Articles | Volume 12, issue 12
Atmos. Chem. Phys., 12, 5523–5536, 2012
https://doi.org/10.5194/acp-12-5523-2012
Atmos. Chem. Phys., 12, 5523–5536, 2012
https://doi.org/10.5194/acp-12-5523-2012

Research article 25 Jun 2012

Research article | 25 Jun 2012

High molecular weight SOA formation during limonene ozonolysis: insights from ultrahigh-resolution FT-ICR mass spectrometry characterization

S. Kundu et al.

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Effects of liquid–liquid phase separation and relative humidity on the heterogeneous OH oxidation of inorganic–organic aerosols: insights from methylglutaric acid and ammonium sulfate particles
Hoi Ki Lam, Rongshuang Xu, Jack Choczynski, James F. Davies, Dongwan Ham, Mijung Song, Andreas Zuend, Wentao Li, Ying-Lung Steve Tse, and Man Nin Chan
Atmos. Chem. Phys., 21, 2053–2066, https://doi.org/10.5194/acp-21-2053-2021,https://doi.org/10.5194/acp-21-2053-2021, 2021
Short summary
Measurement report: Sulfuric acid nucleation and experimental conditions in a photolytic flow reactor
David R. Hanson, Seakh Menheer, Michael Wentzel, and Joan Kunz
Atmos. Chem. Phys., 21, 1987–2001, https://doi.org/10.5194/acp-21-1987-2021,https://doi.org/10.5194/acp-21-1987-2021, 2021
Short summary
Ozonolysis of fatty acid monolayers at the air–water interface: organic films may persist at the surface of atmospheric aerosols
Benjamin Woden, Maximilian W. A. Skoda, Adam Milsom, Curtis Gubb, Armando Maestro, James Tellam, and Christian Pfrang
Atmos. Chem. Phys., 21, 1325–1340, https://doi.org/10.5194/acp-21-1325-2021,https://doi.org/10.5194/acp-21-1325-2021, 2021
Short summary
Quantification of the role of stabilized Criegee intermediates in the formation of aerosols in limonene ozonolysis
Yiwei Gong and Zhongming Chen
Atmos. Chem. Phys., 21, 813–829, https://doi.org/10.5194/acp-21-813-2021,https://doi.org/10.5194/acp-21-813-2021, 2021
Short summary
Photochemical degradation of iron(III) citrate/citric acid aerosol quantified with the combination of three complementary experimental techniques and a kinetic process model
Jing Dou, Peter A. Alpert, Pablo Corral Arroyo, Beiping Luo, Frederic Schneider, Jacinta Xto, Thomas Huthwelker, Camelia N. Borca, Katja D. Henzler, Jörg Raabe, Benjamin Watts, Hartmut Herrmann, Thomas Peter, Markus Ammann, and Ulrich K. Krieger
Atmos. Chem. Phys., 21, 315–338, https://doi.org/10.5194/acp-21-315-2021,https://doi.org/10.5194/acp-21-315-2021, 2021
Short summary

Cited articles

Barsanti, K. C. and Pankow, J. F.: Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions – part 1: aldehydes and ketones, Atmos. Environ., 38, 4371–4382, 2004.
Barsanti, K. C. and Pankow, J. F.: Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions: Part 2: Dialdehydes, methylglyoxal, and diketones, Atmos. Environ., 39, 6597–6607, 2005.
Bateman, A., Walser, M., Laskin, J., Laskin A., and Nizkorodov, S.: The Effect of Solvent on the Analysis of Secondary Organic Aerosol Using Electrospray Ionization Mass Spectrometry, Environ. Sci. Technol., 42, 7341–7346, 2008.
Bateman, A. P., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Time-resolved molecular characterization of limonene/ozone aerosol using high-resolution electrospray ionization mass spectrometry, Phys. Chem. Chem. Phys., 11, 7931–7942, 2009.
Docherty, K. S., Wilbur, W., Lim, Y. B., and Ziemann, P. J.: Contributions of organic peroxides to secondary aerosol formed from reactions of monoterpenes with O3, Environ. Sci. Technol., 39, 4049–4059, 2004.
Download
Altmetrics
Final-revised paper
Preprint