Articles | Volume 23, issue 11
https://doi.org/10.5194/acp-23-6083-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-6083-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global sensitivities of reactive N and S gas and particle concentrations and deposition to precursor emissions reductions
School of Chemistry, University of Edinburgh, Joseph Black Building,
David Brewster Road, Edinburgh, EH9 3FJ, UK
UK Centre for Ecology & Hydrology, Bush Estate, Penicuik,
Midlothian, EH26 0QB, UK
now at: The Norwegian Meteorological Institute, Henrik Mohns Plass 1,
0313, Oslo, Norway
Massimo Vieno
UK Centre for Ecology & Hydrology, Bush Estate, Penicuik,
Midlothian, EH26 0QB, UK
David S. Stevenson
School of GeoSciences, University of Edinburgh, Crew Building,
Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
Peter Wind
The Norwegian Meteorological Institute, Henrik Mohns Plass 1, 0313,
Oslo, Norway
School of Chemistry, University of Edinburgh, Joseph Black Building,
David Brewster Road, Edinburgh, EH9 3FJ, UK
Related authors
Xu-Cheng He, Nathan Luke Abraham, Han Ding, Maria R. Russo, Daniel P. Grosvenor, Yao Ge, Xuemei Wang, Anthony C. Jones, Pedro Campuzano-Jost, Benjamin Nault, Agnieszka Kupc, Donald Blake, Jose L. Jimenez, Christina J. Williamson, Kenneth S. Carslaw, James Weber, Alexander T. Archibald, and Hamish Gordon
EGUsphere, https://doi.org/10.5194/egusphere-2025-3700, https://doi.org/10.5194/egusphere-2025-3700, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Aerosols affect clouds and climate. However, current climate models still struggle to simulate them accurately. We used aircraft data from a global mission to evaluate how well the UK Earth System Model represents aerosols and their precursors. Our results show that the model misses key formation processes in clean ocean regions, suggesting that future improvements should focus on better representing how aerosols form naturally in the atmosphere.
Yao Ge, Sverre Solberg, Mathew R. Heal, Stefan Reimann, Willem van Caspel, Bryan Hellack, Thérèse Salameh, and David Simpson
Atmos. Chem. Phys., 24, 7699–7729, https://doi.org/10.5194/acp-24-7699-2024, https://doi.org/10.5194/acp-24-7699-2024, 2024
Short summary
Short summary
Atmospheric volatile organic compounds (VOCs) constitute many species, acting as precursors to ozone and aerosol. Given the uncertainties in VOC emissions, lack of evaluation studies, and recent changes in emissions, this work adapts the EMEP MSC-W to evaluate emission inventories in Europe. We focus on the varying agreement between modelled and measured VOCs across different species and underscore potential inaccuracies in total and sector-specific emission estimates.
Willem E. van Caspel, David Simpson, Jan Eiof Jonson, Anna M. K. Benedictow, Yao Ge, Alcide di Sarra, Giandomenico Pace, Massimo Vieno, Hannah L. Walker, and Mathew R. Heal
Geosci. Model Dev., 16, 7433–7459, https://doi.org/10.5194/gmd-16-7433-2023, https://doi.org/10.5194/gmd-16-7433-2023, 2023
Short summary
Short summary
Radiation coming from the sun is essential to atmospheric chemistry, driving the breakup, or photodissociation, of atmospheric molecules. This in turn affects the chemical composition and reactivity of the atmosphere. The representation of photodissociation effects is therefore essential in atmospheric chemistry modeling. One such model is the EMEP MSC-W model, for which a new way of calculating the photodissociation rates is tested and evaluated in this paper.
Yao Ge, Massimo Vieno, David S. Stevenson, Peter Wind, and Mathew R. Heal
Atmos. Chem. Phys., 22, 8343–8368, https://doi.org/10.5194/acp-22-8343-2022, https://doi.org/10.5194/acp-22-8343-2022, 2022
Short summary
Short summary
Reactive N and S gases and aerosols are critical determinants of air quality. We report a comprehensive analysis of the concentrations, wet and dry deposition, fluxes, and lifetimes of these species globally as well as for 10 world regions. We used the EMEP MSC-W model coupled with WRF meteorology and 2015 global emissions. Our work demonstrates the substantial regional variation in these quantities and the need for modelling to simulate atmospheric responses to precursor emissions.
Yao Ge, Mathew R. Heal, David S. Stevenson, Peter Wind, and Massimo Vieno
Geosci. Model Dev., 14, 7021–7046, https://doi.org/10.5194/gmd-14-7021-2021, https://doi.org/10.5194/gmd-14-7021-2021, 2021
Short summary
Short summary
This study reports the first evaluation of the global EMEP MSC-W ACTM driven by WRF meteorology, with a focus on surface concentrations and wet deposition of reactive N and S species. The model–measurement comparison is conducted both spatially and temporally, covering 10 monitoring networks worldwide. The statistics from the comprehensive evaluations presented in this study support the application of this model framework for global analysis of the budgets and fluxes of reactive N and SIA.
Peter Wind and Willem van Caspel
Geosci. Model Dev., 18, 5397–5411, https://doi.org/10.5194/gmd-18-5397-2025, https://doi.org/10.5194/gmd-18-5397-2025, 2025
Short summary
Short summary
This paper presents a numerical method to assess the origin of air pollution. Combined with a numerical air pollution transport and chemistry model, it can follow the contributions from a large number of emission sources. The result is a series of maps that give the relative contributions from, for example, all European countries at any point on the map.
Xu-Cheng He, Nathan Luke Abraham, Han Ding, Maria R. Russo, Daniel P. Grosvenor, Yao Ge, Xuemei Wang, Anthony C. Jones, Pedro Campuzano-Jost, Benjamin Nault, Agnieszka Kupc, Donald Blake, Jose L. Jimenez, Christina J. Williamson, Kenneth S. Carslaw, James Weber, Alexander T. Archibald, and Hamish Gordon
EGUsphere, https://doi.org/10.5194/egusphere-2025-3700, https://doi.org/10.5194/egusphere-2025-3700, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Aerosols affect clouds and climate. However, current climate models still struggle to simulate them accurately. We used aircraft data from a global mission to evaluate how well the UK Earth System Model represents aerosols and their precursors. Our results show that the model misses key formation processes in clean ocean regions, suggesting that future improvements should focus on better representing how aerosols form naturally in the atmosphere.
Jize Jiang, David S. Stevenson, Aimable Uwizeye, Giuseppe Tempio, Alessandra Falcucci, Flavia Casu, and Mark A. Sutton
Geosci. Model Dev., 18, 5051–5099, https://doi.org/10.5194/gmd-18-5051-2025, https://doi.org/10.5194/gmd-18-5051-2025, 2025
Short summary
Short summary
A special model called AMmonia–CLIMate (AMCLIM) has been developed to understand and calculate NH3 emissions from livestock farming. It is estimated that about 30 % of excreted N from livestock is lost due to NH3 emissions from housing, manure management and land application of manure. High NH3 volatilization often occurs in hot regions, while poor management practices also result in significant N losses through NH3 emissions.
Alexander K. Tardito Chaudhri and David S. Stevenson
Atmos. Chem. Phys., 25, 7369–7385, https://doi.org/10.5194/acp-25-7369-2025, https://doi.org/10.5194/acp-25-7369-2025, 2025
Short summary
Short summary
There remains a large uncertainty in the global warming potential of atmospheric hydrogen due to poor constraints on its soil deposition and, therefore, its lifetime. A new analysis of the latitudinal variation in the observed seasonality of hydrogen is used to constrain its surface fluxes. This is complemented with a simple latitude–height model where surface fluxes are adjusted from a prototype deposition scheme.
Alok K. Pandey, David S. Stevenson, Alcide Zhao, Richard J. Pope, Ryan Hossaini, Krishan Kumar, and Martyn P. Chipperfield
Atmos. Chem. Phys., 25, 4785–4802, https://doi.org/10.5194/acp-25-4785-2025, https://doi.org/10.5194/acp-25-4785-2025, 2025
Short summary
Short summary
Nitrogen dioxide is an air pollutant largely controlled by human activity that affects ozone, methane, and aerosols. Satellite instruments can quantify column NO2 and, by carefully matching the time and location of measurements, enable evaluation of model simulations. NO2 over south and east Asia is assessed, showing that the model captures not only many features of the measurements, but also important differences that suggest model deficiencies in representing several aspects of the atmospheric chemistry of NO2.
Jize Jiang, David S. Stevenson, and Mark A. Sutton
Geosci. Model Dev., 17, 8181–8222, https://doi.org/10.5194/gmd-17-8181-2024, https://doi.org/10.5194/gmd-17-8181-2024, 2024
Short summary
Short summary
A special model called AMmonia–CLIMate (AMCLIM) has been developed to understand and calculate NH3 emissions from fertilizer use and also taking into account how the environment influences these NH3 emissions. It is estimated that about 17 % of applied N in fertilizers was lost due to NH3 emissions. Hot and dry conditions and regions with high-pH soils can expect higher NH3 emissions.
Yao Ge, Sverre Solberg, Mathew R. Heal, Stefan Reimann, Willem van Caspel, Bryan Hellack, Thérèse Salameh, and David Simpson
Atmos. Chem. Phys., 24, 7699–7729, https://doi.org/10.5194/acp-24-7699-2024, https://doi.org/10.5194/acp-24-7699-2024, 2024
Short summary
Short summary
Atmospheric volatile organic compounds (VOCs) constitute many species, acting as precursors to ozone and aerosol. Given the uncertainties in VOC emissions, lack of evaluation studies, and recent changes in emissions, this work adapts the EMEP MSC-W to evaluate emission inventories in Europe. We focus on the varying agreement between modelled and measured VOCs across different species and underscore potential inaccuracies in total and sector-specific emission estimates.
Lily Gouldsbrough, Ryan Hossaini, Emma Eastoe, Paul J. Young, and Massimo Vieno
Atmos. Chem. Phys., 24, 3163–3196, https://doi.org/10.5194/acp-24-3163-2024, https://doi.org/10.5194/acp-24-3163-2024, 2024
Short summary
Short summary
High-resolution spatial fields of surface ozone are used to understand spikes in ozone concentration and predict their impact on public health. Such fields are routinely output from complex mathematical models for atmospheric conditions. These outputs are on a coarse spatial resolution and the highest concentrations tend to be biased. Using a novel data-driven machine learning methodology, we show how such output can be corrected to produce fields with both lower bias and higher resolution.
Prerita Agarwal, David S. Stevenson, and Mathew R. Heal
Atmos. Chem. Phys., 24, 2239–2266, https://doi.org/10.5194/acp-24-2239-2024, https://doi.org/10.5194/acp-24-2239-2024, 2024
Short summary
Short summary
Air pollution levels across northern India are amongst some of the worst in the world, with episodic and hazardous haze events. Here, the ability of the WRF-Chem model to predict air quality over northern India is assessed against several datasets. Whilst surface wind speed and particle pollution peaks are over- and underestimated, respectively, meteorology and aerosol trends are adequately captured, and we conclude it is suitable for investigating severe particle pollution events.
Willem E. van Caspel, David Simpson, Jan Eiof Jonson, Anna M. K. Benedictow, Yao Ge, Alcide di Sarra, Giandomenico Pace, Massimo Vieno, Hannah L. Walker, and Mathew R. Heal
Geosci. Model Dev., 16, 7433–7459, https://doi.org/10.5194/gmd-16-7433-2023, https://doi.org/10.5194/gmd-16-7433-2023, 2023
Short summary
Short summary
Radiation coming from the sun is essential to atmospheric chemistry, driving the breakup, or photodissociation, of atmospheric molecules. This in turn affects the chemical composition and reactivity of the atmosphere. The representation of photodissociation effects is therefore essential in atmospheric chemistry modeling. One such model is the EMEP MSC-W model, for which a new way of calculating the photodissociation rates is tested and evaluated in this paper.
Gemma Purser, Mathew R. Heal, Edward J. Carnell, Stephen Bathgate, Julia Drewer, James I. L. Morison, and Massimo Vieno
Atmos. Chem. Phys., 23, 13713–13733, https://doi.org/10.5194/acp-23-13713-2023, https://doi.org/10.5194/acp-23-13713-2023, 2023
Short summary
Short summary
Forest expansion is a ″net-zero“ pathway, but change in land cover alters air quality in many ways. This study combines tree planting suitability data with UK measured emissions of biogenic volatile organic compounds to simulate spatial and temporal changes in atmospheric composition for planting scenarios of four species. Decreases in fine particulate matter are relatively larger than increases in ozone, which may indicate a net benefit of tree planting on human health aspects of air quality.
David S. Stevenson, Richard G. Derwent, Oliver Wild, and William J. Collins
Atmos. Chem. Phys., 22, 14243–14252, https://doi.org/10.5194/acp-22-14243-2022, https://doi.org/10.5194/acp-22-14243-2022, 2022
Short summary
Short summary
Atmospheric methane’s growth rate rose by 50 % in 2020 relative to 2019. Lower nitrogen oxide (NOx) emissions tend to increase methane’s atmospheric residence time; lower carbon monoxide (CO) and non-methane volatile organic compound (NMVOC) emissions decrease its lifetime. Combining model sensitivities with emission changes, we find that COVID-19 lockdown emission reductions can explain over half the observed increases in methane in 2020.
Yao Ge, Massimo Vieno, David S. Stevenson, Peter Wind, and Mathew R. Heal
Atmos. Chem. Phys., 22, 8343–8368, https://doi.org/10.5194/acp-22-8343-2022, https://doi.org/10.5194/acp-22-8343-2022, 2022
Short summary
Short summary
Reactive N and S gases and aerosols are critical determinants of air quality. We report a comprehensive analysis of the concentrations, wet and dry deposition, fluxes, and lifetimes of these species globally as well as for 10 world regions. We used the EMEP MSC-W model coupled with WRF meteorology and 2015 global emissions. Our work demonstrates the substantial regional variation in these quantities and the need for modelling to simulate atmospheric responses to precursor emissions.
Svetlana Tsyro, Wenche Aas, Augustin Colette, Camilla Andersson, Bertrand Bessagnet, Giancarlo Ciarelli, Florian Couvidat, Kees Cuvelier, Astrid Manders, Kathleen Mar, Mihaela Mircea, Noelia Otero, Maria-Teresa Pay, Valentin Raffort, Yelva Roustan, Mark R. Theobald, Marta G. Vivanco, Hilde Fagerli, Peter Wind, Gino Briganti, Andrea Cappelletti, Massimo D'Isidoro, and Mario Adani
Atmos. Chem. Phys., 22, 7207–7257, https://doi.org/10.5194/acp-22-7207-2022, https://doi.org/10.5194/acp-22-7207-2022, 2022
Short summary
Short summary
Particulate matter (PM) air pollution causes adverse health effects. In Europe, the emissions caused by anthropogenic activities have been reduced in the last decades. To assess the efficiency of emission reductions in improving air quality, we have studied the evolution of PM pollution in Europe. Simulations with six air quality models and observational data indicate a decrease in PM concentrations by 10 % to 30 % across Europe from 2000 to 2010, which is mainly a result of emission reductions.
Fanlei Meng, Yibo Zhang, Jiahui Kang, Mathew R. Heal, Stefan Reis, Mengru Wang, Lei Liu, Kai Wang, Shaocai Yu, Pengfei Li, Jing Wei, Yong Hou, Ying Zhang, Xuejun Liu, Zhenling Cui, Wen Xu, and Fusuo Zhang
Atmos. Chem. Phys., 22, 6291–6308, https://doi.org/10.5194/acp-22-6291-2022, https://doi.org/10.5194/acp-22-6291-2022, 2022
Short summary
Short summary
PM2.5 pollution is a pressing environmental issue threatening human health and food security globally. We combined a meta-analysis of nationwide measurements and air quality modeling to identify efficiency gains by striking a balance between controlling NH3 and acid gas emissions. Persistent secondary inorganic aerosol pollution in China is limited by acid gas emissions, while an additional control on NH3 emissions would become more important as reductions in SO2 and NOx emissions progress.
Yao Ge, Mathew R. Heal, David S. Stevenson, Peter Wind, and Massimo Vieno
Geosci. Model Dev., 14, 7021–7046, https://doi.org/10.5194/gmd-14-7021-2021, https://doi.org/10.5194/gmd-14-7021-2021, 2021
Short summary
Short summary
This study reports the first evaluation of the global EMEP MSC-W ACTM driven by WRF meteorology, with a focus on surface concentrations and wet deposition of reactive N and S species. The model–measurement comparison is conducted both spatially and temporally, covering 10 monitoring networks worldwide. The statistics from the comprehensive evaluations presented in this study support the application of this model framework for global analysis of the budgets and fluxes of reactive N and SIA.
Ernesto Reyes-Villegas, Upasana Panda, Eoghan Darbyshire, James M. Cash, Rutambhara Joshi, Ben Langford, Chiara F. Di Marco, Neil J. Mullinger, Mohammed S. Alam, Leigh R. Crilley, Daniel J. Rooney, W. Joe F. Acton, Will Drysdale, Eiko Nemitz, Michael Flynn, Aristeidis Voliotis, Gordon McFiggans, Hugh Coe, James Lee, C. Nicholas Hewitt, Mathew R. Heal, Sachin S. Gunthe, Tuhin K. Mandal, Bhola R. Gurjar, Shivani, Ranu Gadi, Siddhartha Singh, Vijay Soni, and James D. Allan
Atmos. Chem. Phys., 21, 11655–11667, https://doi.org/10.5194/acp-21-11655-2021, https://doi.org/10.5194/acp-21-11655-2021, 2021
Short summary
Short summary
This paper shows the first multisite online measurements of PM1 in Delhi, India, with measurements over different seasons in Old Delhi and New Delhi in 2018. Organic aerosol (OA) source apportionment was performed using positive matrix factorisation (PMF). Traffic was the main primary aerosol source for both OAs and black carbon, seen with PMF and Aethalometer model analysis, indicating that control of primary traffic exhaust emissions would make a significant reduction to Delhi air pollution.
James M. Cash, Ben Langford, Chiara Di Marco, Neil J. Mullinger, James Allan, Ernesto Reyes-Villegas, Ruthambara Joshi, Mathew R. Heal, W. Joe F. Acton, C. Nicholas Hewitt, Pawel K. Misztal, Will Drysdale, Tuhin K. Mandal, Shivani, Ranu Gadi, Bhola Ram Gurjar, and Eiko Nemitz
Atmos. Chem. Phys., 21, 10133–10158, https://doi.org/10.5194/acp-21-10133-2021, https://doi.org/10.5194/acp-21-10133-2021, 2021
Short summary
Short summary
We present the first real-time composition of submicron particulate matter (PM1) in Old Delhi using high-resolution aerosol mass spectrometry. Seasonal analysis shows peak concentrations occur during the post-monsoon, and novel-tracers reveal the largest sources are a combination of local open and regional crop residue burning. Strong links between increased chloride aerosol concentrations and burning sources of PM1 suggest burning sources are responsible for the post-monsoon chloride peak.
Robbie Ramsay, Chiara F. Di Marco, Mathew R. Heal, Matthias Sörgel, Paulo Artaxo, Meinrat O. Andreae, and Eiko Nemitz
Biogeosciences, 18, 2809–2825, https://doi.org/10.5194/bg-18-2809-2021, https://doi.org/10.5194/bg-18-2809-2021, 2021
Short summary
Short summary
The exchange of the gas ammonia between the atmosphere and the surface is an important biogeochemical process, but little is known of this exchange for certain ecosystems, such as the Amazon rainforest. This study took measurements of ammonia exchange over an Amazon rainforest site and subsequently modelled the observed deposition and emission patterns. We observed emissions of ammonia from the rainforest, which can be simulated accurately by using a canopy resistance modelling approach.
Gemma Purser, Julia Drewer, Mathew R. Heal, Robert A. S. Sircus, Lara K. Dunn, and James I. L. Morison
Biogeosciences, 18, 2487–2510, https://doi.org/10.5194/bg-18-2487-2021, https://doi.org/10.5194/bg-18-2487-2021, 2021
Short summary
Short summary
Short-rotation forest plantations could help reduce greenhouse gases but can emit biogenic volatile organic compounds. Emissions were measured at a plantation trial in Scotland. Standardised emissions of isoprene from foliage were higher from hybrid aspen than from Sitka spruce and low from Italian alder. Emissions of total monoterpene were lower. The forest floor was only a small source. Model estimates suggest an SRF expansion of 0.7 Mha could increase total UK emissions between < 1 %–35 %.
Y. Sim Tang, Chris R. Flechard, Ulrich Dämmgen, Sonja Vidic, Vesna Djuricic, Marta Mitosinkova, Hilde T. Uggerud, Maria J. Sanz, Ivan Simmons, Ulrike Dragosits, Eiko Nemitz, Marsailidh Twigg, Netty van Dijk, Yannick Fauvel, Francisco Sanz, Martin Ferm, Cinzia Perrino, Maria Catrambone, David Leaver, Christine F. Braban, J. Neil Cape, Mathew R. Heal, and Mark A. Sutton
Atmos. Chem. Phys., 21, 875–914, https://doi.org/10.5194/acp-21-875-2021, https://doi.org/10.5194/acp-21-875-2021, 2021
Short summary
Short summary
The DELTA® approach provided speciated, monthly data on reactive gases (NH3, HNO3, SO2, HCl) and aerosols (NH4+, NO3−, SO42−, Cl−, Na+) across Europe (2006–2010). Differences in spatial and temporal concentrations and patterns between geographic regions and four ecosystem types were captured. NH3 and NH4NO3 were dominant components, highlighting their growing relative importance in ecosystem impacts (acidification, eutrophication) and human health effects (NH3 as a precursor to PM2.5) in Europe.
Jize Jiang, David S. Stevenson, Aimable Uwizeye, Giuseppe Tempio, and Mark A. Sutton
Biogeosciences, 18, 135–158, https://doi.org/10.5194/bg-18-135-2021, https://doi.org/10.5194/bg-18-135-2021, 2021
Short summary
Short summary
Ammonia is a key water and air pollutant and impacts human health and climate change. Ammonia emissions mainly originate from agriculture. We find that chicken agriculture contributes to large ammonia emissions, especially in hot and wet regions. These emissions can be greatly affected by the local environment, i.e. temperature and humidity, and also by human management. We develop a model that suggests ammonia emissions from chicken farming are likely to increase under a warming climate.
Robbie Ramsay, Chiara F. Di Marco, Matthias Sörgel, Mathew R. Heal, Samara Carbone, Paulo Artaxo, Alessandro C. de Araùjo, Marta Sá, Christopher Pöhlker, Jost Lavric, Meinrat O. Andreae, and Eiko Nemitz
Atmos. Chem. Phys., 20, 15551–15584, https://doi.org/10.5194/acp-20-15551-2020, https://doi.org/10.5194/acp-20-15551-2020, 2020
Short summary
Short summary
The Amazon rainforest is a unique
laboratoryto study the processes which govern the exchange of gases and aerosols to and from the atmosphere. This study investigated these processes by measuring the atmospheric concentrations of trace gases and particles at the Amazon Tall Tower Observatory. We found that the long-range transport of pollutants can affect the atmospheric composition above the Amazon rainforest and that the gases ammonia and nitrous acid can be emitted from the rainforest.
Bruce Rolstad Denby, Michael Gauss, Peter Wind, Qing Mu, Eivind Grøtting Wærsted, Hilde Fagerli, Alvaro Valdebenito, and Heiko Klein
Geosci. Model Dev., 13, 6303–6323, https://doi.org/10.5194/gmd-13-6303-2020, https://doi.org/10.5194/gmd-13-6303-2020, 2020
Short summary
Short summary
Air pollution is both a local and a global problem. Since measurements cannot be made everywhere, mathematical models are used to calculate air quality over cities or countries. Modelling over countries limits the level of detail of the models. For countries, the level of detail is only a few kilometres, so air quality at kerb sides is not properly represented. The uEMEP model is used together with the regional air quality model EMEP MSC-W to model details down to kerb side for all of Norway.
David S. Stevenson, Alcide Zhao, Vaishali Naik, Fiona M. O'Connor, Simone Tilmes, Guang Zeng, Lee T. Murray, William J. Collins, Paul T. Griffiths, Sungbo Shim, Larry W. Horowitz, Lori T. Sentman, and Louisa Emmons
Atmos. Chem. Phys., 20, 12905–12920, https://doi.org/10.5194/acp-20-12905-2020, https://doi.org/10.5194/acp-20-12905-2020, 2020
Short summary
Short summary
We present historical trends in atmospheric oxidizing capacity (OC) since 1850 from the latest generation of global climate models and compare these with estimates from measurements. OC controls levels of many key reactive gases, including methane (CH4). We find small model trends up to 1980, then increases of about 9 % up to 2014, disagreeing with (uncertain) measurement-based trends. Major drivers of OC trends are emissions of CH4, NOx, and CO; these will be important for future CH4 trends.
Cited articles
Aas, W., Mortier, A., Bowersox, V., Cherian, R., Faluvegi, G., Fagerli, H.,
Hand, J., Klimont, Z., Galy-Lacaux, C., Lehmann, C. M. B., Myhre, C. L.,
Myhre, G., Olivié, D., Sato, K., Quaas, J., Rao, P. S. P., Schulz, M.,
Shindell, D., Skeie, R. B., Stein, A., Takemura, T., Tsyro, S., Vet, R., and
Xu, X.: Global and regional trends of atmospheric sulfur, Sci.
Rep., 9, 953, https://doi.org/10.1038/s41598-018-37304-0, 2019.
Aksoyoglu, S., Jiang, J., Ciarelli, G., Baltensperger, U., and Prévôt, A. S. H.: Role of ammonia in European air quality with changing land and ship emissions between 1990 and 2030, Atmos. Chem. Phys., 20, 15665–15680, https://doi.org/10.5194/acp-20-15665-2020, 2020.
AQEG: Mitigation of United Kingdom PM2.5 Concentrations, Air Quality Expert
Group, UK Department for Environment, Food and Rural Affairs, London,
PB13837,
https://uk-air.defra.gov.uk/assets/documents/reports/cat11/1508060903_DEF-PB14161_Mitigation_of_UK_PM25.pdf (last access: 31 May 2023), 2015.
Balamurugan, V., Chen, J., Qu, Z., Bi, X., and Keutsch, F. N.: Secondary PM2.5 decreases significantly less than NO2 emission reductions during COVID lockdown in Germany, Atmos. Chem. Phys., 22, 7105–7129, https://doi.org/10.5194/acp-22-7105-2022, 2022.
Behera, S. N., Sharma, M., Aneja, V. P., and Balasubramanian, R.: Ammonia in
the atmosphere: a review on emission sources, atmospheric chemistry and
deposition on terrestrial bodies, Environ. Sci. Pollut.
Res., 20, 8092–8131, https://doi.org/10.1007/s11356-013-2051-9, 2013.
Berge, E. and Jakobsen, H. A.: A regional scale multilayer model for the
calculation of long-term transport and deposition of air pollution in
Europe, Tellus B, 50, 205–223, https://doi.org/10.3402/tellusb.v50i3.16097, 1998.
Bergström, A.-K. and Jansson, M.: Atmospheric nitrogen deposition has
caused nitrogen enrichment and eutrophication of lakes in the northern
hemisphere, Glob. Change Biol., 12, 635–643,
https://doi.org/10.1111/j.1365-2486.2006.01129.x, 2006.
Bergström, R., Hallquist, M., Simpson, D., Wildt, J., and Mentel, T. F.: Biotic stress: a significant contributor to organic aerosol in Europe?, Atmos. Chem. Phys., 14, 13643–13660, https://doi.org/10.5194/acp-14-13643-2014, 2014.
Bertram, T. H. and Thornton, J. A.: Toward a general parameterization of N2O5 reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride, Atmos. Chem. Phys., 9, 8351–8363, https://doi.org/10.5194/acp-9-8351-2009, 2009.
Bertram, T. H., Thornton, J. A., Riedel, T. P., Middlebrook, A. M.,
Bahreini, R., Bates, T. S., Quinn, P. K., and Coffman, D. J.: Direct
observations of N2O5 reactivity on ambient aerosol particles, Geophys.
Res. Lett., 36, L19803, https://doi.org/10.1029/2009GL040248, 2009.
Bian, H., Chin, M., Hauglustaine, D. A., Schulz, M., Myhre, G., Bauer, S. E., Lund, M. T., Karydis, V. A., Kucsera, T. L., Pan, X., Pozzer, A., Skeie, R. B., Steenrod, S. D., Sudo, K., Tsigaridis, K., Tsimpidi, A. P., and Tsyro, S. G.: Investigation of global particulate nitrate from the AeroCom phase III experiment, Atmos. Chem. Phys., 17, 12911–12940, https://doi.org/10.5194/acp-17-12911-2017, 2017.
Botha, C. F., Hahn, J., Pienaar, J. J., and Van Eldik, R.: Kinetics and
mechanism of the oxidation of sulfur(IV) by ozone in aqueous solutions,
Atmos. Environ., 28, 3207–3212,
https://doi.org/10.1016/1352-2310(94)00174-J, 1994.
Brauer, M., Freedman, G., Frostad, J., van Donkelaar, A., Martin, R. V.,
Dentener, F., Dingenen, R. v., Estep, K., Amini, H., Apte, J. S.,
Balakrishnan, K., Barregard, L., Broday, D., Feigin, V., Ghosh, S., Hopke,
P. K., Knibbs, L. D., Kokubo, Y., Liu, Y., Ma, S., Morawska, L., Sangrador,
J. L. T., Shaddick, G., Anderson, H. R., Vos, T., Forouzanfar, M. H.,
Burnett, R. T., and Cohen, A.: Ambient Air Pollution Exposure Estimation for
the Global Burden of Disease 2013, Environ. Sci. Technol.,
50, 79–88, https://doi.org/10.1021/acs.est.5b03709, 2016.
Chang, M., Cao, J., Ma, M., Liu, Y., Liu, Y., Chen, W., Fan, Q., Liao, W.,
Jia, S., and Wang, X.: Dry deposition of reactive nitrogen to different
ecosystems across eastern China: A comparison of three community models,
Sci. Total Environ., 720, 137548,
https://doi.org/10.1016/j.scitotenv.2020.137548, 2020.
Chang, W. L., Bhave, P. V., Brown, S. S., Riemer, N., Stutz, J., and Dabdub,
D.: Heterogeneous Atmospheric Chemistry, Ambient Measurements, and Model
Calculations of N2O5: A Review, Aerosol Sci. Tech., 45, 665–695, https://doi.org/10.1080/02786826.2010.551672, 2011.
Chen, C., Zhu, P., Lan, L., Zhou, L., Liu, R., Sun, Q., Ban, J., Wang, W.,
Xu, D., and Li, T.: Short-term exposures to PM2.5 and cause-specific
mortality of cardiovascular health in China, Environ. Res., 161,
188–194, https://doi.org/10.1016/j.envres.2017.10.046, 2018a.
Chen, L., Shi, M., Gao, S., Li, S., Mao, J., Zhang, H., Sun, Y., Bai, Z.,
and Wang, Z.: Assessment of population exposure to PM2.5 for mortality in
China and its public health benefit based on BenMAP, Environ.
Pollut., 221, 311–317, https://doi.org/10.1016/j.envpol.2016.11.080, 2017.
Chen, X., Wang, Y.-h., Ye, C., Zhou, W., Cai, Z.-c., Yang, H., and Han, X.:
Atmospheric Nitrogen Deposition Associated with the Eutrophication of Taihu
Lake, J. Chem., 2018, 4017107, https://doi.org/10.1155/2018/4017107, 2018b.
Cheng, L., Ye, Z., Cheng, S., and Guo, X.: Agricultural ammonia emissions
and its impact on PM2.5 concentrations in the Beijing–Tianjin–Hebei region
from 2000 to 2018, Environ. Pollut., 291, 118162,
https://doi.org/10.1016/j.envpol.2021.118162, 2021.
Ciarelli, G., Theobald, M. R., Vivanco, M. G., Beekmann, M., Aas, W., Andersson, C., Bergström, R., Manders-Groot, A., Couvidat, F., Mircea, M., Tsyro, S., Fagerli, H., Mar, K., Raffort, V., Roustan, Y., Pay, M.-T., Schaap, M., Kranenburg, R., Adani, M., Briganti, G., Cappelletti, A., D'Isidoro, M., Cuvelier, C., Cholakian, A., Bessagnet, B., Wind, P., and Colette, A.: Trends of inorganic and organic aerosols and precursor gases in Europe: insights from the EURODELTA multi-model experiment over the 1990–2010 period, Geosci. Model Dev., 12, 4923–4954, https://doi.org/10.5194/gmd-12-4923-2019, 2019.
Clappier, A., Thunis, P., Beekmann, M., Putaud, J. P., and de Meij, A.:
Impact of SOx, NOx and NH3 emission reductions on PM2.5 concentrations
across Europe: Hints for future measure development, Environ.
Int., 156, 106699, https://doi.org/10.1016/j.envint.2021.106699,
2021.
Crippa, M., Solazzo, E., Huang, G., Guizzardi, D., Koffi, E., Muntean, M.,
Schieberle, C., Friedrich, R., and Janssens-Maenhout, G.: High resolution
temporal profiles in the Emissions Database for Global Atmospheric Research,
Sci. Data, 7, 121, https://doi.org/10.1038/s41597-020-0462-2, 2020.
EEA: Air quality in Europe – 2021 report, EEA Report No. 15/2021, European
Environment Agency, Publications Office of the European Union,
https://www.eea.europa.eu/publications/air-quality-in-europe-2021/ (last
access: 7 August 2022), 2021.
EMEP MSC-W: metno/emep-ctm: OpenSource rv4.34 (202001) (rv4_34), Zenodo [code], https://doi.org/10.5281/zenodo.3647990, 2020.
Erisman, J. W., Hensen, A., Fowler, D., Flechard, C. R., Grüner, A.,
Spindler, G., Duyzer, J. H., Weststrate, H., Römer, F., Vonk, A. W., and
Jaarsveld, H. V.: Dry Deposition Monitoring in Europe, Water Air Soil
Poll., 1, 17–27, https://doi.org/10.1023/A:1013105727252, 2001.
Erisman, J. W., Domburg, N., de Vries, W., Kros, H., de Haan, B., and
Sanders, K.: The Dutch N-cascade in the European perspective, Scie.
China Ser. C, 48, 827–842,
https://doi.org/10.1007/BF03187122, 2005.
Fang, Y., Ye, C., Wang, J., Wu, Y., Hu, M., Lin, W., Xu, F., and Zhu, T.: Relative humidity and O3 concentration as two prerequisites for sulfate formation, Atmos. Chem. Phys., 19, 12295–12307, https://doi.org/10.5194/acp-19-12295-2019, 2019.
Fowler, D., Sutton, M. A., Flechard, C., Cape, J. N., Storeton-West, R.,
Coyle, M., and Smith, R. I.: The Control of SO2 Dry Deposition on to Natural
Surfaces by NH3 and its Effects on Regional Deposition, Water Air Soil
Poll., 1, 39–48, https://doi.org/10.1023/A:1013161912231, 2001.
Fowler, D., Pilegaard, K., Sutton, M. A., Ambus, P., Raivonen, M., Duyzer,
J., Simpson, D., Fagerli, H., Fuzzi, S., Schjoerring, J. K., Granier, C.,
Neftel, A., Isaksen, I. S. A., Laj, P., Maione, M., Monks, P. S., Burkhardt,
J., Daemmgen, U., Neirynck, J., Personne, E., Wichink-Kruit, R.,
Butterbach-Bahl, K., Flechard, C., Tuovinen, J. P., Coyle, M., Gerosa, G.,
Loubet, B., Altimir, N., Gruenhage, L., Ammann, C., Cieslik, S., Paoletti,
E., Mikkelsen, T. N., Ro-Poulsen, H., Cellier, P., Cape, J. N., Horváth,
L., Loreto, F., Niinemets, Ü., Palmer, P. I., Rinne, J., Misztal, P.,
Nemitz, E., Nilsson, D., Pryor, S., Gallagher, M. W., Vesala, T., Skiba, U.,
Brüggemann, N., Zechmeister-Boltenstern, S., Williams, J., O'Dowd, C.,
Facchini, M. C., de Leeuw, G., Flossman, A., Chaumerliac, N., and Erisman,
J. W.: Atmospheric composition change: Ecosystems–Atmosphere interactions,
Atmos. Environ., 43, 5193–5267,
https://doi.org/10.1016/j.atmosenv.2009.07.068, 2009.
Fowler, D., Steadman, C. E., Stevenson, D., Coyle, M., Rees, R. M., Skiba, U. M., Sutton, M. A., Cape, J. N., Dore, A. J., Vieno, M., Simpson, D., Zaehle, S., Stocker, B. D., Rinaldi, M., Facchini, M. C., Flechard, C. R., Nemitz, E., Twigg, M., Erisman, J. W., Butterbach-Bahl, K., and Galloway, J. N.: Effects of global change during the 21st century on the nitrogen cycle, Atmos. Chem. Phys., 15, 13849–13893, https://doi.org/10.5194/acp-15-13849-2015, 2015.
Fowler, D., Brimblecombe, P., Burrows, J., Heal, M. R., Grennfelt, P.,
Stevenson, D. S., Jowett, A., Nemitz, E., Coyle, M., Liu, X., Chang, Y.,
Fuller, G. W., Sutton, M. A., Klimont, Z., Unsworth, M. H., and Vieno, M.: A
chronology of global air quality, Philos. T. Roy.
Soc. A, 378, 20190314, https://doi.org/10.1098/rsta.2019.0314, 2020.
Fu, X., Wang, T., Gao, J., Wang, P., Liu, Y., Wang, S., Zhao, B., and Xue,
L.: Persistent Heavy Winter Nitrate Pollution Driven by Increased
Photochemical Oxidants in Northern China, Environ. Sci.
Technol., 54, 3881–3889, https://doi.org/10.1021/acs.est.9b07248, 2020.
Ge, W., Liu, J., Yi, K., Xu, J., Zhang, Y., Hu, X., Ma, J., Wang, X., Wan, Y., Hu, J., Zhang, Z., Wang, X., and Tao, S.: Influence of atmospheric in-cloud aqueous-phase chemistry on the global simulation of SO2 in CESM2, Atmos. Chem. Phys., 21, 16093–16120, https://doi.org/10.5194/acp-21-16093-2021, 2021.
Ge, Y.: Dataset for global sensitivities of reactive N and S gas and
particle concentrations and deposition to precursor emissions reductions, Zenodo [data set], https://doi.org/10.5281/zenodo.7082661, 2022.
Ge, Y., Heal, M. R., Stevenson, D. S., Wind, P., and Vieno, M.: Evaluation of global EMEP MSC-W (rv4.34) WRF (v3.9.1.1) model surface concentrations and wet deposition of reactive N and S with measurements, Geosci. Model Dev., 14, 7021–7046, https://doi.org/10.5194/gmd-14-7021-2021, 2021.
Ge, Y., Vieno, M., Stevenson, D. S., Wind, P., and Heal, M. R.: A new assessment of global and regional budgets, fluxes, and lifetimes of atmospheric reactive N and S gases and aerosols, Atmos. Chem. Phys., 22, 8343–8368, https://doi.org/10.5194/acp-22-8343-2022, 2022.
Gu, B., Zhang, L., Van Dingenen, R., Vieno, M., Van Grinsven, H. J. M.,
Zhang, X., Zhang, S., Chen, Y., Wang, S., Ren, C., Rao, S., Holland, M.,
Winiwarter, W., Chen, D., Xu, J., and Sutton, M. A.: Abating ammonia is more
cost-effective than nitrogen oxides for mitigating PM2.5 air pollution,
Science, 374, 758–762, https://doi.org/10.1126/science.abf8623, 2021.
Hart, J. E., Liao, X., Hong, B., Puett, R. C., Yanosky, J. D., Suh, H.,
Kioumourtzoglou, M.-A., Spiegelman, D., and Laden, F.: The association of
long-term exposure to PM2.5 on all-cause mortality in the Nurses' Health
Study and the impact of measurement-error correction, Environ. Health,
14, 38, https://doi.org/10.1186/s12940-015-0027-6, 2015.
Hattori, S., Iizuka, Y., Alexander, B., Ishino, S., Fujita, K., Zhai, S.,
Sherwen, T., Oshima, N., Uemura, R., Yamada, A., Suzuki, N., Matoba, S.,
Tsuruta, A., Savarino, J., and Yoshida, N.: Isotopic evidence for
acidity-driven enhancement of sulfate formation after SO2 emission control,
Sci. Adv., 7, eabd4610, https://doi.org/10.1126/sciadv.abd4610, 2021.
Hauglustaine, D. A., Balkanski, Y., and Schulz, M.: A global model simulation of present and future nitrate aerosols and their direct radiative forcing of climate, Atmos. Chem. Phys., 14, 11031–11063, https://doi.org/10.5194/acp-14-11031-2014, 2014.
Heald, C. L., Collett Jr., J. L., Lee, T., Benedict, K. B., Schwandner, F. M., Li, Y., Clarisse, L., Hurtmans, D. R., Van Damme, M., Clerbaux, C., Coheur, P.-F., Philip, S., Martin, R. V., and Pye, H. O. T.: Atmospheric ammonia and particulate inorganic nitrogen over the United States, Atmos. Chem. Phys., 12, 10295–10312, https://doi.org/10.5194/acp-12-10295-2012, 2012.
Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, 2018.
Hoffmann, E. H., Tilgner, A., Schrödner, R., Bräuer, P., Wolke, R.,
and Herrmann, H.: An advanced modeling study on the impacts and atmospheric
implications of multiphase dimethyl sulfide chemistry, P.
Natl. Acad. Sci. USA, 113, 11776, https://doi.org/10.1073/pnas.1606320113, 2016.
Hoffmann, M. R.: On the kinetics and mechanism of oxidation of aquated
sulfur dioxide by ozone, Atmos. Environ., 20, 1145–1154,
https://doi.org/10.1016/0004-6981(86)90147-2, 1986.
Holt, J., Selin, N. E., and Solomon, S.: Changes in Inorganic Fine
Particulate Matter Sensitivities to Precursors Due to Large-Scale US
Emissions Reductions, Environ. Sci. Technol., 49, 4834–4841, https://doi.org/10.1021/acs.est.5b00008, 2015.
Iturbide, M., Gutiérrez, J. M., Alves, L. M., Bedia, J., Cerezo-Mota, R., Cimadevilla, E., Cofiño, A. S., Di Luca, A., Faria, S. H., Gorodetskaya, I. V., Hauser, M., Herrera, S., Hennessy, K., Hewitt, H. T., Jones, R. G., Krakovska, S., Manzanas, R., Martínez-Castro, D., Narisma, G. T., Nurhati, I. S., Pinto, I., Seneviratne, S. I., van den Hurk, B., and Vera, C. S.: An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets, Earth Syst. Sci. Data, 12, 2959–2970, https://doi.org/10.5194/essd-12-2959-2020, 2020.
Jiang, J., Aksoyoglu, S., Ciarelli, G., Baltensperger, U., and
Prévôt, A. S. H.: Changes in ozone and PM2.5 in Europe during the
period of 1990–2030: Role of reductions in land and ship emissions, Sci.
Total Environ., 741, 140467,
https://doi.org/10.1016/j.scitotenv.2020.140467, 2020.
Johnson, M. T., Liss, P. S., Bell, T. G., Lesworth, T. J., Baker, A. R.,
Hind, A. J., Jickells, T. D., Biswas, K. F., Woodward, E. M. S., and Gibb,
S. W.: Field observations of the ocean-atmosphere exchange of ammonia:
Fundamental importance of temperature as revealed by a comparison of high
and low latitudes, Global Biogeochem. Cy., 22, GB1019,
https://doi.org/10.1029/2007GB003039, 2008.
Jonson, J. E., Borken-Kleefeld, J., Simpson, D., Nyíri, A., Posch, M.,
and Heyes, C.: Impact of excess NOx emissions from diesel cars on air
quality, public health and eutrophication in Europe, Environ. Res.
Lett., 12, 094017, https://doi.org/10.1088/1748-9326/aa8850, 2017.
Jonson, J. E., Fagerli, H., Scheuschner, T., and Tsyro, S.: Modelling changes in secondary inorganic aerosol formation and nitrogen deposition in Europe from 2005 to 2030, Atmos. Chem. Phys., 22, 1311–1331, https://doi.org/10.5194/acp-22-1311-2022, 2022.
Jovan, S., Riddell, J., Padgett, P. E., and Nash Iii, T. H.: Eutrophic
lichens respond to multiple forms of N: implications for critical levels and
critical loads research, Ecol. Appl., 22, 1910–1922,
https://doi.org/10.1890/11-2075.1, 2012.
Karimi, A., Shirmardi, M., Hadei, M., Birgani, Y. T., Neisi, A., Takdastan,
A., and Goudarzi, G.: Concentrations and health effects of short- and
long-term exposure to PM2.5, NO2, and O3 in ambient air of Ahvaz city, Iran
(2014–2017), Ecotox. Environ. Safe., 180, 542–548,
https://doi.org/10.1016/j.ecoenv.2019.05.026, 2019.
Karl, M., Jonson, J. E., Uppstu, A., Aulinger, A., Prank, M., Sofiev, M., Jalkanen, J.-P., Johansson, L., Quante, M., and Matthias, V.: Effects of ship emissions on air quality in the Baltic Sea region simulated with three different chemistry transport models, Atmos. Chem. Phys., 19, 7019–7053, https://doi.org/10.5194/acp-19-7019-2019, 2019.
Kelly, J. T., Jang, C., Zhu, Y., Long, S., Xing, J., Wang, S., Murphy, B.
N., and Pye, H. O. T.: Predicting the Nonlinear Response of PM2.5 and Ozone
to Precursor Emission Changes with a Response Surface Model, Atmosphere, 12, 1044,
https://doi.org/10.3390/atmos12081044, 2021.
Kharol, S. K., Shephard, M. W., McLinden, C. A., Zhang, L., Sioris, C. E.,
O'Brien, J. M., Vet, R., Cady-Pereira, K. E., Hare, E., Siemons, J., and
Krotkov, N. A.: Dry Deposition of Reactive Nitrogen From Satellite
Observations of Ammonia and Nitrogen Dioxide Over North America, Geophys.
Res. Lett., 45, 1157–1166, https://doi.org/10.1002/2017GL075832, 2018.
Kurokawa, J. and Ohara, T.: Long-term historical trends in air pollutant emissions in Asia: Regional Emission inventory in ASia (REAS) version 3, Atmos. Chem. Phys., 20, 12761–12793, https://doi.org/10.5194/acp-20-12761-2020, 2020.
Le, T., Wang, Y., Liu, L., Yang, J., Yung, Y. L., Li, G., and Seinfeld, J.
H.: Unexpected air pollution with marked emission reductions during the
COVID-19 outbreak in China, Science, 369, 702–706, https://doi.org/10.1126/science.abb7431,
2020.
Leung, D. M., Shi, H., Zhao, B., Wang, J., Ding, E. M., Gu, Y., Zheng, H.,
Chen, G., Liou, K.-N., Wang, S., Fast, J. D., Zheng, G., Jiang, J., Li, X.,
and Jiang, J. H.: Wintertime Particulate Matter Decrease Buffered by
Unfavorable Chemical Processes Despite Emissions Reductions in China,
Geophys. Res. Lett., 47, e2020GL087721,
https://doi.org/10.1029/2020GL087721, 2020.
Li, L., Chen, Z. M., Zhang, Y. H., Zhu, T., Li, J. L., and Ding, J.: Kinetics and mechanism of heterogeneous oxidation of sulfur dioxide by ozone on surface of calcium carbonate, Atmos. Chem. Phys., 6, 2453–2464, https://doi.org/10.5194/acp-6-2453-2006, 2006.
Liang, J. and Jacobson, M. Z.: A study of sulfur dioxide oxidation pathways
over a range of liquid water contents, pH values, and temperatures, J.
Geophys. Res.-Atmos., 104, 13749–13769,
https://doi.org/10.1029/1999JD900097, 1999.
Liao, K.-J., Tagaris, E., Napelenok, S. L., Manomaiphiboon, K., Woo, J.-H.,
Amar, P., He, S., and Russell, A. G.: Current and Future Linked Responses of
Ozone and PM2.5 to Emission Controls, Environ. Sci. Technol.,
42, 4670–4675, https://doi.org/10.1021/es7028685, 2008.
Liu, F., Zhang, Q., van der A, R. J., Zheng, B., Tong, D., Yan, L., Zheng,
Y., and He, K.: Recent reduction in NOx emissions over China: synthesis of
satellite observations and emission inventories, Environ. Res.
Lett., 11, 114002, https://doi.org/10.1088/1748-9326/11/11/114002, 2016.
Liu, M., Huang, X., Song, Y., Xu, T., Wang, S., Wu, Z., Hu, M., Zhang, L., Zhang, Q., Pan, Y., Liu, X., and Zhu, T.: Rapid SO2 emission reductions significantly increase tropospheric ammonia concentrations over the North China Plain, Atmos. Chem. Phys., 18, 17933–17943, https://doi.org/10.5194/acp-18-17933-2018, 2018.
Lu, Z., Streets, D. G., Zhang, Q., Wang, S., Carmichael, G. R., Cheng, Y. F., Wei, C., Chin, M., Diehl, T., and Tan, Q.: Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000, Atmos. Chem. Phys., 10, 6311–6331, https://doi.org/10.5194/acp-10-6311-2010, 2010.
Ma, Z., Hu, X., Huang, L., Bi, J., and Liu, Y.: Estimating Ground-Level
PM2.5 in China Using Satellite Remote Sensing, Environ. Sci.
Technol., 48, 7436–7444, https://doi.org/10.1021/es5009399, 2014.
Maahs, H. G.: Kinetics and mechanism of the oxidation of S(IV) by ozone in
aqueous solution with particular reference to SO2 conversion in nonurban
tropospheric clouds, J. Geophys. Res.-Oceans, 88,
10721–10732, https://doi.org/10.1029/JC088iC15p10721, 1983.
Massad, R.-S., Nemitz, E., and Sutton, M. A.: Review and parameterisation of bi-directional ammonia exchange between vegetation and the atmosphere, Atmos. Chem. Phys., 10, 10359–10386, https://doi.org/10.5194/acp-10-10359-2010, 2010.
McArdle, J. V. and Hoffmann, M. R.: Kinetics and mechanism of the oxidation
of aquated sulfur dioxide by hydrogen peroxide at low pH, J.
Phys. Chem., 87, 5425–5429, https://doi.org/10.1021/j150644a024, 1983.
McDuffie, E. E., Fibiger, D. L., Dubé, W. P., Lopez-Hilfiker, F., Lee,
B. H., Thornton, J. A., Shah, V., Jaeglé, L., Guo, H., Weber, R. J.,
Michael Reeves, J., Weinheimer, A. J., Schroder, J. C., Campuzano-Jost, P.,
Jimenez, J. L., Dibb, J. E., Veres, P., Ebben, C., Sparks, T. L.,
Wooldridge, P. J., Cohen, R. C., Hornbrook, R. S., Apel, E. C., Campos, T.,
Hall, S. R., Ullmann, K., and Brown, S. S.: Heterogeneous N2O5 Uptake During
Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical
Evaluation of Current Parameterizations, J. Geophys. Res.-Atmos., 123, 4345–4372, https://doi.org/10.1002/2018JD028336, 2018.
McFiggans, G., Mentel, T. F., Wildt, J., Pullinen, I., Kang, S., Kleist, E.,
Schmitt, S., Springer, M., Tillmann, R., Wu, C., Zhao, D., Hallquist, M.,
Faxon, C., Le Breton, M., Hallquist, Å. M., Simpson, D., Bergström,
R., Jenkin, M. E., Ehn, M., Thornton, J. A., Alfarra, M. R., Bannan, T. J.,
Percival, C. J., Priestley, M., Topping, D., and Kiendler-Scharr, A.:
Secondary organic aerosol reduced by mixture of atmospheric vapours, Nature,
565, 587–593, https://doi.org/10.1038/s41586-018-0871-y, 2019.
McHale, M. R., Ludtke, A. S., Wetherbee, G. A., Burns, D. A., Nilles, M. A.,
and Finkelstein, J. S.: Trends in precipitation chemistry across the U.S.
1985–2017: Quantifying the benefits from 30 years of Clean Air Act
amendment regulation, Atmos. Environ., 247, 118219,
https://doi.org/10.1016/j.atmosenv.2021.118219, 2021.
Megaritis, A. G., Fountoukis, C., Charalampidis, P. E., Pilinis, C., and Pandis, S. N.: Response of fine particulate matter concentrations to changes of emissions and temperature in Europe, Atmos. Chem. Phys., 13, 3423–3443, https://doi.org/10.5194/acp-13-3423-2013, 2013.
Meng, F., Zhang, Y., Kang, J., Heal, M. R., Reis, S., Wang, M., Liu, L., Wang, K., Yu, S., Li, P., Wei, J., Hou, Y., Zhang, Y., Liu, X., Cui, Z., Xu, W., and Zhang, F.: Trends in secondary inorganic aerosol pollution in China and its responses to emission controls of precursors in wintertime, Atmos. Chem. Phys., 22, 6291–6308, https://doi.org/10.5194/acp-22-6291-2022, 2022.
Metzger, S., Steil, B., Abdelkader, M., Klingmüller, K., Xu, L., Penner, J. E., Fountoukis, C., Nenes, A., and Lelieveld, J.: Aerosol water parameterisation: a single parameter framework, Atmos. Chem. Phys., 16, 7213–7237, https://doi.org/10.5194/acp-16-7213-2016, 2016.
Metzger, S., Abdelkader, M., Steil, B., and Klingmüller, K.: Aerosol water parameterization: long-term evaluation and importance for climate studies, Atmos. Chem. Phys., 18, 16747–16774, https://doi.org/10.5194/acp-18-16747-2018, 2018.
NEC: National Emission Ceilings (NEC) Directive reporting status, Briefing
no. 2/2019, PDF TH-AM-19-003-EN-N,
https://www.eea.europa.eu/themes/air/air-pollution-sources-1/national-emission-ceilings/nec-directive-reporting-status-2019
(last access: 7 August 2022), 2019.
Nemitz, E., Sutton, M. A., Wyers, G. P., and Jongejan, P. A. C.: Gas-particle interactions above a Dutch heathland: I. Surface exchange fluxes of NH3, SO2, HNO3 and HCl, Atmos. Chem. Phys., 4, 989–1005, https://doi.org/10.5194/acp-4-989-2004, 2004.
Nenes, A., Pandis, S. N., Weber, R. J., and Russell, A.: Aerosol pH and liquid water content determine when particulate matter is sensitive to ammonia and nitrate availability, Atmos. Chem. Phys., 20, 3249–3258, https://doi.org/10.5194/acp-20-3249-2020, 2020.
Novak, G. A., Kilgour, D. B., Jernigan, C. M., Vermeuel, M. P., and Bertram, T. H.: Oceanic emissions of dimethyl sulfide and methanethiol and their contribution to sulfur dioxide production in the marine atmosphere, Atmos. Chem. Phys., 22, 6309–6325, https://doi.org/10.5194/acp-22-6309-2022, 2022.
Penkett, S. A., Jones, B. M. R., Brich, K. A., and Eggleton, A. E. J.: The
importance of atmospheric ozone and hydrogen peroxide in oxidising sulphur
dioxide in cloud and rainwater, Atmos. Environ., 13, 123–137,
https://doi.org/10.1016/0004-6981(79)90251-8, 1979.
Pescott, O. L., Simkin, J. M., August, T. A., Randle, Z., Dore, A. J., and
Botham, M. S.: Air pollution and its effects on lichens, bryophytes, and
lichen-feeding Lepidoptera: review and evidence from biological records,
Biol. J. Linn. Soc., 115, 611–635, https://doi.org/10.1111/bij.12541,
2015.
Pommier, M., Fagerli, H., Gauss, M., Simpson, D., Sharma, S., Sinha, V., Ghude, S. D., Landgren, O., Nyiri, A., and Wind, P.: Impact of regional climate change and future emission scenarios on surface O3 and PM2.5 over India, Atmos. Chem. Phys., 18, 103–127, https://doi.org/10.5194/acp-18-103-2018, 2018.
Pommier, M., Fagerli, H., Schulz, M., Valdebenito, A., Kranenburg, R., and Schaap, M.: Prediction of source contributions to urban background PM10 concentrations in European cities: a case study for an episode in December 2016 using EMEP/MSC-W rv4.15 and LOTOS-EUROS v2.0 – Part 1: The country contributions, Geosci. Model Dev., 13, 1787–1807, https://doi.org/10.5194/gmd-13-1787-2020, 2020.
Pozzer, A., Tsimpidi, A. P., Karydis, V. A., de Meij, A., and Lelieveld, J.: Impact of agricultural emission reductions on fine-particulate matter and public health, Atmos. Chem. Phys., 17, 12813–12826, https://doi.org/10.5194/acp-17-12813-2017, 2017.
Quinn, P. K. and Bates, T. S.: The case against climate regulation via
oceanic phytoplankton sulphur emissions, Nature, 480, 51–56, https://doi.org/10.1038/nature10580, 2011.
Riemer, N., Vogel, H., Vogel, B., Schell, B., Ackermann, I., Kessler, C.,
and Hass, H.: Impact of the heterogeneous hydrolysis of N2O5 on chemistry
and nitrate aerosol formation in the lower troposphere under photosmog
conditions, J. Geophys. Res.-Atmos., 108, 4144, https://doi.org/10.1029/2002JD002436, 2003.
Riddick, S. N., Dragosits, U., Blackall, T. D., Tomlinson, S. J., Daunt, F.,
Wanless, S., Hallsworth, S., Braban, C. F., Tang, Y. S., and Sutton, M. A.:
Global assessment of the effect of climate change on ammonia emissions from
seabirds, Atmos. Enviro., 184, 212–223, https://doi.org/10.1016/j.atmosenv.2018.04.038, 2018.
Sadavarte, P. and Venkataraman, C.: Trends in multi-pollutant emissions
from a technology-linked inventory for India: I. Industry and transport
sectors, Atmos. Enviro., 99, 353–364,
https://doi.org/10.1016/j.atmosenv.2014.09.081, 2014.
Saylor, R., Myles, L., Sibble, D., Caldwell, J., and Xing, J.: Recent trends
in gas-phase ammonia and PM2.5 ammonium in the Southeast United States,
J. Air Waste Manage., 65, 347–357, https://doi.org/10.1080/10962247.2014.992554, 2015.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from
air pollution to climate change, John Wiley & Sons, ISBN 978-1-118-94740-1, 2016.
Sheng, F., Jingjing, L., Yu, C., Fu-Ming, T., Xuemei, D., and Jing-yao, L.:
Theoretical study of the oxidation reactions of sulfurous acid/sulfite with
ozone to produce sulfuric acid/sulfate with atmospheric implications, RSC
Adv., 8, 7988–7996, https://doi.org/10.1039/C8RA00411K, 2018.
Sheppard, L. J., Leith, I. D., Mizunuma, T., Neil Cape, J., Crossley, A.,
Leeson, S., Sutton, M. A., van Dijk, N., and Fowler, D.: Dry deposition of
ammonia gas drives species change faster than wet deposition of ammonium
ions: evidence from a long-term field manipulation, Glob. Change Biol.,
17, 3589–3607, https://doi.org/10.1111/j.1365-2486.2011.02478.x, 2011.
Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L. D., Fagerli, H., Flechard, C. R., Hayman, G. D., Gauss, M., Jonson, J. E., Jenkin, M. E., Nyíri, A., Richter, C., Semeena, V. S., Tsyro, S., Tuovinen, J.-P., Valdebenito, Á., and Wind, P.: The EMEP MSC-W chemical transport model – technical description, Atmos. Chem. Phys., 12, 7825–7865, https://doi.org/10.5194/acp-12-7825-2012, 2012.
Simpson, D., Schulz, M., Semeena, V. S., Tsyro, S., Valdebenito, A., Wind,
P., and Steensen, B. M.: EMEP model development and performance changes, in:
EMEP Status Report 1/2013, Norwegian Meteorological Institute, Oslo, Norway,
45–57, https://emep.int/publ/reports/2013/EMEP_status_report_1_2013.pdf (last access: 31 May 2023), 2013.
Simpson, D., Tsyro, S., and Wind, P.: Updates to the EMEP/MSC-W model, in:
EMEP Status Report 1/2015, Norwegian Meteorological Institute, Oslo, Norway,
129–136,
https://emep.int/publ/reports/2015/EMEP_Status_Report_1_2015.pdf (last access: 31 May 2023), 2015.
Simpson, D., Nyiìri, A. G., Tsyro, S., Valdebenito, Á., and Wind,
P.: Updates to the EMEP/MSC-W model, 2015–2016, in: EMEP Status Report
1/2016, Norwegian Meteorological Institute, Oslo, Norway,
131–138, https://emep.int/publ/reports/2016/EMEP_Status_Report_1_2016.pdf (last access: 31 May 2023), 2016.
Simpson, D., Bergström, R., Imhof, H., and Wind, P.: Updates to the
EMEP/MSC-W model 2016–2017, in: EMEP Status Report 1/2017, Norwegian
Meteorological Institute, Oslo, Norway, 115–122,
https://emep.int/publ/reports/2017/EMEP_Status_Report_1_2017.pdf (last access: 31 May 2023), 2017.
Simpson, D., Wind, P., Bergström, R., Gauss, M., Tsyro,
S., and Valdebenito, Á.: Updates to the EMEP MSC-W model 2017–2018, in:
EMEP Status Report 1/2018, Norwegian Meteorological Institute, Oslo, Norway,
107–115,
https://emep.int/publ/reports/2018/EMEP_Status_Report_1_2018.pdf (last access: 31 May 2023), 2018.
Simpson, D., Bergström, R., Tsyro, S., and Wind, P.: Updates to the
EMEP/MSC-W model 2018–2019, in: EMEP Status Report 1/2019, Norwegian
Meteorological Institute, Oslo, Norway, 143–152,
https://emep.int/publ/reports/2019/EMEP_Status_Report_1_2019.pdf (last access: 31 May 2023), 2019.
Simpson, D., Bergström, R., Tsyro, S., and Wind, P.:
Updates to the EMEP MSC-W model 2019–2020, in: EMEP Status Report 1/2020,
Norwegian Meteorological Institute, Oslo, Norway, 153–163,
https://emep.int/publ/reports/2020/EMEP_Status_Report_1_2020.pdf (last access: 31 May 2023), 2020a.
Simpson, D., Bergström, R., Briolat, A., Imhof, H., Johansson, J., Priestley, M., and Valdebenito, A.: GenChem v1.0 – a chemical pre-processing and testing system for atmospheric modelling, Geosci. Model Dev., 13, 6447–6465, https://doi.org/10.5194/gmd-13-6447-2020, 2020b.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D., Duda,
M. G., Huang, X. Y., Wang, W., and Powers, J. G.: A Description of the
Advanced Research WRF Version 3 (No. NCAR/TN-475+STR), University
Corporation for Atmospheric Research, https://doi.org/10.5065/D68S4MVH, 2008.
Smith, R. I., Fowler, D., Sutton, M. A., Flechard, C., and Coyle, M.:
Regional estimation of pollutant gas dry deposition in the UK: model
description, sensitivity analyses and outputs, Atmos. Environ., 34,
3757–3777, https://doi.org/10.1016/S1352-2310(99)00517-8, 2000.
Stieb, D. M., Evans, G. J., To, T. M., Brook, J. R., and Burnett, R. T.: An
ecological analysis of long-term exposure to PM2.5 and incidence of COVID-19
in Canadian health regions, Environ. Res., 191, 110052,
https://doi.org/10.1016/j.envres.2020.110052, 2020.
Sun, J., Fu, J. S., Lynch, J. A., Huang, K., and Gao, Y.: Climate-driven
exceedance of total (wet + dry) nitrogen (N) + sulfur (S) deposition to
forest soil over the conterminous U.S, Earth's Future, 5, 560–576,
https://doi.org/10.1002/2017EF000588, 2017.
Sutton, M. A., Reis, S., Baker, S. M. H., Wolseley, P. A., Leith, I. D., van
Dijk, N., Tang, Y. S., James, P. W., Theobald, M. R., and Whitfield, C.:
Estimation of the Ammonia Critical Level for Epiphytic Lichens Based on
Observations at Farm, Landscape and National Scales, Atmospheric Ammonia,
6, 71–86, https://doi.org/10.1007/978-1-4020-9121-6_6, 2009.
Sutton, M. A., Asman, W. A. H., and Schøring, J. K.: Dry deposition of
reduced nitrogen, Tellus B, 46, 255–273, https://doi.org/10.3402/tellusb.v46i4.15796, 1994.
Sutton, M. A., Reis, S., Riddick, S. N., Dragosits, U., Nemitz, E.,
Theobald, M. R., Tang, Y. S., Braban, C. F., Vieno, M., Dore, A. J.,
Mitchell, R. F., Wanless, S., Daunt, F., Fowler, D., Blackall, T. D.,
Milford, C., Flechard, C. R., Loubet, B., Massad, R., Cellier, P., Personne,
E., Coheur, P. F., Clarisse, L., Van Damme, M., Ngadi, Y., Clerbaux, C.,
Skjøth, C. A., Geels, C., Hertel, O., Wichink Kruit, R. J., Pinder, R.
W., Bash, J. O., Walker, J. T., Simpson, D., Horváth, L., Misselbrook,
T. H., Bleeker, A., Dentener, F., and de Vries, W.: Towards a
climate-dependent paradigm of ammonia emission and deposition, Philos.
T. Roy. Soc. B, 368, 20130166, https://doi.org/10.1098/rstb.2013.0166, 2013.
Sutton, M. A., Mason, K. E., Sheppard, L. J., Sverdrup, H., Haeuber, R., and
Hicks, W. K.: Nitrogen Deposition, Critical Loads and Biodiversity,
Springer, Dordrecht, 535 pp., ISBN 978-94-007-7939-6, 2014.
Sutton, M. A., van Dijk, N., Levy, P. E., Jones, M. R., Leith, I. D.,
Sheppard, L. J., Leeson, S., Sim Tang, Y., Stephens, A., Braban, C. F.,
Dragosits, U., Howard, C. M., Vieno, M., Fowler, D., Corbett, P., Naikoo, M.
I., Munzi, S., Ellis, C. J., Chatterjee, S., Steadman, C. E., Móring,
A., and Wolseley, P. A.: Alkaline air: changing perspectives on nitrogen and
air pollution in an ammonia-rich world, Philos. T.
Roy. Soc. A, 378,
20190315, https://doi.org/10.1098/rsta.2019.0315, 2020.
Szopa, S., Naik, V., Adhikary, B., Artaxo, P., Berntsen, T., Collins, W. D., Fuzzi,
S., Gallardo, L., Kiendler-Scharr, A., Klimont, Z., Liao, H., Unger, N., and Zanis, P.: Short-Lived Climate Forcers, in: Climate Change 2021: The Physical
Science Basis, Contribution of Working Group I to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change, Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 817–922, https://doi.org/10.1017/9781009157896.008, 2021.
Theobald, M. R., Vivanco, M. G., Aas, W., Andersson, C., Ciarelli, G., Couvidat, F., Cuvelier, K., Manders, A., Mircea, M., Pay, M.-T., Tsyro, S., Adani, M., Bergström, R., Bessagnet, B., Briganti, G., Cappelletti, A., D'Isidoro, M., Fagerli, H., Mar, K., Otero, N., Raffort, V., Roustan, Y., Schaap, M., Wind, P., and Colette, A.: An evaluation of European nitrogen and sulfur wet deposition and their trends estimated by six chemistry transport models for the period 1990–2010, Atmos. Chem. Phys., 19, 379–405, https://doi.org/10.5194/acp-19-379-2019, 2019.
Thunis, P., Clappier, A., Pisoni, E., and Degraeuwe, B.: Quantification of
non-linearities as a function of time averaging in regional air quality
modeling applications, Atmos. Environ., 103, 263–275,
https://doi.org/10.1016/j.atmosenv.2014.12.057, 2015.
Thunis, P., Clappier, A., Beekmann, M., Putaud, J. P., Cuvelier, C., Madrazo, J., and de Meij, A.: Non-linear response of PM2.5 to changes in NOx and NH3 emissions in the Po basin (Italy): consequences for air quality plans, Atmos. Chem. Phys., 21, 9309–9327, https://doi.org/10.5194/acp-21-9309-2021, 2021.
Tørseth, K., Aas, W., Breivik, K., Fjæraa, A. M., Fiebig, M., Hjellbrekke, A. G., Lund Myhre, C., Solberg, S., and Yttri, K. E.: Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009, Atmos. Chem. Phys., 12, 5447–5481, https://doi.org/10.5194/acp-12-5447-2012, 2012.
Tsimpidi, A. P., Karydis, V. A., and Pandis, S. N.: Response of Inorganic
Fine Particulate Matter to Emission Changes of Sulfur Dioxide and Ammonia:
The Eastern United States as a Case Study, J. Air Waste
Manage., 57, 1489–1498, https://doi.org/10.3155/1047-3289.57.12.1489, 2007.
Tsimpidi, A. P., Karydis, V. A., and Pandis, S. N.: Response of Fine
Particulate Matter to Emission Changes of Oxides of Nitrogen and
Anthropogenic Volatile Organic Compounds in the Eastern United States,
J. Air Waste
Manage., 58, 1463–1473, https://doi.org/10.3155/1047-3289.58.11.1463, 2008.
Tsyro, S., Karl, M., Simpson, D., Valdebenito, A. L., and Wind, P.: Updates
to the EMEP/MSC-W model, in EMEP Status Report 1/2014, Norwegian
Meteorological Institute, Oslo, Norway, 143–146,
https://emep.int/publ/reports/2014/EMEP_Status_Report_1_2014.pdf (last access: 31 May 2023), 2014.
USEPA: Report on the Environment: Particulate Matter Concentrations, United
States Environmental Protection Agency,
https://cfpub.epa.gov/roe/indicator.cfm?i=9 (last access: 7 August 2022),
2017.
van Herk, C. M.: Bark pH and susceptibility to toxic air pollutants as independent causes of changes in epiphytic lichen composition in space and time, Lichenologist, 33, 419–442, https://doi.org/10.1006/lich.2001.0337, 2001.
Van Herk, C. M., Mathijssen-Spiekman, E. A. M., and de Zwart, D.: Long
distance nitrogen air pollution effects on lichens in Europe,
Lichenologist, 35, 347–359, https://doi.org/10.1016/S0024-2829(03)00036-7, 2003.
Vasilakos, P., Russell, A., Weber, R., and Nenes, A.: Understanding nitrate formation in a world with less sulfate, Atmos. Chem. Phys., 18, 12765–12775, https://doi.org/10.5194/acp-18-12765-2018, 2018.
Vieno, M., Dore, A. J., Stevenson, D. S., Doherty, R., Heal, M. R., Reis, S., Hallsworth, S., Tarrason, L., Wind, P., Fowler, D., Simpson, D., and Sutton, M. A.: Modelling surface ozone during the 2003 heat-wave in the UK, Atmos. Chem. Phys., 10, 7963–7978, https://doi.org/10.5194/acp-10-7963-2010, 2010.
Vieno, M., Heal, M. R., Hallsworth, S., Famulari, D., Doherty, R. M., Dore, A. J., Tang, Y. S., Braban, C. F., Leaver, D., Sutton, M. A., and Reis, S.: The role of long-range transport and domestic emissions in determining atmospheric secondary inorganic particle concentrations across the UK, Atmos. Chem. Phys., 14, 8435–8447, https://doi.org/10.5194/acp-14-8435-2014, 2014.
Vieno, M., Heal, M. R., Williams, M. L., Carnell, E. J., Nemitz, E., Stedman, J. R., and Reis, S.: The sensitivities of emissions reductions for the mitigation of UK PM2.5, Atmos. Chem. Phys., 16, 265–276, https://doi.org/10.5194/acp-16-265-2016, 2016.
Wagner, N. L., Riedel, T. P., Young, C. J., Bahreini, R., Brock, C. A., Dubé, W. P., Kim, S., Middlebrook, A. M., Öztürk, F., Roberts, J. M., Russo, R., Sive, B., Swarthout, R., Thornton, J. A., VandenBoer, T. C., Zhou, Y., and Brown, S. S.: N2O5 uptake coefficients and nocturnal NO2 removal rates determined from ambient wintertime measurements, J. Geophys. Res.-Atmos., 118, 9331–9350, https://doi.org/10.1002/jgrd.50653, 2013.
Wang, S., Xing, J., Jang, C., Zhu, Y., Fu, J. S., and Hao, J.: Impact
Assessment of Ammonia Emissions on Inorganic Aerosols in East China Using
Response Surface Modeling Technique, Environ. Sci. Technol.,
45, 9293–9300, https://doi.org/10.1021/es2022347, 2011.
Wang, Y., Zhang, Q. Q., He, K., Zhang, Q., and Chai, L.: Sulfate-nitrate-ammonium aerosols over China: response to 2000–2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia, Atmos. Chem. Phys., 13, 2635–2652, https://doi.org/10.5194/acp-13-2635-2013, 2013.
Warner, J. X., Dickerson, R. R., Wei, Z., Strow, L. L., Wang, Y., and Liang,
Q.: Increased atmospheric ammonia over the world's major agricultural areas
detected from space, Geophys. Res. Lett., 44, 2875–2884,
https://doi.org/10.1002/2016GL072305, 2017.
Weber, R. J., Guo, H., Russell, A. G., and Nenes, A.: High aerosol acidity
despite declining atmospheric sulfate concentrations over the past 15 years,
Nat. Geosci., 9, 282–285, https://doi.org/10.1038/ngeo2665, 2016.
Werner, M., Kryza, M., and Wind, P.: High resolution application of the EMEP
MSC-W model over Eastern Europe – Analysis of the EMEP4PL results,
Atmos. Res., 212, 6–22,
https://doi.org/10.1016/j.atmosres.2018.04.025, 2018.
WHO: World Health Organization global air quality guidelines: particulate
matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon
monoxide, World Health Organization, Geneva, 74–78, ISBN 9789240034228, 2021.
Xu, L. and Penner, J. E.: Global simulations of nitrate and ammonium aerosols and their radiative effects, Atmos. Chem. Phys., 12, 9479–9504, https://doi.org/10.5194/acp-12-9479-2012, 2012.
Yi, W., Shen, J., Liu, G., Wang, J., Yu, L., Li, Y., Reis, S., and Wu, J.:
High NH3 deposition in the environs of a commercial fattening pig farm in
central south China, Environ. Res. Lett., 16, 125007, https://doi.org/10.1088/1748-9326/ac3603, 2021.
Yu, F., Nair, A. A., and Luo, G.: Long-Term Trend of Gaseous Ammonia Over
the United States: Modeling and Comparison With Observations, J.
Geophys. Res.-Atmos., 123, 8315–8325,
https://doi.org/10.1029/2018JD028412, 2018.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
Short summary
The sensitivity of fine particles and reactive N and S species to reductions in precursor emissions is investigated using the EMEP MSC-W (European Monitoring and Evaluation Programme Meteorological Synthesizing Centre – West) atmospheric chemistry transport model. This study reveals that the individual emissions reduction has multiple and geographically varying co-benefits and small disbenefits on different species, demonstrating the importance of prioritizing regional emissions controls.
The sensitivity of fine particles and reactive N and S species to reductions in precursor...
Altmetrics
Final-revised paper
Preprint