Articles | Volume 12, issue 24
Atmos. Chem. Phys., 12, 12227–12242, 2012
https://doi.org/10.5194/acp-12-12227-2012
Atmos. Chem. Phys., 12, 12227–12242, 2012
https://doi.org/10.5194/acp-12-12227-2012

Research article 21 Dec 2012

Research article | 21 Dec 2012

Surface/bulk partitioning and acid/base speciation of aqueous decanoate: direct observations and atmospheric implications

N. L. Prisle et al.

Related authors

Droplet activation of moderately surface active organic aerosol predicted with six approaches to surface activity
Sampo Vepsäläinen, Silvia M. Calderón, Jussi Malila, and Nønne L. Prisle
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-561,https://doi.org/10.5194/acp-2021-561, 2021
Preprint under review for ACP
Short summary
Pre-deliquescent water uptake in deposited nanoparticles observed with in situ ambient pressure X-ray photoelectron spectroscopy
Jack J. Lin, Kamal Raj R, Stella Wang, Esko Kokkonen, Mikko-Heikki Mikkelä, Samuli Urpelainen, and Nønne L. Prisle
Atmos. Chem. Phys., 21, 4709–4727, https://doi.org/10.5194/acp-21-4709-2021,https://doi.org/10.5194/acp-21-4709-2021, 2021
Short summary
Aqueous-phase behavior of glyoxal and methylglyoxal observed with carbon and oxygen K-edge X-ray absorption spectroscopy
Georgia Michailoudi, Jack J. Lin, Hayato Yuzawa, Masanari Nagasaka, Marko Huttula, Nobuhiro Kosugi, Theo Kurtén, Minna Patanen, and Nønne L. Prisle
Atmos. Chem. Phys., 21, 2881–2894, https://doi.org/10.5194/acp-21-2881-2021,https://doi.org/10.5194/acp-21-2881-2021, 2021
Short summary
Technical note: Estimating aqueous solubilities and activity coefficients of mono- and α,ω-dicarboxylic acids using COSMOtherm
Noora Hyttinen, Reyhaneh Heshmatnezhad, Jonas Elm, Theo Kurtén, and Nønne L. Prisle
Atmos. Chem. Phys., 20, 13131–13143, https://doi.org/10.5194/acp-20-13131-2020,https://doi.org/10.5194/acp-20-13131-2020, 2020
Short summary
Thermodynamic properties of isoprene- and monoterpene-derived organosulfates estimated with COSMOtherm
Noora Hyttinen, Jonas Elm, Jussi Malila, Silvia M. Calderón, and Nønne L. Prisle
Atmos. Chem. Phys., 20, 5679–5696, https://doi.org/10.5194/acp-20-5679-2020,https://doi.org/10.5194/acp-20-5679-2020, 2020
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Chemical composition, optical properties, and oxidative potential of water- and methanol-soluble organic compounds emitted from the combustion of biomass materials and coal
Tao Cao, Meiju Li, Chunlin Zou, Xingjun Fan, Jianzhong Song, Wanglu Jia, Chiling Yu, Zhiqiang Yu, and Ping'an Peng
Atmos. Chem. Phys., 21, 13187–13205, https://doi.org/10.5194/acp-21-13187-2021,https://doi.org/10.5194/acp-21-13187-2021, 2021
Short summary
Photodegradation of atmospheric chromophores: changes in oxidation state and photochemical reactivity
Zhen Mu, Qingcai Chen, Lixin Zhang, Dongjie Guan, and Hao Li
Atmos. Chem. Phys., 21, 11581–11591, https://doi.org/10.5194/acp-21-11581-2021,https://doi.org/10.5194/acp-21-11581-2021, 2021
Short summary
Temperature and volatile organic compound concentrations as controlling factors for chemical composition of α-pinene-derived secondary organic aerosol
Louise N. Jensen, Manjula R. Canagaratna, Kasper Kristensen, Lauriane L. J. Quéléver, Bernadette Rosati, Ricky Teiwes, Marianne Glasius, Henrik B. Pedersen, Mikael Ehn, and Merete Bilde
Atmos. Chem. Phys., 21, 11545–11562, https://doi.org/10.5194/acp-21-11545-2021,https://doi.org/10.5194/acp-21-11545-2021, 2021
Short summary
Tracer-based source apportioning of atmospheric organic carbon and the influence of anthropogenic emissions on secondary organic aerosol formation in Hong Kong
Yubo Cheng, Yiqiu Ma, and Di Hu
Atmos. Chem. Phys., 21, 10589–10608, https://doi.org/10.5194/acp-21-10589-2021,https://doi.org/10.5194/acp-21-10589-2021, 2021
Short summary
Aqueous-phase reactive species formed by fine particulate matter from remote forests and polluted urban air
Haijie Tong, Fobang Liu, Alexander Filippi, Jake Wilson, Andrea M. Arangio, Yun Zhang, Siyao Yue, Steven Lelieveld, Fangxia Shen, Helmi-Marja K. Keskinen, Jing Li, Haoxuan Chen, Ting Zhang, Thorsten Hoffmann, Pingqing Fu, William H. Brune, Tuukka Petäjä, Markku Kulmala, Maosheng Yao, Thomas Berkemeier, Manabu Shiraiwa, and Ulrich Pöschl
Atmos. Chem. Phys., 21, 10439–10455, https://doi.org/10.5194/acp-21-10439-2021,https://doi.org/10.5194/acp-21-10439-2021, 2021
Short summary

Cited articles

B{ä}ssler, M., Forsell, J.-O., Bj{ö}rneholm, O., Feifel, R., Jurvansuu, M., Aksela, S., Sundin, S., Sorensen, S. L., Nyholm, R., Ausmees, A., and Svensson, S.: Soft X-ray undulator beam line I411 at MAX-II for gases, liquids and solid samples, J. Electron Spectrosc. Relat. Phenom., 953, 101–103, 1999.
Bergersen, H., Marinho, R. R. T., Pokapanich, W., Lindblad, A., Björneholm, O., Saethre, L. J., and Öhrwall, G.: A photoelectron spectroscopic study of aqueous tetrabutylammonium iodide, J. Phys.: Cond. Matt., 19, 326101, https://doi.org/10.1088/0953-8984/19/32/326101, 2007.
Burden, D. K., Johnson, A. M., and Nathanson, G. M.: Electronic Structures of Formic Acid (HCOOH) and Formate (HCOO) in Aqueous Solutions, J. Phys. Chem. A, 113, 14131–14140, 2009.
Campbell, A. N. and Lakshminarayanan, G. R.: Conductances and Surface Tensions of Aqueous Solutions of Sodium Decanoate Sodium Laurate and Sodium Myristate at 25 °C and 35 °C, Canad. J. Chem., 43, 1729–1737, 1965.
Campbell, J. L. and Papp, T.: Widths of the atomic K-N7-levels, Atom. Data Nucl. Data Tables, 77, 1, 2001.
Download
Altmetrics
Final-revised paper
Preprint