Articles | Volume 25, issue 3
https://doi.org/10.5194/acp-25-1711-2025
https://doi.org/10.5194/acp-25-1711-2025
Research article
 | 
06 Feb 2025
Research article |  | 06 Feb 2025

Distinctive dust weather intensities in North China resulted from two types of atmospheric circulation anomalies

Qianyi Huo, Zhicong Yin, Xiaoqing Ma, and Huijun Wang

Related authors

Predicting gridded winter PM2.5 concentration in the east of China
Zhicong Yin, Mingkeng Duan, Yuyan Li, Tianbao Xu, and Huijun Wang
Atmos. Chem. Phys., 22, 11173–11185, https://doi.org/10.5194/acp-22-11173-2022,https://doi.org/10.5194/acp-22-11173-2022, 2022
Short summary
Dipole pattern of summer ozone pollution in the east of China and its connection with climate variability
Xiaoqing Ma and Zhicong Yin
Atmos. Chem. Phys., 21, 16349–16361, https://doi.org/10.5194/acp-21-16349-2021,https://doi.org/10.5194/acp-21-16349-2021, 2021
Short summary
Comparison of the influence of two types of cold surge on haze dispersion in eastern China
Shiyue Zhang, Gang Zeng, Xiaoye Yang, Ruixi Wu, and Zhicong Yin
Atmos. Chem. Phys., 21, 15185–15197, https://doi.org/10.5194/acp-21-15185-2021,https://doi.org/10.5194/acp-21-15185-2021, 2021
Short summary
Decadal changes of connections among late-spring snow cover in West Siberia, summer Eurasia teleconnection and O3-related meteorology in North China
Zhicong Yin, Yu Wan, and Huijun Wang
Atmos. Chem. Phys., 21, 11519–11530, https://doi.org/10.5194/acp-21-11519-2021,https://doi.org/10.5194/acp-21-11519-2021, 2021
Short summary
Role of atmospheric circulations in haze pollution in December 2016
Zhicong Yin and Huijun Wang
Atmos. Chem. Phys., 17, 11673–11681, https://doi.org/10.5194/acp-17-11673-2017,https://doi.org/10.5194/acp-17-11673-2017, 2017
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Biomass burning emission analysis based on MODIS aerosol optical depth and AeroCom multi-model simulations: implications for model constraints and emission inventories
Mariya Petrenko, Ralph Kahn, Mian Chin, Susanne E. Bauer, Tommi Bergman, Huisheng Bian, Gabriele Curci, Ben Johnson, Johannes W. Kaiser, Zak Kipling, Harri Kokkola, Xiaohong Liu, Keren Mezuman, Tero Mielonen, Gunnar Myhre, Xiaohua Pan, Anna Protonotariou, Samuel Remy, Ragnhild Bieltvedt Skeie, Philip Stier, Toshihiko Takemura, Kostas Tsigaridis, Hailong Wang, Duncan Watson-Parris, and Kai Zhang
Atmos. Chem. Phys., 25, 1545–1567, https://doi.org/10.5194/acp-25-1545-2025,https://doi.org/10.5194/acp-25-1545-2025, 2025
Short summary
Quasi-weekly oscillation of regional PM2.5 transport over China driven by the synoptic-scale disturbance of the East Asian winter monsoon circulation
Yongqing Bai, Tianliang Zhao, Kai Meng, Yue Zhou, Jie Xiong, Xiaoyun Sun, Lijuan Shen, Yanyu Yue, Yan Zhu, Weiyang Hu, and Jingyan Yao
Atmos. Chem. Phys., 25, 1273–1287, https://doi.org/10.5194/acp-25-1273-2025,https://doi.org/10.5194/acp-25-1273-2025, 2025
Short summary
Solar radiation estimation in West Africa: impact of dust conditions during the 2021 dry season
Léo Clauzel, Sandrine Anquetin, Christophe Lavaysse, Gilles Bergametti, Christel Bouet, Guillaume Siour, Rémy Lapere, Béatrice Marticorena, and Jennie Thomas
Atmos. Chem. Phys., 25, 997–1021, https://doi.org/10.5194/acp-25-997-2025,https://doi.org/10.5194/acp-25-997-2025, 2025
Short summary
Gaps in our understanding of ice-nucleating particle sources exposed by global simulation of the UK Earth System Model
Ross J. Herbert, Alberto Sanchez-Marroquin, Daniel P. Grosvenor, Kirsty J. Pringle, Stephen R. Arnold, Benjamin J. Murray, and Kenneth S. Carslaw
Atmos. Chem. Phys., 25, 291–325, https://doi.org/10.5194/acp-25-291-2025,https://doi.org/10.5194/acp-25-291-2025, 2025
Short summary
The role of interfacial tension in the size-dependent phase separation of atmospheric aerosol particles
Ryan Schmedding and Andreas Zuend
Atmos. Chem. Phys., 25, 327–346, https://doi.org/10.5194/acp-25-327-2025,https://doi.org/10.5194/acp-25-327-2025, 2025
Short summary

Cited articles

Ahmadzai, H., Malhotra, A., and Tutundjian, S.: Assessing the impact of sand and dust storm on agriculture: Empirical evidence from Mongolia, PLoS One, 18, e0269271, https://doi.org/10.1371/journal.pone.0269271, 2023. 
Bueh, C., Zhuge, A., Xie, Z., Yong, M., and Purevjav, G.: The development of a powerful Mongolian cyclone on 14–15 March 2021: Eddy energy analysis, Atmos. Ocean. Sci. Lett., 15, 100259, https://doi.org/10.1016/j.aosl.2022.100259, 2022. 
Chen, S. Y., Zhao, D., Huang, J. P., He, J. Q., Chen, Y., Chen, J. Y., Bi, H. R., Lou, G. T., Du, S. K., Zhang, Y., and Yang, F.: Mongolia Contributed More than 42 % of the Dust Concentrations in Northern China in March and April 2023, Adv. Atmos. Sci., 40, 1549–1557, https://doi.org/10.1007/s00376-023-3062-1, 2023a. 
Chen, Y., Chen, S. Y., Zhou, J., Zhao, D., Bi, H. R., Zhang, Y., Alam, K., Yu, H. P., Yang, Y. X., and Chen, J. Y.: A super dust storm enhanced by radiative feedback, NPJ Clim. Atmos. Sci., 6, 90, https://doi.org/10.1038/s41612-023-00418-y, 2023b. 
China National Environmental Monitoring Centre: Hourly PM10 concentration data, China National Environmental Monitoring Centre [data set], https://quotsoft.net/air/ (last access: 6 April 2024), 2024. 
Download
Short summary
Dust days during the spring seasons of 2015–2023 in North China were classified into Mongolian cyclone and cold high types depending on the presence of the Mongolian cyclone. The Mongolian cyclone type led to more frequent and severe dust weather, indicated by PM10 concentrations. To comprehensively forecast the two types of dust weather, a common predictor was established based on 500 hPa anomalous circulation systems, offering insights for dust weather forecasting and climate prediction.
Share
Altmetrics
Final-revised paper
Preprint