Articles | Volume 11, issue 1
Atmos. Chem. Phys., 11, 165–173, 2011
https://doi.org/10.5194/acp-11-165-2011

Special issue: Arctic Summer Cloud Ocean Study (ASCOS) (ACP/AMT/OS inter-journal...

Atmos. Chem. Phys., 11, 165–173, 2011
https://doi.org/10.5194/acp-11-165-2011

Research article 10 Jan 2011

Research article | 10 Jan 2011

An Arctic CCN-limited cloud-aerosol regime

T. Mauritsen et al.

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Case study of a moisture intrusion over the Arctic with the ICOsahedral Non-hydrostatic (ICON) model: resolution dependence of its representation
Hélène Bresson, Annette Rinke, Mario Mech, Daniel Reinert, Vera Schemann, Kerstin Ebell, Marion Maturilli, Carolina Viceto, Irina Gorodetskaya, and Susanne Crewell
Atmos. Chem. Phys., 22, 173–196, https://doi.org/10.5194/acp-22-173-2022,https://doi.org/10.5194/acp-22-173-2022, 2022
Short summary
New investigations on homogeneous ice nucleation: the effects of water activity and water saturation formulations
Manuel Baumgartner, Christian Rolf, Jens-Uwe Grooß, Julia Schneider, Tobias Schorr, Ottmar Möhler, Peter Spichtinger, and Martina Krämer
Atmos. Chem. Phys., 22, 65–91, https://doi.org/10.5194/acp-22-65-2022,https://doi.org/10.5194/acp-22-65-2022, 2022
Short summary
Cloud droplet formation at the base of tropical convective clouds: closure between modeling and measurement results of ACRIDICON–CHUVA
Ramon Campos Braga, Barbara Ervens, Daniel Rosenfeld, Meinrat O. Andreae, Jan-David Förster, Daniel Fütterer, Lianet Hernández Pardo, Bruna A. Holanda, Tina Jurkat-Witschas, Ovid O. Krüger, Oliver Lauer, Luiz A. T. Machado, Christopher Pöhlker, Daniel Sauer, Christiane Voigt, Adrian Walser, Manfred Wendisch, Ulrich Pöschl, and Mira L. Pöhlker
Atmos. Chem. Phys., 21, 17513–17528, https://doi.org/10.5194/acp-21-17513-2021,https://doi.org/10.5194/acp-21-17513-2021, 2021
Short summary
Impacts of long-range-transported mineral dust on summertime convective cloud and precipitation: a case study over the Taiwan region
Yanda Zhang, Fangqun Yu, Gan Luo, Jiwen Fan, and Shuai Liu
Atmos. Chem. Phys., 21, 17433–17451, https://doi.org/10.5194/acp-21-17433-2021,https://doi.org/10.5194/acp-21-17433-2021, 2021
Short summary
Model emulation to understand the joint effects of ice-nucleating particles and secondary ice production on deep convective anvil cirrus
Rachel E. Hawker, Annette K. Miltenberger, Jill S. Johnson, Jonathan M. Wilkinson, Adrian A. Hill, Ben J. Shipway, Paul R. Field, Benjamin J. Murray, and Ken S. Carslaw
Atmos. Chem. Phys., 21, 17315–17343, https://doi.org/10.5194/acp-21-17315-2021,https://doi.org/10.5194/acp-21-17315-2021, 2021
Short summary

Cited articles

Ackerman, A. S., Toon, O. B., and Hobbs, P. V.: Reassessing the dependence of cloud condensation nucleus concentration on formation rates, Nature, 367, 445–447, 1994.
Ackermann, A. S., Kirkpatrick, M. P., Stevens, D. E., and Toon, O. B.: The impact of humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432, 1014–1017, 2004.
Albrecht, B.: Aerosols, cloud microphysics and fractional cloudiness, Science, 245, 1227–1230, 1989.
Ayers, G. P and Cainey, J. M.: The CLAW hypothesis: a review of the major developments, Environ. Chem., 4, 366–374, https://doi.org/10.1071/EN07080, 2007.
Baker, M. B. and Charlson, R. J.: Bistability of CCN concentrations and thermodynamics in the cloud-topped boundary layer, Nature, 345, 142–145, 1990.
Download
Altmetrics
Final-revised paper
Preprint