Articles | Volume 23, issue 10
https://doi.org/10.5194/acp-23-5783-2023
https://doi.org/10.5194/acp-23-5783-2023
Review article
 | 
24 May 2023
Review article |  | 24 May 2023

Progress in investigating long-term trends in the mesosphere, thermosphere, and ionosphere

Jan Laštovička

Related authors

Occurrence of discontinuities in the ozone concentration data from three reanalyses
Peter Krizan, Michal Kozubek, and Jan Lastovicka
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-551,https://doi.org/10.5194/acp-2020-551, 2020
Publication in ACP not foreseen
Short summary
Longitudinal structure of stationary planetary waves in the middle atmosphere – extraordinary years
Jan Lastovicka, Peter Krizan, and Michal Kozubek
Ann. Geophys., 36, 181–192, https://doi.org/10.5194/angeo-36-181-2018,https://doi.org/10.5194/angeo-36-181-2018, 2018
Short summary
Unexpected Southern Hemisphere ionospheric response to geomagnetic storm of 15 August 2015
Ilya Edemskiy, Jan Lastovicka, Dalia Buresova, John Bosco Habarulema, and Ivan Nepomnyashchikh
Ann. Geophys., 36, 71–79, https://doi.org/10.5194/angeo-36-71-2018,https://doi.org/10.5194/angeo-36-71-2018, 2018
Short summary
Comparison of the long-term trends in stratospheric dynamics of four reanalyses
Michal Kozubek, Peter Krizan, and Jan Lastovicka
Ann. Geophys., 35, 279–294, https://doi.org/10.5194/angeo-35-279-2017,https://doi.org/10.5194/angeo-35-279-2017, 2017
Short summary
Stability of solar correction for calculating ionospheric trends
Jan Laštovička, Dalia Burešová, Daniel Kouba, and Peter Križan
Ann. Geophys., 34, 1191–1196, https://doi.org/10.5194/angeo-34-1191-2016,https://doi.org/10.5194/angeo-34-1191-2016, 2016
Short summary

Related subject area

Subject: Dynamics | Research Activity: Remote Sensing | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Aura/MLS observes and SD-WACCM-X simulates the seasonality, quasi-biennial oscillation and El Niño–Southern Oscillation of the migrating diurnal tide driving upper mesospheric CO primarily through vertical advection
Cornelius Csar Jude H. Salinas, Dong L. Wu, Jae N. Lee, Loren C. Chang, Liying Qian, and Hanli Liu
Atmos. Chem. Phys., 23, 1705–1730, https://doi.org/10.5194/acp-23-1705-2023,https://doi.org/10.5194/acp-23-1705-2023, 2023
Short summary
Hydroxyl airglow observations for investigating atmospheric dynamics: results and challenges
Sabine Wüst, Michael Bittner, Patrick J. Espy, W. John R. French, and Frank J. Mulligan
Atmos. Chem. Phys., 23, 1599–1618, https://doi.org/10.5194/acp-23-1599-2023,https://doi.org/10.5194/acp-23-1599-2023, 2023
Short summary
Signatures of gravity wave-induced instabilities in balloon lidar soundings of polar mesospheric clouds
Natalie Kaifler, Bernd Kaifler, Markus Rapp, and David C. Fritts
Atmos. Chem. Phys., 23, 949–961, https://doi.org/10.5194/acp-23-949-2023,https://doi.org/10.5194/acp-23-949-2023, 2023
Short summary
Sources of concentric gravity waves generated by a moving mesoscale convective system in southern Brazil
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Eliah F. M. T. São Sabbas, José V. Bageston, Kleber P. Naccarato, Delano Gobbi, Cosme A. O. B. Figueiredo, Toyese T. Ayorinde, Hisao Takahashi, and Diego Barros
Atmos. Chem. Phys., 22, 15153–15177, https://doi.org/10.5194/acp-22-15153-2022,https://doi.org/10.5194/acp-22-15153-2022, 2022
Short summary
How do gravity waves triggered by a typhoon propagate from the troposphere to the upper atmosphere?
Qinzeng Li, Jiyao Xu, Hanli Liu, Xiao Liu, and Wei Yuan
Atmos. Chem. Phys., 22, 12077–12091, https://doi.org/10.5194/acp-22-12077-2022,https://doi.org/10.5194/acp-22-12077-2022, 2022
Short summary

Cited articles

Aikin, A. C., Chanin, M. L., Nash, J., and Kendig, D. J.: Temperature trends in the lower mesosphere, Geophys. Res. Lett., 18, 416–419, 1991. 
Ardalan, M., Keckhut, P., Hauchecorne, A., Wing, R., Meftah, M., and Farhani, G.: Updated climatology of mesospheric temperature inversions detected by Rayleigh lidar above Observatoire de Haute Provence, France, using a K-mean clustering technique, Atmosphere, 13, 814, https://doi.org/10.3390/atmos13050814, 2022. 
Bailey, S. M., Thurairajah, B., Hervig, M. E., Siskind, D. E., Russell III, J. M., and Gordley, L. L.: Trends in the polar summer mesosphere temperature and pressure altitude from satellite observations, J. Atmos. Sol.-Terr. Phy., 220, 105650, https://doi.org/10.1016/j.jastp.2021.105650, 2021. 
Bizuneh, C. L., Prakash Raju, U. J., Nigussie, M., and Guimaraes Santos, C. A.: Long-term temperature and ozone response to natural drivers in the mesospheric regions using 16 years (2005–2022) of TIMED/SABER observation data at 5–15 N, Adv. Space Res., 70, 2095–2111, https://doi.org/10.1016/j.asr.2022.06.051, 2022. 
Brown, M. K., Lewis, H. G., Kavanagh, A. J., and Cnossen, I.: Future decreases in thermospheric neutral density in low Earth orbit due to carbon dioxide emissions, J. Geophys. Res.-Atmos., 126, e2021JD034589, https://doi.org/10.1029/2021JD034589, 2021. 
Download
Short summary
Increasing concentration of greenhouse gases, particularly of CO2, in the atmosphere causes well-known heating of the troposphere and surface. However, the increasing concentration of CO2 also affects higher levels of the atmosphere, the stratosphere, mesosphere, thermosphere, and ionosphere, where it results in remarkable long-term trends. This article reviews significant progress in investigations of long-term trends in the mesosphere, thermosphere, and ionosphere during the period 2018–2022.
Altmetrics
Final-revised paper
Preprint