang, Yongqiang Liu, Scott Goodrick, and Marcus D. Williams
Atmos. Chem. Phys., 22, 597–624, https://doi.org/10.5194/acp-22-597-2022, https://doi.org/10.5194/acp-22-597-2022, 2022
Short summary
Short summary
Duff is decomposed forest fuel under ground. Duff burning often occurs at the smoldering phase with low intensity and long periods, which has little impact on regional air quality. However, there is increasing evidence for duff burning during flaming phases. This study simulates the air quality impacts of duff burning during flaming phases in the southeastern US using a regional air quality model. The results indicate the important contributions of such burning to regional PM2.5 concentrations.
Karine Sartelet, Youngseob Kim, Florian Couvidat, Maik Merkel, Tuukka Petäjä, Jean Sciare, and Alfred Wiedensohler
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-22, https://doi.org/10.5194/acp-2022-22, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
A methodology is defined to estimate number emissions from an inventory providing mass emissions. Number concentrations are simulated over Greater Paris using different nucleation parameterizations (binary, ternary involving sulfuric acid and ammonia, heteromolecular involving sulfuric acid and extremely-low volatil organics ELVOC). The model to measurement comparisons show that ternary nucleation may not be a dominant process for new-particle formation in cities, but stress the role of ELVOC.
Jerónimo Escribano, Enza Di Tomaso, Oriol Jorba, Martina Klose, Maria Gonçalves Ageitos, Francesca Macchia, Vassilis Amiridis, Holger Baars, Eleni Marinou, Emmanouil Proestakis, Claudia Urbanneck, Dietrich Althausen, Johannes Bühl, Rodanthi-Elisavet Mamouri, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 22, 535–560, https://doi.org/10.5194/acp-22-535-2022, https://doi.org/10.5194/acp-22-535-2022, 2022
Short summary
Short summary
We explore the benefits and consistency in adding lidar dust observations in a dust optical depth assimilation. We show that adding lidar data to a dust optical depth assimilation has valuable benefits and the dust analysis improves. We discuss the impact of the narrow satellite footprint of the lidar dust observations on the assimilation.
Susan J. Leadbetter, Andrew R. Jones, and Matthew C. Hort
Atmos. Chem. Phys., 22, 577–596, https://doi.org/10.5194/acp-22-577-2022, https://doi.org/10.5194/acp-22-577-2022, 2022
Short summary
Short summary
In this study we look at the ability of meteorological ensembles (multiple realisations of the meteorological data) to provide information about the uncertainty in the dispersion model predictions. Statistical measures are used to evaluate the model predictions, and these show that on average the ensemble predictions outperform the non-ensemble predictions.
Kai Zhang, Wentao Zhang, Hui Wan, Philip J. Rasch, Steven J. Ghan, Richard C. Easter, Xiangjun Shi, Yong Wang, Hailong Wang, Po-Lun Ma, Shixuan Zhang, Jian Sun, Susannah Burrows, Manish Shrivastava, Balwinder Singh, Yun Qian, Xiaohong Liu, Jean-Christophe Golaz, Qi Tang, Xue Zheng, Shaocheng Xie, Wuyin Lin, Yan Feng, Minghuai Wang, Jin-Ho Yoon, and Ruby L. Leung
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1087, https://doi.org/10.5194/acp-2021-1087, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Here we analyze effective aerosol forcing simulated by E3SMv1 using both century-long free-running and short nudged simulations. The aerosol forcing in E3SMv1 is relatively large compared to other models, mainly due to the large indirect aerosol effect. Aerosol-induced changes in liquid and ice cloud properties in E3SMv1 have a strong correlation. The aerosol forcing estimates in E3SMv1 are sensitive to the parameterization changes in both liquid and ice cloud processes.
Arto Heitto, Kari Lehtinen, Tuukka Petäjä, Felipe Lopez-Hilfiker, Joel A. Thornton, Markku Kulmala, and Taina Yli-Juuti
Atmos. Chem. Phys., 22, 155–171, https://doi.org/10.5194/acp-22-155-2022, https://doi.org/10.5194/acp-22-155-2022, 2022
Short summary
Short summary
For atmospheric aerosol particles to take part in cloud formation, they need to be at least a few tens of nanometers in diameter. By using a particle condensation model, we investigated how two types of chemical reactions, oligomerization and decomposition, of organic molecules inside the particle may affect the growth of secondary aerosol particles to these sizes. We show that the effect is potentially significant, which highlights the importance of increasing understanding of these processes.
Jie Zhang, Kalli Furtado, Steven T. Turnock, Jane P. Mulcahy, Laura J. Wilcox, Ben B. Booth, David Sexton, Tongwen Wu, Fang Zhang, and Qianxia Liu
Atmos. Chem. Phys., 21, 18609–18627, https://doi.org/10.5194/acp-21-18609-2021, https://doi.org/10.5194/acp-21-18609-2021, 2021
Short summary
Short summary
The CMIP6 ESMs systematically underestimate TAS anomalies in the NH midlatitudes, especially from 1960 to 1990. The anomalous cooling is concurrent in time and space with anthropogenic SO2 emissions. The spurious drop in TAS is attributed to the overestimated aerosol concentrations. The aerosol forcing sensitivity cannot well explain the inter-model spread of PHC biases. And the cloud-amount term accounts for most of the inter-model spread in aerosol forcing sensitivity.
Peter A. Taylor
Atmos. Chem. Phys., 21, 18263–18269, https://doi.org/10.5194/acp-21-18263-2021, https://doi.org/10.5194/acp-21-18263-2021, 2021
Short summary
Short summary
Atmospheric aerosols including fog droplets can be deposited on the ground or on water surfaces. This is due to both gravitational settling and turbulent impaction. A simple model of this combined process is developed based on conventional atmospheric-boundary-layer ideas. The model suggests an alternative formulation for the treatment of gravitational settling in the deposition velocity estimations of aerosol particles and fog droplets.
Seoung Soo Lee, Jinho Choi, Goun Kim, Kyung-Ja Ha, Kyong-Hwan Seo, Junshik Um, and Youtong Zheng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-917, https://doi.org/10.5194/acp-2021-917, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
This study investigates how aerosols affect clouds and precipitation and how those aerosol effects vary with varying types of clouds that are characterized by cloud depth in two metropolitan areas in East Asia. As cloud depth increases, the enhancement of precipitation amount transitions to no changes in precipitation amount with increasing aerosol concentrations. This indicates that cloud depth needs to be considered for a comprehensive understanding of aerosol-cloud interactions.
Alexandre Siméon, Fabien Waquet, Jean-Christophe Péré, Fabrice Ducos, François Thieuleux, Fanny Peers, Solène Turquety, and Isabelle Chiapello
Atmos. Chem. Phys., 21, 17775–17805, https://doi.org/10.5194/acp-21-17775-2021, https://doi.org/10.5194/acp-21-17775-2021, 2021
Short summary
Short summary
For the first time, we accurately modelled the optical properties of the biomass burning aerosols (BBA) observed over the Southeast Atlantic region during their transport above clouds and over their source regions, combining a meteorology coupled with chemistry model (WRF-Chem) with innovative satellite absorbing aerosol retrievals (POLDER-3). Our results suggest a low but non-negligible brown carbon fraction (3 %) for the chemical composition of the BBA plumes observed over the source regions.
Priyanka Banerjee, Sreedharan Krishnakumari Satheesh, and Krishnaswamy Krishna Moorthy
Atmos. Chem. Phys., 21, 17665–17685, https://doi.org/10.5194/acp-21-17665-2021, https://doi.org/10.5194/acp-21-17665-2021, 2021
Short summary
Short summary
We show that the Atlantic Ocean is the major driver of interannual variability in dust over South Asia since the second decade of the 21st century. This is a shift from the previously important role played by the Pacific Ocean in controlling dust over this region. Following the end of the recent global warming hiatus, anomalies of the North Atlantic sea surface temperature have remotely invoked a weakening of the South Asian monsoon and a strengthening of the dust-bearing northwesterlies.
Mária Lbadaoui-Darvas, Satoshi Takahama, and Athanasios Nenes
Atmos. Chem. Phys., 21, 17687–17714, https://doi.org/10.5194/acp-21-17687-2021, https://doi.org/10.5194/acp-21-17687-2021, 2021
Short summary
Short summary
Aerosol–cloud interactions constitute the most uncertain contribution to climate change. The uptake kinetics of water by aerosol is a central process of cloud droplet formation, yet its molecular-scale mechanism is unknown. We use molecular simulations to study this process for phase-separated organic particles. Our results explain the increased cloud condensation activity of such particles and can be generalized over various compositions, thus possibly serving as a basis for future models.
Mattia Righi, Johannes Hendricks, and Christof Gerhard Beer
Atmos. Chem. Phys., 21, 17267–17289, https://doi.org/10.5194/acp-21-17267-2021, https://doi.org/10.5194/acp-21-17267-2021, 2021
Short summary
Short summary
A global climate model is applied to simulate the impact of aviation soot on natural cirrus clouds. A large number of numerical experiments are performed to analyse how the quantification of the resulting climate impact is affected by known uncertainties. These concern the ability of aviation soot to nucleate ice and the role of model dynamics. Our results show that both aspects are important for the quantification of this effect and that discrepancies among different model studies still exist.
Sara Marie Blichner, Moa Kristina Sporre, and Terje Koren Berntsen
Atmos. Chem. Phys., 21, 17243–17265, https://doi.org/10.5194/acp-21-17243-2021, https://doi.org/10.5194/acp-21-17243-2021, 2021
Short summary
Short summary
In this study we quantify how a new way of modeling the formation of new particles in the atmosphere affects the estimated cooling from aerosol–cloud interactions since pre-industrial times. Our improved scheme merges two common approaches to aerosol modeling: a sectional scheme for treating early growth and the pre-existing modal scheme in NorESM. We find that the cooling from aerosol–cloud interactions since pre-industrial times is reduced by 10 % when the new scheme is used.
Linhui Jiang, Yan Xia, Lu Wang, Xue Chen, Jianjie Ye, Tangyan Hou, Liqiang Wang, Yibo Zhang, Mengying Li, Zhen Li, Zhe Song, Yaping Jiang, Weiping Liu, Pengfei Li, Daniel Rosenfeld, John H. Seinfeld, and Shaocai Yu
Atmos. Chem. Phys., 21, 16985–17002, https://doi.org/10.5194/acp-21-16985-2021, https://doi.org/10.5194/acp-21-16985-2021, 2021
Short summary
Short summary
This paper establishes a bottom-up approach to reveal a unique pattern of urban on-road vehicle emissions at a spatial resolution 1–3 orders of magnitude higher than current inventories. The results show that the hourly average on-road vehicle emissions of CO, NOx, HC, and PM2.5 are 74 kg, 40 kg, 8 kg, and 2 kg, respectively. Integrating our traffic-monitoring-based approach with urban measurements, we could address major data gaps between urban air pollutant emissions and concentrations.
Akinori Ito, Adeyemi A. Adebiyi, Yue Huang, and Jasper F. Kok
Atmos. Chem. Phys., 21, 16869–16891, https://doi.org/10.5194/acp-21-16869-2021, https://doi.org/10.5194/acp-21-16869-2021, 2021
Short summary
Short summary
We improve the simulated dust properties of size-resolved dust concentration and particle shape. The improved simulation suggests much less atmospheric radiative heating near the major source regions, because of enhanced longwave warming at the surface by the synergy of coarser size and aspherical shape. Less intensified atmospheric heating could substantially modify the vertical temperature profile in Earth system models and thus has important implications for the projection of dust feedback.
Chuan-Yao Lin, Yang-Fan Sheng, Wan-Chin Chen, Charles C. K. Chou, Yi-Yun Chien, and Wen-Mei Chen
Atmos. Chem. Phys., 21, 16893–16910, https://doi.org/10.5194/acp-21-16893-2021, https://doi.org/10.5194/acp-21-16893-2021, 2021
Short summary
Short summary
Taiwan and Hong Kong experience air quality deterioration as typhoons approach. However, the mechanism of the formation of poor air quality may differ and still not be well documented in Taiwan. The interaction between easterly typhoon circulation and Taiwan’s Central Mountain Range resulted in a lee side vortex formation. Simulation results indicated that the lee vortex and land–sea breeze, as well as the boundary layer development, were the key mechanisms.
Wenxing Jia and Xiaoye Zhang
Atmos. Chem. Phys., 21, 16827–16841, https://doi.org/10.5194/acp-21-16827-2021, https://doi.org/10.5194/acp-21-16827-2021, 2021
Short summary
Short summary
Heavy aerosol pollution incidents have attracted much attention since 2013, but the temporal and spatial limitations of observations and the inaccuracy of simulation are a stumbling block to assessing pollution mechanisms. The correct simulation of boundary layer mixing process of pollutant is a challenge for mesoscale numerical models. We add the turbulent diffusion term of aerosol to the WRF-Chem model to prove the impact of turbulent diffusion on pollutant concentration.
Yong Wang, Wenwen Xia, and Guang J. Zhang
Atmos. Chem. Phys., 21, 16797–16816, https://doi.org/10.5194/acp-21-16797-2021, https://doi.org/10.5194/acp-21-16797-2021, 2021
Short summary
Short summary
This study developed a novel approach to detect what rainfall rates climatologically are most efficient for wet removal of different aerosol types and applied it to a global climate model (GCM). Results show that light rain has disproportionate control on aerosol wet scavenging, with distinct rain rates for different aerosol sizes. The approach can be applied to other GCMs to better understand the aerosol wet scavenging by rainfall, which is important to better simulate aerosols.
Marco Gaetani, Benjamin Pohl, Maria del Carmen Alvarez Castro, Cyrille Flamant, and Paola Formenti
Atmos. Chem. Phys., 21, 16575–16591, https://doi.org/10.5194/acp-21-16575-2021, https://doi.org/10.5194/acp-21-16575-2021, 2021
Short summary
Short summary
During the dry austral winter, biomass fires in tropical Africa emit large amounts of smoke in the atmosphere, with large impacts on climate and air quality. The study of the relationship between atmospheric circulation and smoke transport shows that midlatitude atmospheric disturbances may deflect the smoke from tropical Africa towards southern Africa. Understanding the distribution of the smoke in the region is crucial for climate modelling and air quality monitoring.
Stavros-Andreas Logothetis, Vasileios Salamalikis, Antonis Gkikas, Stelios Kazadzis, Vassilis Amiridis, and Andreas Kazantzidis
Atmos. Chem. Phys., 21, 16499–16529, https://doi.org/10.5194/acp-21-16499-2021, https://doi.org/10.5194/acp-21-16499-2021, 2021
Short summary
Short summary
This study investigates the temporal trends of dust optical depth (DOD; 550 nm) on global, regional and seasonal scales over a 15-year period (2003–2017) using the MIDAS (ModIs Dust AeroSol) dataset. The findings of this study revealed that the DOD was increased across the central Sahara and the Arabian Peninsula, with opposite trends over the eastern and western Sahara, the Thar and Gobi deserts, in the Bodélé Depression, and in the southern Mediterranean.
Xiaoqing Ma and Zhicong Yin
Atmos. Chem. Phys., 21, 16349–16361, https://doi.org/10.5194/acp-21-16349-2021, https://doi.org/10.5194/acp-21-16349-2021, 2021
Short summary
Short summary
Severe ozone pollution frequently occurred in the east of China and obviously damages human health. The meteorological conditions effectively affect the variations in ozone pollution by modulating the natural emissions of ozone precursors and photochemical reactions in the atmosphere. In this study, a south–north dipole pattern of summer-mean ozone concentration in the east of China was identified, and its connections with preceding climate variability at different latitudes were also examined.
Maria Sand, Bjørn H. Samset, Gunnar Myhre, Jonas Gliß, Susanne E. Bauer, Huisheng Bian, Mian Chin, Ramiro Checa-Garcia, Paul Ginoux, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Philippe Le Sager, Marianne T. Lund, Hitoshi Matsui, Twan van Noije, Dirk J. L. Olivié, Samuel Remy, Michael Schulz, Philip Stier, Camilla W. Stjern, Toshihiko Takemura, Kostas Tsigaridis, Svetlana G. Tsyro, and Duncan Watson-Parris
Atmos. Chem. Phys., 21, 15929–15947, https://doi.org/10.5194/acp-21-15929-2021, https://doi.org/10.5194/acp-21-15929-2021, 2021
Short summary
Short summary
Absorption of shortwave radiation by aerosols can modify precipitation and clouds but is poorly constrained in models. A total of 15 different aerosol models from AeroCom phase III have reported total aerosol absorption, and for the first time, 11 of these models have reported in a consistent experiment the contributions to absorption from black carbon, dust, and organic aerosol. Here, we document the model diversity in aerosol absorption.
Zhenbin Wang, Bin Zhu, Hanqing Kang, Wen Lu, Shuqi Yan, Delong Zhao, Weihang Zhang, and Jinhui Gao
Atmos. Chem. Phys., 21, 15555–15567, https://doi.org/10.5194/acp-21-15555-2021, https://doi.org/10.5194/acp-21-15555-2021, 2021
Short summary
Short summary
In this paper, by using WRF-Chem with a black carbon (BC) tagging technique, we investigate the formation mechanism and regional sources of a BC peak in the free troposphere observed by aircraft flights. Local sources dominated BC from the surface to about 700 m (78.5 %), while the BC peak in the free troposphere was almost entirely imported from external sources (99.8 %). Our results indicate that cyclone systems can quickly lift BC up to the free troposphere, as well as extend its lifetime.
Cited articles
Arora, S., Vyas, A., and Johnson, L. R.: Projections of highway vehicle population, energy demand, and CO2 emissions in India to 2040, Nat. Resour. Forum, 35, 49–62, 2011.
Balkanski, Y., Myhre, G., Gauss, M., Rädel, G., Highwood, E. J., and Shine, K. P.: Direct radiative effect of aerosols emitted by transport: from road, shipping and aviation, Atmos. Chem. Phys., 10, 4477–4489, https://doi.org/10.5194/acp-10-4477-2010, 2010.
Ban-Weiss, G. A., Lunden, M. M., Kirchstetter, T. W., and Harley, R. A.: Measurement of black carbon and particle number emission factors from individual heavy-duty trucks, Environ. Sci. Technol., 43, 1419–1424, 2009.
Baughcum, S. L., Begin, J. J., Franco, F., Greene, D. L., Lee, D. S., McLaren, M.-L., Mortlock, A. K., Newton, P. J., Schmitt, A., Sutkus, D. J., Vedantham, A., and Wuebbles, D. J.: Aircraft Emissions?: Current Inventories and Future Scenarios, Chapter 9 of "Aviation and the Global Atmosphere", edited by: Penner, J. E., Lister, D. H., Griggs, D. J., Dokken, D. J., and McFarland, M., Special Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 1999.
Bek, B. H. and Sorenson, S. C.: Future emissions from railway traffic report for the project MEET?: Methodologies for estimating air pollutant emissions from transport, ET-EO-98-02, Technical University of Denmark, Lyngby, Denmark, 1998.
Berghof, R., Schmitt, A., Eyers, C., Haag, K., Middel, J., Hepting, M., Grübler, A., and Hancox, R.: CONSAVE 2050 final technical report: Constrained scenarios on aviation and emissions, German Aerospace Center (DLR), Germany, 2005.
Bergin, M. S., Harrell, M., and Janssen, M.: Locomotive emission inventories for the United States from ERTAC Rail, 2012 Annual International Emission Inventory Conference, Tampa, Florida, 13–16 August, 2012.
Berntsen, T. and Fuglestvedt, J.: Global temperature responses to current emissions from the transport sectors, P. Natl. Acad. Sci. USA, 105, 19154–19159, 2008.
Bishop, G. A. and Stedman, D. H.: A decade of on-road emissions measurements, Environ. Sci. Technol., 42, 1651–1656, 2008.
Bluett, J., Dey, K., and Fisher, G.: Assessing vehicle air pollution emissions, NIWA Client Report: CHC2008-001, National Institute of Water & Atmospheric Research Ltd, Christchurch, New Zealand, 2008.
Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J., and Klimont, Z.: A technology-based global inventory of black and organic carbon emissions from combustion, J. Geophys. Res., 109, D14203, https://doi.org/10.1029/2003JD003697, 2004.
Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S., Roden, C., Streets, D. G., and Trautmann, N. M.: Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000, Global Biogeochem. Cy., 21, GB2018, https://doi.org/10.1029/2006GB002840, 2007.
Borken, J., Steller, H., Merétei, T., and Vanhove, F.: Global and country inventory of road passenger and freight transportation: Fuel consumption and emissions of air pollutants in year 2000, Transport. Res. Rec., 2011, 127–136, 2007.
Borken-Kleefeld, J., Kupiainen, K., Chen, Y., Hausberger, S., Rexeis, M., Sjodin, A., Jerksjo, M., and Tate, J: Remote sensing for identifying high emitters and validating emission models, ERMES 2012 Plenary Meeting, Brussels, Belgium, 2012.
Buhaug, Ø., Corbett, J. J., Endresen, Ø., Eyring, V., Faber, J., Hanayama, S., Lee, D. S., Lee, D., Lindstad, H., Markowska, A. Z., Mjelde, A., Nelissen, D., Nilsen, J., Pålsson, C., Winebrake, J. J., Wu, W., and Yoshida, K.: Second IMO GHG study 2009, International Maritime Organization (IMO), London, UK, 2009.
Cadle, S. H., Mulawa, P. A., Hunsanger, E. C., Nelson, K., Ragazzi, R. A., Barrett, R., Gallagher, G. L., Lawson, D. R., Knapp, K. T., and Snow, R.: Composition of light-duty motor vehicle exhaust particulate matter in the Denver, Colorado Area, Environ. Sci. Technol., 33, 2328–2339, 1999.
Cofala, J., Amann, M., Klimont, Z., Kupiainen, K., and Höglund-Isaksson, L.: Scenarios of global anthropogenic emissions of air pollutants and methane until 2030, Atmos. Environ., 41, 8486–8499, 2007.
Cooke, W. F. and Wilson, J. J. N.: A global black carbon aerosol model, J. Geophys. Res., 101, 19395–19409, https://doi.org/10.1029/96JD00671, 1996.
Corbett, J. J. and Koehler, H. W.: Updated emissions from ocean shipping, J. Geophys. Res., 108, 4650, https://doi.org/10.1029/2003JD003751, 2003.
Corbett, J. J., Lack, D. A., Winebrake, J. J., Harder, S., Silberman, J. A., and Gold, M.: Arctic shipping emissions inventories and future scenarios, Atmos. Chem. Phys., 10, 9689–9704, https://doi.org/10.5194/acp-10-9689-2010, 2010.
Cox, D. R.: Regression models and life-tables, J. Roy. Stat. Soc. B, 34, 187–220, 1972.
Dargay, J., Gately, D., and Sommer, M.: Vehicle ownership and income growth, worldwide?: 1960–2030, Energy J., 28, 143–170, 2007.
Dentener, F., Keating, T., and Akimoto, H.: Hemispheric transport of air pollution 2010, Part A: ozone and particulate matter, in: Air Pollution Studies No. 17, New York and Geneva, 2010.
Dieselnet: Nonroad diesel engines, available at: www.dieselnet.com/standards/eu/nonroad.php, last access: January 2012.
Durbin, T. D., Smith, M. R., Norbeck, J. M., and Truex, T. J.: Population density, particulate emission characterization, and impact on the particulate inventory of smoking vehicles in the South Coast Air Quality Management District, J. Air Waste Manage., 49, 28–38, 1999.
Endresen, Ø., Sørgård, E., Behrens, H. L., Brett, P. O., and Isaksen, I. S. A.: A historical reconstruction of ships' fuel consumption and emissions, J. Geophys. Res., 112, D12301, https://doi.org/10.1029/2006JD007630, 2007.
European Commission: Service contract for the further development and application of the transport and environmental TREMOVE model Lot 1 (Improvement of the data set and model structure), available online at: http://www.tremove.org (last access: 16 May 2013), 2007.
European Environmental Agency (EEA): TERM 2003 28 EEA 31-Specific emissions of air pollutants, available at: http://www.eea.europa.eu/data-and-maps/indicators/specific-emissions-of-air-pollutants/term2003_28_eea31_specific_emissions_of_air_pollutantsfinal.pdf (last access: 16 May 2013), 2004.
European Environmental Agency (EEA): EMEP/EEA emission inventory guidebook 2009, updated May 2012, available at: http://eea.europa.eu/emep-eea-guidebook (last access: 16 May 2013), 2012a.
European Environmental Agency (EEA): Greenhouse gas emission trends and projections in Europe 2012, available online at: http://www.eea.europa.eu/publications/ghg-trends-and-projections-2012 (last access: 16 May 2013), 2012b.
European Monitoring and Evaluation Programme (EMEP): available online at: http://www.ceip.at/webdab-emission-database/emissions-as-used-in-emep-models/, last access: December 2013.
Eyers, C. J., Norman, P., Middel, J., Plohr, M., Michot, S., Atkinson, K., and Christou, R. A.: AERO2k global aviation emissions inventories for 2002 and 2025, QINETIQ/04/01113,QinetiQ Ltd, Hampshire, UK, 2004.
Eyring, V., Köhler, H. W., van Aardenne, J., and Lauer, A.: Emissions from international shipping: 1. The last 50 years, J. Geophys. Res., 110, D17305, https://doi.org/10.1029/2004JD005619, 2005a.
Eyring, V., Köhler, H. W., Lauer, A., and Lemper, B.: Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050, J. Geophys. Res., 110, D17306, https://doi.org/10.1029/2004JD005620, 2005b.
Eyring, V., Isaksen, I. S. A., Berntsen, T., Collins, W. J., Corbett, J. J., Endresen, O., Grainger, R. G., Moldanova, J., Schlager, H., and Stevenson, D. S.: Transport impacts on atmosphere and climate: Shipping, Atmos. Environ., 44, 4735–4771, 2010.
Fearnleys: Fearnleys review 2007: The tanker and bulk markets and fleets, Oslo, Norway, 2007.
Fuglestvedt, J., Berntsen, T., Myhre, G., Rypdal, K., and Skeie, R. B.: Climate forcing from the transport sectors, P. Natl. Acad. Sci. USA, 105, 454–458, 2008.
Fulton, L. and Eads, G.: IEA/SMP model documentation and reference case projection, available at: http://www.wbcsd.org/web/publications/mobility/smp-model-document.pdf (last access: 16 May 2013), 2004.
German Aerospace Center (DLR): QUANTIFY emission inventories and scenarios, available at: http://www.pa.op.dlr.de/quantify/emissions/ (last access: 16 May 2013), 2009.
Greenspan, A. and Cohen, D.: Motor vehicle stocks, scrappage, and sales, Rev. Econ. Stat., 81, 369–383, 1999.
Hansen, A. D. A. and Rosen, H.: Individual measurements of the emission factor of aerosol black carbon in automobile plumes, J. Air Waste Manage., 40, 1654–1657, 1990.
Henderson, S. C., Wickrama, U. K., Baughcum, S. L., Begin, J. J., Franco, F., Greene, D. L., Lee, D. S., McLaren, M. L., Mortlock, A. K., Newton, P. J., Schmitt, A., Sutkus, D. J., Wedantham, A., and Wuebbles, D. J.: Aircraft emissions: Current inventories and future scenarios, in Aviation and the Global Atmosphere, edited by: Penner, J. E., Lister, D. H., Griggs, D. J., Dokken, D. J., and McFarland, M., Intergovernmental Panel on Climate Change, Cambridge Univ. Press, New York, 1999.
ICAO/FESG: Steering group meeting report of FESG CAEP/8 traffic and fleet forecasts, CAEP-SG/2082-IP/02 21/08/08, Seattle, 22–26 September 2008.
International Energy Agency (IEA): Energy Statistics of Non-OECD Countries, Organization of Economic, Paris, 2012a.
International Energy Agency (IEA): Energy Statistics of OECD Countries, Organization for Economic, Paris, 2012b.
International Maritime Organization (IMO): Revised MARPOL Annex VI: Regulations for the prevention of air pollution from ships and NOx technical code 2008, 2009 Edition, London, UK, 2009.
International Union of Railways (UIC): Rail diesel emissions – facts and challenges, available at: http://www.uic.org/IMG/pdf/060912_Rail_Diesel_8aout_06.pdf (last access: 16 May 2013), 2006.
Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL): Emission Database for Global Atmospheric Research (EDGAR), release version 4.2., available at: http://edgar.jrc.ec.europa.eu (last access: 16 May 2013), 2011.
Kim, B. Y., Fleming, G. G., Lee, J. J., Waitz, I. A., Clarke, J.-P., Balasubramanian, S., Malwitz, A., Klima, K., Locke, M., Holsclaw, C. A., Maurice, L. Q., and Gupta, M. L.: System for assessing aviation's global emissions (SAGE), Part 1: Model description and inventory results, Transport. Res. D-Tr. E., 12, 325–346, 2007.
Klimont, Z., Cofala, J., Bertok, I., Amann, M., Heyes, C., and Gyarfas, F.: Modelling particulate emissions in Europe: A framework to estimate reduction potential and control costs, IIASA interim report IR-02-076, Laxenburg, Austria, 2002.
Klimont, Z., Cofala, J., Xing, J., Wei, W., Zhang, C., Wang, S., Kejun, J., Bhandari, P., Mathur, R., Purohit, P., Rafaj, P., Chambers, A., Amann, M., and Hao, J.: Projections of SO2, NOx and carbonaceous aerosols emissions in Asia, Tellus B, 61, 602–617, 2009.
Koffi, B., Szopa, S., Cozic, A., Hauglustaine, D., and van Velthoven, P.: Present and future impact of aircraft, road traffic and shipping emissions on global tropospheric ozone, Atmos. Chem. Phys., 10, 11681–11705, https://doi.org/10.5194/acp-10-11681-2010, 2010.
Kriegler, E., O'Neill, B. C., Hallegatte, S., Kram, T., Lempert, R. J., Moss, R. H., and Wilbanks, T.: The need for and use of socio-economic scenarios for climate change analysis: A new approach based on shared socio-economic pathways, Global Environ. Chang., 22, 807–822, 2012.
Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmos. Chem. Phys., 10, 7017–7039, https://doi.org/10.5194/acp-10-7017-2010, 2010.
Lawson, D. R.: "Passing the test" – human-behavior and California smog check program, J. Air Waste Manage., 43, 1567–1575, 1993.
Lee, D. S., Owen, B., Fichter, C., Lim, L. L., and Dimitriu, D.: Study on the allocation of emissions from international aviation to the UK Inventory: CPEG7 Final Report to DEFRA, Global atmosphere division allocation of international aviation emissions from scheduled air traffic – present day and historical, Manchester Metropolitan University, Manchester, UK, 2005.
Lee, D. S., Fahey, D. W., Forster, P. M., Newton, P. J., Wit, R. C. N., Lim, L. L., Owen, B., and Sausen, R.: Aviation and global climate change in the 21st century, Atmos. Environ., 43, 3520–3537, 2009.
Lee, D. S., Pitari, G., Grewe, V., Gierens, K., Penner, J. E., Petzold, A., Prather, M. J., Schumann, U., Bais, A., Berntsen, T., Iachetti, D., Lim, L. L., and Sausen, R.: Transport impacts on atmosphere and climate: Aviation, Atmos. Environ., 44, 4678–4734, 2010.
Levy II, H., Schwarzkopf, M. D., Horowitz, L., Ramaswamy, V., and Findell, K. L.: Strong sensitivity of late 21st century climate to projected changes in short-lived air pollutants, J. Geophys. Res., 113, D06102, https://doi.org/10.1029/2007JD009176, 2008.
Lu, Z., Zhang, Q., and Streets, D. G.: Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010, Atmos. Chem. Phys., 11, 9839–9864, https://doi.org/10.5194/acp-11-9839-2011, 2011.
Maricq, M. M., Podsiadlik, D. H., and Chase, R. E.: Gasoline vehicle particle size distributions: Comparison of steady state, FTP, and US06 measurements, Environ. Sci. Technol., 33, 2007–2015, 1999.
McClintock, P.: 2007 High emitter remote sensing project, prepared for Southeast Michigan Council of Governments, Tiburon, CA, USA, available at: http://library.semcog.org/InmagicGenie/DocumentFolder/HighEmissionsReport.pdf (last access: 4 June 2014), 2007.
McCormick, R. L., Graboski, M. S., Alleman, T. L., Alvarez, J. R., and Duleep, K. G.: Quantifying the emission benefits of opacity testing and repair of heavy-duty diesel vehicles, Environ. Sci. Technol., 37, 630–637, 2003.
Moss, R. H., Edmonds, J. A, Hibbard, K. A, Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A, Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: The next generation of scenarios for climate change research and assessment, Nature, 463, 747–56, 2010.
Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grübler, A., Jung, T. Y., Kram, T., La Rovere, E. L., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., van Rooijen, S., Victor, N., and Zhou, D.: Special report on emissions scenarios: a special report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, New York, 2000.
National Institute for Public Health and the Environment (RIVM): The IMAGE 2.2 Implementation of the SRES scenarios: A comprehensive analysis of emission, climate change and impacts in the 21st century [RIVM CD-ROM publication 481508018), Bilthoven, the Netherlands, 2001.
Netherlands Environmental Assessment Agency (MNP): Integrated modelling of global environmental change, An overview of IMAGE 2.4, edited by: Bouwman, A. F., Kram, T., and Goldewijk, K. K., Bilthoven, the Netherlands, 2006.
Ntziachristos, L. and Samaras, Z.: An empirical method for predicting exhaust emissions of regulated pollutants from future vehicle technologies, Atmos. Environ., 35, 1985–1999, 2001.
Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, T.: An Asian emission inventory of anthropogenic emission sources for the period 1980–2020, Atmos. Chem. Phys., 7, 4419–4444, https://doi.org/10.5194/acp-7-4419-2007, 2007.
Olsthoorn, X.: Carbon dioxide emissions from international aviation: 1950–2050, J. Air Transp. Manag., 7, 87–93, 2001.
Owen, B. and Lee, D. S.: Allocation of international aviation emissions from scheduled air traffic-future cases, 2005 to 2050 (report 3 of 3), study on the allocation of emissions from international aviation to the UK inventory-CPEG7, final report to DEFRA global atmosphere division, Manchester Metropolitan University, United Kingdom, 2006.
Owen, B., Lee, D. S., and Lim, L.: Flying into the future: aviation emissions scenarios to 2050, Environ. Sci. Technol., 44, 2255–2260, 2010.
Parks, R. W.: Durability, maintenance and the price of used assets, Econ. Inq., 17, 197–217, 1979.
Paxian, A., Eyring, V., Beer, W., Sausen, R., and Wright, C.: Present-day and future global bottom-up ship emission inventories including polar routes, Environ. Sci. Technol., 44, 1333–1339, 2010.
Rao, S., Riahi, K., Kupiainen, K., and Klimont, Z.: Long-term scenarios for black and organic carbon emissions, Environm. Sci., 2, 205–216, 2005.
Ribeiro, K., Kobayashi, S., Beuthe, M., Gasca, J., Greene, D., Lee, D. S., Muromachi, Y., Newton, P. J., Plotkin, S., Sperling, D., Wit, R., Zhou, P. J., Davidson, O. R., Bosch, P. R., Dave, R., and Kingdom, U.: Transport and its infrastructure, in Climate Change 2007: Mitigation. contribution of working group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Metz, B., Davidson, O. R., Bosch, P. R., Dave, R., and Meyer, L. A., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.
Saikawa, E., Kurokawa, J., Takigawa, M., Borken-Kleefeld, J., Mauzerall, D. L., Horowitz, L. W., and Ohara, T.: The impact of China's vehicle emissions on regional air quality in 2000 and 2020: a scenario analysis, Atmos. Chem. Phys., 11, 9465–9484, https://doi.org/10.5194/acp-11-9465-2011, 2011.
Sausen, R. and Schumann, U.: Estimates of the climate response to aircraft CO2 and NOx emissions scenarios, Clim. Change, 44, 27–58, 2000.
Schultz, M. and Rast, S.: Emission datasets and methodologies for estimating emissions, RETRO Rep., D1-6, Fifth Framework Programme, European Commission, Brussels, available at: http://retro.enes.org (last access: 16 May 2013), 2007.
Shindell, D., Faluvegi, G., Walsh, M., Anenberg, S. C., Dingenen, R. V., Muller, N. Z., Austin, J., Koch, D., and Milly, G.: Impacts of tighter vehicle-emission standards, Nature Climate Change, 1, 59–66, 2011.
Smit, R. and Bluett, J.: A new method to compare vehicle emissions measured by remote sensing and laboratory testing: high-emitters and potential implications for emission inventories, Sci. Total Environ., 409, 2626–2634, 2011.
Smith, S. J.: Income and pollutant emissions in the ObjECTS MiniCAM model, J. Environ. Dev., 14, 175–196, 2005.
Smith, S. J. and Wigley, T. M. L.: Multi-gas forcing stabilization with Minicam, Energy J., Special Issue, 373–392, 2006.
Smith, S. J., Pitcher, H., and Wigley, T. M. L.: Future sulfur dioxide emissions, Clim. Change, 73, 267–318, 2005.
Smith, S. J., van Aardenne, J., Klimont, Z., Andres, R. J., Volke, A., and Delgado Arias, S.: Anthropogenic sulfur dioxide emissions: 1850–2005, Atmos. Chem. Phys., 11, 1101–1116, https://doi.org/10.5194/acp-11-1101-2011, 2011.
Streets, D. G., Bond, T. C., Lee, T., and Jang, C.: On the future of carbonaceous aerosol emissions, J. Geophys. Res., 109, D24212, https://doi.org/10.1029/2004JD004902, 2004.
Streets, D. G., Yan, F., Chin, M., Diehl, T., Mahowald, N., Schultz, M., Wild, M., Wu, Y., and Yu, C.: Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980–2006, J. Geophys. Res., 114., D00D18, https://doi.org/10.1029/2008JD011624, 2009.
Subramanian, R., Winijkul, E., Bond, T. C., Thiansathit, W., Kim Oanh, N. T., Paw-armart, I., and Duleep, K. G.: Climate-relevant properties of diesel particulate emissions: results from a piggyback study in Bangkok, Thailand, Environ. Sci. Technol., 43, 4213–4218, 2009.
Ubanwa, B., Burnette, A., Kishan, S., and Fritz, S. G.: Exhaust particulate matter emission factors and deterioration rate for in-use motor vehicles, J. Eng. Gas Turb. Power, 125, 513–523, 2003.
Uherek, E., Halenka, T., Borken-Kleefeld, J., Balkanski, Y., Berntsen, T., Borrego, C., Gauss, M., Hoor, P., Juda-Rezler, K., and Lelieveld, J.: Transport impacts on atmosphere and climate: Land transport, Atmos. Environ., 44, 4772–4816, 2010.
Unger, N., Bond, T. C., Wang, J. S., Koch, D. M., Menon, S., Shindell, D. T., and Bauer, S.: Attribution of climate forcing to economic sectors., P. Natl. Acad. Sci. USA, 107, 3382–3387, 2010.
United Nations Framework Convention on Climate Change (UNFCCC): Updated UNFCCC reporting guidelines on annual inventories, available online at: http://unfccc.int/resource/docs/2006/sbsta/eng/09.pdf (last access: December 2013), 2006.
US Energy Information Administration (EIA): Annual energy review, available at: http://www.eia.doe.gov (last access: 16 May 2013), 2012.
US Environmental Protection Agency (US EPA): Calculation of age distributions in the nonroad model: growth and scrappage, EPA420-P-04-007, NR-007c, 2005.
US Environmental Protection Agency (US EPA): Development of emission rates for heavy-duty vehicles in the motor vehicle emissions simulator (Draft MOVES2009), EPA-420-P-09-005, 2009.
US Environmental Protection Agency (US EPA): Median life, annual activity, and load factor values for nonroad engine emission modeling, EPA-420-R-10-016, NR-005d, 2010a.
US Environmental Protection Agency (US EPA): Exhaust and crankcase emission factors for nonroad engine modeling compression-ignition, EPA-420-R-10-018, NR-009d, 2010b.
US Environmental Protection Agency (US EPA): Nonroad spark-ignition engine emission and deterioration factors, EPA-420-R-10-020, NR-011d, 2010c.
US Environmental Protection Agency (US EPA): Development of emission rates for light-duty vehicles in the motor vehicle emissions simulator (MOVES2010), EPA-420-R-11-011, 2011.
US Environmental Protection Agency (US EPA): AP-42: Compilation of air pollutant emission factors. Appendix H: Highway mobile source emission factors tables, available at: http://www.epa.gov/oms/models/ap42/ap42-h1.pdf (last access: 16 May 2012), 2012a.
US Environmental Protection Agency (US EPA): Emission standards reference guide, available at: www.epa.gov/otaq/standards/nonroad/index.htm (last access: January 2012), 2012b.
van Aardenne, J. A., Carmichael, G. R., Levy II, H., Streets, D., and Hordijk, L.: Anthropogenic NOx emissions in Asia in the period 1990–2020, Atmos. Environ., 33, 633–646, 1999.
van Vuuren, D. P., Eickout, B., Lucas, P. L., and Den Elzen, M. D. G.: Long-term multi-gas scenarios to stabilise radiative forcing – Exploring costs and benefits within an integrated assessment framework, Energy J., Special Issue, 1–55, 2006.
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The representative concentration pathways: an overview, Clim. Change, 109, 5–31, 2011.
van Vuuren, D., Riahi, K., Moss, R., Edmonds, J., Allison, T., Nakicenovic, N., Kram, T., Berkhout, F., Swart, R., Janetos, A., Rose, S. K., and Arnell, N.: A proposal for a new scenario framework to support research and assessment in different climate research communities, Global Environ. Chang., 22, 21–35, 2012.
Vedantham, A. and Oppenheimer, M.: Long-term scenarios for aviation: Demand and emissions of CO2 and NOx, Energ. Policy, 26, 625–641, 1998.
Wang, M., Huo, H., Johnson, L., and He, D.: Projection of Chinese motor vehicle growth, oil demand, and CO2 emissions through 2050, ANL/ESD/06-6, Argonne National Laboratory, Argonne, USA, 2006.
Wang, X., Westerdahl, D., Wu, Y., Pan, X., and Zhang, K. M.: On-road emission factor distribution of individual diesel vehicles in and around Beijing, China, Atmos. Environ., 45, 503–513, 2011.
Yan, F., Winijkul, E., Jung, S., Bond, T. C., and Streets, D. G.: Global emission projections of particulate matter (PM): I. Exhaust emissions from on-road vehicles, Atmos. Environ., 45, 4830–4844, 2011.
Yan, F., Winijkul, E., Bond, T. C., and Streets, D. G.: Global emission projections of particulate matter (PM): II. Uncertainty analyses of on-road vehicle exhaust emissions, Atmos. Environ., 87, 189–199, 2014.
Yanowitz, J., McCormick, R. L., and Graboski, M. S.: In-use emissions from heavy-duty diesel vehicles, Environ. Sci. Technol., 34, 729–740, 2000.
Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I. S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emissions in 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys., 9, 5131–5153, https://doi.org/10.5194/acp-9-5131-2009, 2009.
Zhang, Y., Stedman, D. H., Bishop, G. A., Guenther, P. L., and Beaton, S. P.: Worldwide on-road vehicle exhaust emissions study by remote-sensing, Environ. Sci. Technol., 29, 2286–2294, 1995.
Zhang, Y., Karamchandani, P., Glotfelty, T., Streets, D. G., Grell, G., Nenes, A., Yu, F.-Q., and Bennartz, R.: Development and initial application of the global-through-urban weather research and forecasting model with chemistry (GU-WRF/Chem), J. Geophys. Res., 117, D20206, https://doi.org/10.1029/2012JD017966, 2012.
Zhao, Y., Nielsen, C. P., Lei, Y., McElroy, M. B., and Hao, J.: Quantifying the uncertainties of a bottom-up emission inventory of anthropogenic atmospheric pollutants in China, Atmos. Chem. Phys., 11, 2295–2308, https://doi.org/10.5194/acp-11-2295-2011, 2011.
Altmetrics
Final-revised paper
Preprint