Research article
10 Jan 2011
Research article | 10 Jan 2011
An Arctic CCN-limited cloud-aerosol regime
T. Mauritsen et al.
Related subject area
Differences in tropical high clouds among reanalyses: origins and radiative impacts
Jonathon S. Wright, Xiaoyi Sun, Paul Konopka, Kirstin Krüger, Bernard Legras, Andrea M. Molod, Susann Tegtmeier, Guang J. Zhang, and Xi Zhao
Atmos. Chem. Phys., 20, 8989–9030, https://doi.org/10.5194/acp-20-8989-2020,https://doi.org/10.5194/acp-20-8989-2020, 2020
Short summary
Improving the Southern Ocean cloud albedo biases in a general circulation model
Vidya Varma, Olaf Morgenstern, Paul Field, Kalli Furtado, Jonny Williams, and Patrick Hyder
Atmos. Chem. Phys., 20, 7741–7751, https://doi.org/10.5194/acp-20-7741-2020,https://doi.org/10.5194/acp-20-7741-2020, 2020
Short summary
Evaluation of Southern Ocean cloud in the HadGEM3 general circulation model and MERRA-2 reanalysis using ship-based observations
Peter Kuma, Adrian J. McDonald, Olaf Morgenstern, Simon P. Alexander, John J. Cassano, Sally Garrett, Jamie Halla, Sean Hartery, Mike J. Harvey, Simon Parsons, Graeme Plank, Vidya Varma, and Jonny Williams
Atmos. Chem. Phys., 20, 6607–6630, https://doi.org/10.5194/acp-20-6607-2020,https://doi.org/10.5194/acp-20-6607-2020, 2020
Short summary
Detection and attribution of aerosol–cloud interactions in large-domain large-eddy simulations with the ICOsahedral Non-hydrostatic model
Montserrat Costa-Surós, Odran Sourdeval, Claudia Acquistapace, Holger Baars, Cintia Carbajal Henken, Christa Genz, Jonas Hesemann, Cristofer Jimenez, Marcel König, Jan Kretzschmar, Nils Madenach, Catrin I. Meyer, Roland Schrödner, Patric Seifert, Fabian Senf, Matthias Brueck, Guido Cioni, Jan Frederik Engels, Kerstin Fieg, Ksenia Gorges, Rieke Heinze, Pavan Kumar Siligam, Ulrike Burkhardt, Susanne Crewell, Corinna Hoose, Axel Seifert, Ina Tegen, and Johannes Quaas
Atmos. Chem. Phys., 20, 5657–5678, https://doi.org/10.5194/acp-20-5657-2020,https://doi.org/10.5194/acp-20-5657-2020, 2020
Short summary
To what extents do urbanization and air pollution affect fog?
Shuqi Yan, Bin Zhu, Yong Huang, Jun Zhu, Hanqing Kang, Chunsong Lu, and Tong Zhu
Atmos. Chem. Phys., 20, 5559–5572, https://doi.org/10.5194/acp-20-5559-2020,https://doi.org/10.5194/acp-20-5559-2020, 2020
Short summary
Atmospheric energy budget response to idealized aerosol perturbation in tropical cloud systems
Guy Dagan, Philip Stier, Matthew Christensen, Guido Cioni, Daniel Klocke, and Axel Seifert
Atmos. Chem. Phys., 20, 4523–4544, https://doi.org/10.5194/acp-20-4523-2020,https://doi.org/10.5194/acp-20-4523-2020, 2020
Short summary
The diurnal stratocumulus-to-cumulus transition over land in southern West Africa
Xabier Pedruzo-Bagazgoitia, Stephan R. de Roode, Bianca Adler, Karmen Babić, Cheikh Dione, Norbert Kalthoff, Fabienne Lohou, Marie Lothon, and Jordi Vilà-Guerau de Arellano
Atmos. Chem. Phys., 20, 2735–2754, https://doi.org/10.5194/acp-20-2735-2020,https://doi.org/10.5194/acp-20-2735-2020, 2020
Short summary
Comparing the impact of environmental conditions and microphysics on the forecast uncertainty of deep convective clouds and hail
Constanze Wellmann, Andrew I. Barrett, Jill S. Johnson, Michael Kunz, Bernhard Vogel, Ken S. Carslaw, and Corinna Hoose
Atmos. Chem. Phys., 20, 2201–2219, https://doi.org/10.5194/acp-20-2201-2020,https://doi.org/10.5194/acp-20-2201-2020, 2020
Short summary
Improving aerosol activation in the double-moment Unified Model with CLARIFY measurements
Hamish Gordon, Paul R. Field, Steven J. Abel, Paul Barrett, Keith Bower, Ian Crawford, Zhiqiang Cui, Daniel P. Grosvenor, Adrian A. Hill, Jonathan Taylor, Jonathan Wilkinson, Huihui Wu, and Ken S. Carslaw
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-68,https://doi.org/10.5194/acp-2020-68, 2020
Revised manuscript accepted for ACP
Short summary
Evaluation of aerosol and cloud properties in three climate models using MODIS observations and its corresponding COSP simulator, as well as their application in aerosol–cloud interactions
Giulia Saponaro, Moa K. Sporre, David Neubauer, Harri Kokkola, Pekka Kolmonen, Larisa Sogacheva, Antti Arola, Gerrit de Leeuw, Inger H. H. Karset, Ari Laaksonen, and Ulrike Lohmann
Atmos. Chem. Phys., 20, 1607–1626, https://doi.org/10.5194/acp-20-1607-2020,https://doi.org/10.5194/acp-20-1607-2020, 2020
Short summary
The challenge of simulating the sensitivity of the Amazonian cloud microstructure to cloud condensation nuclei number concentrations
Pascal Polonik, Christoph Knote, Tobias Zinner, Florian Ewald, Tobias Kölling, Bernhard Mayer, Meinrat O. Andreae, Tina Jurkat-Witschas, Thomas Klimach, Christoph Mahnke, Sergej Molleker, Christopher Pöhlker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, Christiane Voigt, Ralf Weigel, and Manfred Wendisch
Atmos. Chem. Phys., 20, 1591–1605, https://doi.org/10.5194/acp-20-1591-2020,https://doi.org/10.5194/acp-20-1591-2020, 2020
Short summary
The impact of secondary ice production on Arctic stratocumulus
Georgia Sotiropoulou, Sylvia Sullivan, Julien Savre, Gary Lloyd, Thomas Lachlan-Cope, Annica M. L. Ekman, and Athanasios Nenes
Atmos. Chem. Phys., 20, 1301–1316, https://doi.org/10.5194/acp-20-1301-2020,https://doi.org/10.5194/acp-20-1301-2020, 2020
Short summary
Modelling mixed-phase clouds with large-eddy model UCLALES-SALSA
Jaakko Ahola, Hannele Korhonen, Juha Tonttila, Sami Romakkaniemi, Harri Kokkola, and Tomi Raatikainen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-1182,https://doi.org/10.5194/acp-2019-1182, 2020
Revised manuscript accepted for ACP
Short summary
Surprising similarities in model and observational aerosol radiative forcing estimates
Edward Gryspeerdt, Johannes Mülmenstädt, Andrew Gettelman, Florent F. Malavelle, Hugh Morrison, David Neubauer, Daniel G. Partridge, Philip Stier, Toshihiko Takemura, Hailong Wang, Minghuai Wang, and Kai Zhang
Atmos. Chem. Phys., 20, 613–623, https://doi.org/10.5194/acp-20-613-2020,https://doi.org/10.5194/acp-20-613-2020, 2020
Short summary
Contribution of local and remote anthropogenic aerosols to a record-breaking torrential rainfall event in Guangdong Province, China
Zhen Liu, Yi Ming, Chun Zhao, Ngar Cheung Lau, Jianping Guo, Massimo Bollasina, and Steve Hung Lam Yim
Atmos. Chem. Phys., 20, 223–241, https://doi.org/10.5194/acp-20-223-2020,https://doi.org/10.5194/acp-20-223-2020, 2020
Short summary
Modelling the relationship between liquid water content and cloud droplet number concentration observed in low clouds in the summer Arctic and its radiative effects
Joelle Dionne, Knut von Salzen, Jason Cole, Rashed Mahmood, W. Richard Leaitch, Glen Lesins, Ian Folkins, and Rachel Y.-W. Chang
Atmos. Chem. Phys., 20, 29–43, https://doi.org/10.5194/acp-20-29-2020,https://doi.org/10.5194/acp-20-29-2020, 2020
Short summary
Separating radiative forcing by aerosol–cloud interactions and rapid cloud adjustments in the ECHAM–HAMMOZ aerosol–climate model using the method of partial radiative perturbations
Johannes Mülmenstädt, Edward Gryspeerdt, Marc Salzmann, Po-Lun Ma, Sudhakar Dipu, and Johannes Quaas
Atmos. Chem. Phys., 19, 15415–15429, https://doi.org/10.5194/acp-19-15415-2019,https://doi.org/10.5194/acp-19-15415-2019, 2019
Short summary
Water vapour adjustments and responses differ between climate drivers
Øivind Hodnebrog, Gunnar Myhre, Bjørn H. Samset, Kari Alterskjær, Timothy Andrews, Olivier Boucher, Gregory Faluvegi, Dagmar Fläschner, Piers M. Forster, Matthew Kasoar, Alf Kirkevåg, Jean-Francois Lamarque, Dirk Olivié, Thomas B. Richardson, Dilshad Shawki, Drew Shindell, Keith P. Shine, Philip Stier, Toshihiko Takemura, Apostolos Voulgarakis, and Duncan Watson-Parris
Atmos. Chem. Phys., 19, 12887–12899, https://doi.org/10.5194/acp-19-12887-2019,https://doi.org/10.5194/acp-19-12887-2019, 2019
Short summary
Microphysics of summer clouds in central West Antarctica simulated by the Polar Weather Research and Forecasting Model (WRF) and the Antarctic Mesoscale Prediction System (AMPS)
Keith M. Hines, David H. Bromwich, Sheng-Hung Wang, Israel Silber, Johannes Verlinde, and Dan Lubin
Atmos. Chem. Phys., 19, 12431–12454, https://doi.org/10.5194/acp-19-12431-2019,https://doi.org/10.5194/acp-19-12431-2019, 2019
Short summary
Relative impact of aerosol, soil moisture, and orography perturbations on deep convection
Linda Schneider, Christian Barthlott, Corinna Hoose, and Andrew I. Barrett
Atmos. Chem. Phys., 19, 12343–12359, https://doi.org/10.5194/acp-19-12343-2019,https://doi.org/10.5194/acp-19-12343-2019, 2019
Short summary
An emulator approach to stratocumulus susceptibility
Franziska Glassmeier, Fabian Hoffmann, Jill S. Johnson, Takanobu Yamaguchi, Ken S. Carslaw, and Graham Feingold
Atmos. Chem. Phys., 19, 10191–10203, https://doi.org/10.5194/acp-19-10191-2019,https://doi.org/10.5194/acp-19-10191-2019, 2019
Short summary
Arctic cloud annual cycle biases in climate models
Patrick C. Taylor, Robyn C. Boeke, Ying Li, and David W. J. Thompson
Atmos. Chem. Phys., 19, 8759–8782, https://doi.org/10.5194/acp-19-8759-2019,https://doi.org/10.5194/acp-19-8759-2019, 2019
Short summary
Cited articles
Ackermann, A. S., Kirkpatrick, M. P., Stevens, D. E., and Toon, O. B.: The impact of humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432, 1014–1017, 2004.
Albrecht, B.: Aerosols, cloud microphysics and fractional cloudiness, Science, 245, 1227–1230, 1989.
Ayers, G. P and Cainey, J. M.: The CLAW hypothesis: a review of the major developments, Environ. Chem., 4, 366–374, https://doi.org/10.1071/EN07080, 2007.
Bigg, E. K. and Leck, C.: Cloud-active particles over the central Arctic Ocean, J. Geophys. Res., 106(D23), 32155–32166, 2001.
Bigg, E. K. and Leck, C.: The composition of fragments of bubbles bursting at the ocean surface, J. Geophys. Res., 113(D1), 1209, https://doi.org/10.1029/2007JD009078, 2008.
Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326, 655–661, 1987.
Covert, D. S., Wiedensohler, A., Aalto, P., Heintzenberg, J., McMurrry, P. H., and Leck, C.: Aerosol number size distributions from 3 to 500 nm diameter in the arctic marine boundary layer during summer and autumn, Tellus B, 48, 197–212, 1996.
Curry, J. A.: Interactions among turbulence, radiation and microphysics in Arctic stratus clouds, J. Atmos. Sci., 43, 90–106, 1986.
Curry, J. A.: Interactions among aerosols, clouds, and climate of the Arctic Ocean, Sci. Total Environ., 160/161, 777–791, 1995.
Fu, Q. and Liou, K. N.: On the Correlated k-Distribution Method for Radiative Transfer in Nonhomogeneous Atmospheres, J. Atmos. Sci.,{ 49}, 2139–2156, 1992.
Garrett, T. J. and Zhao, C.: Increased Arctic cloud longwave emmisivity associated with pollution from mid-latitudes, Nature, 440, 787–789, 2006.
Gerber, H.: Microphysics of marine stratocumulus clouds with two drizzle modes, J. Atmos. Sci., 53, 1649–1662, 1996.
Graversen, R. G.: Do changes in the midlatitude circulation have any impact on the Arctic surface air temperature trend?, J. Climate, 19, 5422–5438, 2006.
Hu, Y. X. and Stamnes, K.: An accurate parameterization of the radiative properties of water clouds suitable for use in climate models, J. Climate, 6, 728–742, 1992.
Intrieri, J. M., Fairall, C. W., Shupe, M. D., Persson, P. O. G., Andreas, E. L., Guest, P. S., and Moritz, R. E.: An annual cycle of Arctic surface cloud forcing at SHEBA, J. Geophys. Res., { 107}(C10), https://doi.org/10.1029/2000JC000439, 2002.
Köhler, H.: The nucleus in and the growth of hygroscopic droplets, Trans. Far. Soc., 32, 1152–1161, 1936.
Leck, C., Bigg, E. K., Covert, D. S., Heintzenberg, J., Maenhaut, W., Nilsson, E. D., and Wiedensohler, A.: Overview of the Atmospheric research program during the International Arctic Ocean Expedition 1991 (IAOE-91) and its scientific results, Tellus B, 48, 136–155, 1996.
Leck, C., Nilsson, E. D., Bigg, K., and Bäcklin, L.: The Atmospheric program on the Arctic Ocean Expedition in the summer of 1996 (AOE-96) – A Technical Overview- Outline of experimental approach, instruments, scientific objectives, J. Geophys. Res., 106(D23), 32051–32067, 2001.
Leck, C., Norman, M., Bigg, E. K., and Hillamo, R.: Chemical composition and sources of the high Arctic aerosol relevant for fog and cloud formation, J. Geophys. Res., 107, D12, 4135, https://doi.org/:10.1029/2001JD001463, 2002.
Leck, C., Tjernström, M., Matrai, P., Swietlicki, E., and Bigg, E. K.: Can marine micro-organisms influence melting of the Arctic pack ice?, Eos { 85}(3), 25–36, 2004.
Lee, R. L.: Mie theory, Airy theory, and the natural rainbow, Appl. Opt., { 37}(9), 1506–1519, 1998.
Lohmann, U. and Feichter, J.: Global indirect aerosol effects: a review, Atmos. Chem. Phys., 5, 715–737, https://doi.org/10.5194/acp-5-715-2005, 2005.
Lohmann, U. and Leck, C.: Importance of submicron surface-active organic aerosols for pristine Arctic clouds, Tellus B, 57, 261–268, 2005.
Lu, M. L. and Seinfeld, J. H.: Study of the aerosol indirect effect by large-eddy simulation of marine stratocumulus, J. Atmos. Sci., 62, 3909–3932, 2005.
Lubin, D. and Vogelmann, A. M.: Expected magnitude of the aerosol shortwave indirect effect in the springtime Arctic liquid water clouds, Geophys. Res. Lett.,{ 34}, L11801, https://doi.org/10.1029/2006GL028750, 2007.
Moran, K. P., Martner, B. E., Post, M. J., Kropfli, R. A., Welsh, D. C., and Widener, K. B.: An unattended cloud-profiling radar for use in climate research, B. Am. Meteor. Soc., 79, 443–455, 1998.
Petters, M. D., Snider, J. R., Stevens, B., Vali, G., Faloona, I., and Russell, L.: Accumulation mode aerosol, pockets of open cells, and particle nucleation in the remote subtropical pacific marine boundary layer, J. Geophys. Res., 111, D02206, https://doi.org/10.1029/2004JD005694, 2006.
Pincus, R. and Baker, M. B.: Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer, Nature, 372, 250–252, 1994.
Prenni, A. J., DeMott, P. J., Kreidenweis, S. M, Harrington, J. Y., Avramov, A., Verlinde, J., Tjernström, M., Long, C. N., and Olsson, P. Q.: Can Ice-Nucleating Aerosols Affect Arctic Seasonal Climate?, B. Am. Meteor. Soc., 88, 541–550, 2007.
Ramanathan, V., Cess, R. D., Harrison, E. F., Minnis, P., Barkstrom, B. R., Ahmed, E., and Hartmann, D.: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment, Science, 243, 57–63, 1989.
Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: Aerosols, climate and the hydrological cycle, Science, 294, 2119–2124, 2001.
Roberts, G. C. and Nenes, A. A: continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements, Aerosol Sci. Technol., 39, 206–221, 2005.
Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi, S., Reissell, E., and Andreae, M. O.: Flood or drought: How do aerosols affect precipitation?, Science, 321, 1309–1313, 2008.
Sandu, I., Brenguier, J.-L., Geoffroy, O., Thouron, O., and Masson, V.: Aerosol impacts on the diurnal cycle of marine stratocumulus, J. Atmos. Sci., 65, 2705–2718, 2008.
Schneider, S. H.: Cloudiness as a global climate feedback mechanism: The effects on the radiation balance and surface temperature of variations in cloudiness, J. Atmos. Sci., 29, 1413–1422, 1972.
Sedlar, J., Tjernström, M., Mauritsen, T., Shupe, M., Brooks, I. M., Birch, C., Leck, C., Sirevaag, A., Persson, P. O. G., and Nicolaus, M.: A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo and cloud radiative forcing, Clim. Dynam., https://doi.org/10.1007/s00382-010-0937-5, 2010.
Shaw, G. E.: Biocontrolled thermostasis involving the sulfur cycle, Clim. Change,{ 5}, 297-303, 1983.
Shupe, M. D., Daniel, J. S., De Boer, G., Eloranta, E. W., Kollias, P., Long, C. N. Luke, E. P., Turner, D. D., and Verlinde, J. A: Focus on mixed-phase clouds: The status of ground-based observational methods, B. Ame. Meteor. Soc., 89, 1549–1562, 2008.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L.: Climate change 2007: The physical science basis, Cambridge University Press, 996 pp., 2007.
Stevens, B., Vali, G., Comstock, K., Wood, R., van Zanten, M. C., Austin, P. H., Bretherton, C. S., and Lenschow, D. H.: Pockets of open cells (POCs) and drizzle in marine stratocumulus, B. Am. Meteor. Soc., 86, 51–57, 2005.
Struthers, H., Ekman, A. M. L., Glantz, P., Iversen, T., Kirkevåg, A., Mårtensson, E. M., Seland, \O., and Nilsson, E. D.: The effect of sea ice loss on sea salt aerosol concentrations and the radiative balance in the Arctic, Atmos. Chem. Phys. Discuss., 10, 28859–28908, https://doi.org/10.5194/acpd-10-28859-2010, 2010.
Tjernström, M., Leck, C., Persson, P. O. G., Jensen, M. L., Oncley, S. P., and Targino, A.: The Summertime Arctic Atmosphere: Meteorological measurements during the Arctic Ocean Experiment 2001 (AOE-2001), B. Am. Meteor. Soc., 85, 1305–1321, 2004.
Twomey, S. A.: The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci., 34, 1149–1152, 1977.
Verlinde, J., Harrington, J. Y., Yannuzzi, V. T., Avramov, A., Greenberg S., Richardson, S. J., Bahrmann, C. P., McFarquhar, G. M., Zhang, G., Johnson, N., Poellot, M. R., Mather, J. H., Turner, D. D., Eloranta, E. W., Tobin, D. C., Holz, R., Zak, B. D., Ivey, M. D., Prenni, A. J., DeMott, P. J., Daniel, J. S., Kok, G. L., Sassen, K., Spangenberg, D., Minnis, P., Tooman, T. P., Shupe, M., Heymsfield, A. J., and Schofield, R.: The Mixed-Phase Arctic Cloud Experiment (M-PACE), B. Am. Meteor. Soc., 88, 205–221, https://doi.org/10.1175/bams-88-2-205, 2007.
Walsh, J. E. and Chapman, W. L. Arctic cloud-radiation-temperature associations in observational data and atmospheric reanalysis, J. Climate, 11, 3030–3045, 1998.
Westwater, E. R., Han, Y., Shupe, M. D., and Matrosov, S. Y.: Analysis of integrated cloud liquid and precipitable water vapor retrievals from microwave radiometers during SHEBA, J. Geophys. Res., 106, 32019–32030, 2001.
Wood, R., Comstock, K. K., Bretherton, C. S., Cornish, C., Tomlinson, J., Collins, D. R., and Fairall, C.: Open cellular structure in marine stratocumulus sheets. J. Geophys. Res. 113, D12207, https://doi.org/10.1029/2007JD009371, 2008.
Zhou, J., Swietlicki, E., Berg, O. H., Aalto, P. P., Hämeri, K., Nilsson, E. D., and Leck, C. Hygroscopic properties of aerosol particles over the central Arctic Ocean during summer, J. Geophys. Res., { 106}(D23), 32111–32123, 2001.