Articles | Volume 23, issue 4
https://doi.org/10.5194/acp-23-2729-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-2729-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Establishment of an analytical model for remote sensing of typical stratocumulus cloud profiles under various precipitation and entrainment conditions
Huazhe Shang
State Key Laboratory of Remote Sensing Science, The Aerospace
Information Research Institute, Chinese Academy of Sciences, Beijing, 100101, China
Univ. Lille, CNRS, UMR 8518 Laboratoire d'Optique Atmosphérique (LOA), 59000 Lille, France
Souichiro Hioki
Univ. Lille, CNRS, UMR 8518 Laboratoire d'Optique Atmosphérique (LOA), 59000 Lille, France
Guillaume Penide
Univ. Lille, CNRS, UMR 8518 Laboratoire d'Optique Atmosphérique (LOA), 59000 Lille, France
Céline Cornet
Univ. Lille, CNRS, UMR 8518 Laboratoire d'Optique Atmosphérique (LOA), 59000 Lille, France
State Key Laboratory of Remote Sensing Science, The Aerospace
Information Research Institute, Chinese Academy of Sciences, Beijing, 100101, China
Jérôme Riedi
Univ. Lille, CNRS, UMR 8518 Laboratoire d'Optique Atmosphérique (LOA), 59000 Lille, France
Related authors
Yutong Wang, Huazhe Shang, Chenqian Tang, Jian Xu, Tianyang Ji, Wenwu Wang, Lesi Wei, Yonghui Lei, Jiancheng Shi, and Husi Letu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2471, https://doi.org/10.5194/egusphere-2025-2471, 2025
Short summary
Short summary
By analyzing global CloudSat data, we identified that most liquid cloud profiles have triangle-shaped or steadily decreasing structures, and we developed a new method using pattern recognition, fitting techniques, and machine learning to accurately estimate these profiles. This research advances our understanding of cloud life cycle and improves the ability to characterize cloud profiles, which is crucial for enhancing weather forecast and climate change research.
Ziming Wang, Husi Letu, Huazhe Shang, and Luca Bugliaro
Atmos. Chem. Phys., 24, 7559–7574, https://doi.org/10.5194/acp-24-7559-2024, https://doi.org/10.5194/acp-24-7559-2024, 2024
Short summary
Short summary
The supercooled liquid fraction (SLF) in mixed-phase clouds is retrieved for the first time using passive geostationary satellite observations based on differences in liquid droplet and ice particle radiative properties. The retrieved results are comparable to global distributions observed by active instruments, and the feasibility of the retrieval method to analyze the observed trends of the SLF has been validated.
Ming Li, Husi Letu, Hiroshi Ishimoto, Shulei Li, Lei Liu, Takashi Y. Nakajima, Dabin Ji, Huazhe Shang, and Chong Shi
Atmos. Meas. Tech., 16, 331–353, https://doi.org/10.5194/amt-16-331-2023, https://doi.org/10.5194/amt-16-331-2023, 2023
Short summary
Short summary
Influenced by the representativeness of ice crystal scattering models, the existing terahertz ice cloud remote sensing inversion algorithms still have significant uncertainties. We developed an ice cloud remote sensing retrieval algorithm of the ice water path and particle size from aircraft-based terahertz radiation measurements based on the Voronoi model. Validation revealed that the Voronoi model performs better than the sphere and hexagonal column models.
Qixiang Sun, Dabin Ji, Husi Letu, Yongqian Wang, Peng Zhang, Hong Liang, Chong Shi, Shuai Yin, and Jiancheng Shi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-365, https://doi.org/10.5194/essd-2025-365, 2025
Preprint under review for ESSD
Short summary
Short summary
The Tibetan Plateau plays a vital role in Asia’s water cycle, but tracking water vapor in this mountainous region is difficult, especially under cloudy conditions. We developed a new satellite-based method to generate hourly water vapor data at 0.02-degree resolution from 2016 to 2022, now available at https://data.tpdc.ac.cn/en/data/4bb3c256-3cdb-4373-9924-f7ac16ddc717, which improves accuracy and reveals fine-scale moisture transport critical for understanding rainfall and extreme weather.
Matthieu Dabrowski, José Mennesson, Jérôme Riedi, Chaabane Djeraba, and Pierre Nabat
Geosci. Model Dev., 18, 3707–3733, https://doi.org/10.5194/gmd-18-3707-2025, https://doi.org/10.5194/gmd-18-3707-2025, 2025
Short summary
Short summary
This work focuses on the prediction of aerosol concentration values at the ground level, which are a strong indicator of air quality, using artificial neural networks. A study of different variables and their efficiency as inputs for these models is also proposed and reveals that the best results are obtained when using all of them. Comparison between network architectures and information fusion methods allows for the extraction of knowledge on the most efficient methods in the context of this study.
Yutong Wang, Huazhe Shang, Chenqian Tang, Jian Xu, Tianyang Ji, Wenwu Wang, Lesi Wei, Yonghui Lei, Jiancheng Shi, and Husi Letu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2471, https://doi.org/10.5194/egusphere-2025-2471, 2025
Short summary
Short summary
By analyzing global CloudSat data, we identified that most liquid cloud profiles have triangle-shaped or steadily decreasing structures, and we developed a new method using pattern recognition, fitting techniques, and machine learning to accurately estimate these profiles. This research advances our understanding of cloud life cycle and improves the ability to characterize cloud profiles, which is crucial for enhancing weather forecast and climate change research.
Raphaël Peroni, Guillaume Penide, Céline Cornet, Olivier Pujol, and Clémence Pierangelo
EGUsphere, https://doi.org/10.5194/egusphere-2025-787, https://doi.org/10.5194/egusphere-2025-787, 2025
Short summary
Short summary
A retrieval algorithm for integrated water vapor above clouds, based on shortwave infrared observations, is developed and evaluated using idealized and realistic atmospheric profiles. It aims to improve the understanding of interactions between water vapor and clouds to enhance weather models and LES. Integrated into the C3IEL mission (2028), it uses a Bayesian approach and demonstrates good accuracy, except for optically thin or low-altitude clouds.
Karlie N. Rees, Timothy J. Garrett, Thomas D. DeWitt, Corey Bois, Steven K. Krueger, and Jérôme C. Riedi
Nonlin. Processes Geophys., 31, 497–513, https://doi.org/10.5194/npg-31-497-2024, https://doi.org/10.5194/npg-31-497-2024, 2024
Short summary
Short summary
The shapes of clouds viewed from space reflect vertical and horizontal motions in the atmosphere. We theorize that, globally, cloud perimeter complexity is related to the dimension of turbulence also governed by horizontal and vertical motions. We find agreement between theory and observations from various satellites and a numerical model and, remarkably, that the theory applies globally using only basic planetary physical parameters from the smallest scales of turbulence to the planetary scale.
Ziming Wang, Husi Letu, Huazhe Shang, and Luca Bugliaro
Atmos. Chem. Phys., 24, 7559–7574, https://doi.org/10.5194/acp-24-7559-2024, https://doi.org/10.5194/acp-24-7559-2024, 2024
Short summary
Short summary
The supercooled liquid fraction (SLF) in mixed-phase clouds is retrieved for the first time using passive geostationary satellite observations based on differences in liquid droplet and ice particle radiative properties. The retrieved results are comparable to global distributions observed by active instruments, and the feasibility of the retrieval method to analyze the observed trends of the SLF has been validated.
Raphaël Peroni, Céline Cornet, Olivier Pujol, Guillaume Penide, Clémence Pierangelo, and François Thieuleux
EGUsphere, https://doi.org/10.5194/egusphere-2024-1560, https://doi.org/10.5194/egusphere-2024-1560, 2024
Preprint withdrawn
Short summary
Short summary
A new retrieval algorithm to measure integrated water vapor content above clouds using shortwave infrared (SWIR) observations has been developed and evaluated through both idealized and realistic atmospheric profiles. For the latter, the algorithm shows a positive bias in retrieving water vapor content above low/mid-level clouds, with an error margin of about 2.6 kg.m-2.
Valery Shcherbakov, Frédéric Szczap, Guillaume Mioche, and Céline Cornet
Atmos. Meas. Tech., 17, 3011–3028, https://doi.org/10.5194/amt-17-3011-2024, https://doi.org/10.5194/amt-17-3011-2024, 2024
Short summary
Short summary
We performed Monte Carlo simulations of single-wavelength lidar signals from multi-layered clouds with special attention focused on the multiple-scattering (MS) effect in regions of the cloud-free molecular atmosphere. The MS effect on lidar signals always decreases with the increasing distance from the cloud far edge. The decrease is the direct consequence of the fact that the forward peak of particle phase functions is much larger than the receiver field of view.
Abhinna K. Behera, Marie Boichu, François Thieuleux, Nicolas Henriot, and Souichiro Hioki
EGUsphere, https://doi.org/10.5194/egusphere-2023-2545, https://doi.org/10.5194/egusphere-2023-2545, 2023
Preprint archived
Short summary
Short summary
Volcanic eruptions release sulfur dioxide (SO2), affecting air quality, ecosystems, and aviation. Current global observations lack high temporal-resolution quantitative information, which limits our understanding of volcanic SO2 emissions and their impacts. This study uses advanced satellite data and inverse modeling to track and comprehend emissions from the 2018 Ambrym eruption, the world's leading SO2 emitter. It enhances our ability to effectively monitor and respond to volcanic activity.
Christian Matar, Céline Cornet, Frédéric Parol, Laurent C.-Labonnote, Frédérique Auriol, and Marc Nicolas
Atmos. Meas. Tech., 16, 3221–3243, https://doi.org/10.5194/amt-16-3221-2023, https://doi.org/10.5194/amt-16-3221-2023, 2023
Short summary
Short summary
The optimal estimation formalism is applied to OSIRIS airborne high-resolution multi-angular measurements to retrieve COT and Reff. The corresponding uncertainties related to measurement errors, which are up to 6 and 12 %, the non-retrieved parameters, which are less than 0.5 %, and the cloud model assumptions show that the heterogeneous vertical profiles and the 3D radiative transfer effects lead to average uncertainties of 5 and 4 % for COT and 13 and 9 % for Reff.
Xavier Ceamanos, Bruno Six, Suman Moparthy, Dominique Carrer, Adèle Georgeot, Josef Gasteiger, Jérôme Riedi, Jean-Luc Attié, Alexei Lyapustin, and Iosif Katsev
Atmos. Meas. Tech., 16, 2575–2599, https://doi.org/10.5194/amt-16-2575-2023, https://doi.org/10.5194/amt-16-2575-2023, 2023
Short summary
Short summary
A new algorithm to retrieve the diurnal evolution of aerosol optical depth over land and ocean from geostationary meteorological satellites is proposed and successfully evaluated with reference ground-based and satellite data. The high-temporal-resolution aerosol observations that are obtained from the EUMETSAT Meteosat Second Generation mission are unprecedented and open the door to studies that cannot be conducted with the once-a-day observations available from low-Earth-orbit satellites.
Ming Li, Husi Letu, Hiroshi Ishimoto, Shulei Li, Lei Liu, Takashi Y. Nakajima, Dabin Ji, Huazhe Shang, and Chong Shi
Atmos. Meas. Tech., 16, 331–353, https://doi.org/10.5194/amt-16-331-2023, https://doi.org/10.5194/amt-16-331-2023, 2023
Short summary
Short summary
Influenced by the representativeness of ice crystal scattering models, the existing terahertz ice cloud remote sensing inversion algorithms still have significant uncertainties. We developed an ice cloud remote sensing retrieval algorithm of the ice water path and particle size from aircraft-based terahertz radiation measurements based on the Voronoi model. Validation revealed that the Voronoi model performs better than the sphere and hexagonal column models.
Paolo Dandini, Céline Cornet, Renaud Binet, Laetitia Fenouil, Vadim Holodovsky, Yoav Y. Schechner, Didier Ricard, and Daniel Rosenfeld
Atmos. Meas. Tech., 15, 6221–6242, https://doi.org/10.5194/amt-15-6221-2022, https://doi.org/10.5194/amt-15-6221-2022, 2022
Short summary
Short summary
3D cloud envelope and development velocity are retrieved from realistic simulations of multi-view
CLOUD (C3IEL) images. Cloud development velocity is derived by finding matching features
between acquisitions separated by 20 s. The tie points are then mapped from image to space via 3D
reconstruction of the cloud envelope obtained from 2 simultaneous images. The retrieved cloud
topography as well as the velocities are in good agreement with the estimates obtained from the
physical models.
Sandrine Bony, Marie Lothon, Julien Delanoë, Pierre Coutris, Jean-Claude Etienne, Franziska Aemisegger, Anna Lea Albright, Thierry André, Hubert Bellec, Alexandre Baron, Jean-François Bourdinot, Pierre-Etienne Brilouet, Aurélien Bourdon, Jean-Christophe Canonici, Christophe Caudoux, Patrick Chazette, Michel Cluzeau, Céline Cornet, Jean-Philippe Desbios, Dominique Duchanoy, Cyrille Flamant, Benjamin Fildier, Christophe Gourbeyre, Laurent Guiraud, Tetyana Jiang, Claude Lainard, Christophe Le Gac, Christian Lendroit, Julien Lernould, Thierry Perrin, Frédéric Pouvesle, Pascal Richard, Nicolas Rochetin, Kevin Salaün, Alfons Schwarzenboeck, Guillaume Seurat, Bjorn Stevens, Julien Totems, Ludovic Touzé-Peiffer, Gilles Vergez, Jessica Vial, Leonie Villiger, and Raphaela Vogel
Earth Syst. Sci. Data, 14, 2021–2064, https://doi.org/10.5194/essd-14-2021-2022, https://doi.org/10.5194/essd-14-2021-2022, 2022
Short summary
Short summary
The French ATR42 research aircraft participated in the EUREC4A international field campaign that took place in 2020 over the tropical Atlantic, east of Barbados. We present the extensive instrumentation of the aircraft, the research flights and the different measurements. We show that the ATR measurements of humidity, wind, aerosols and cloudiness in the lower atmosphere are robust and consistent with each other. They will make it possible to advance understanding of cloud–climate interactions.
Ming Li, Husi Letu, Yiran Peng, Hiroshi Ishimoto, Yanluan Lin, Takashi Y. Nakajima, Anthony J. Baran, Zengyuan Guo, Yonghui Lei, and Jiancheng Shi
Atmos. Chem. Phys., 22, 4809–4825, https://doi.org/10.5194/acp-22-4809-2022, https://doi.org/10.5194/acp-22-4809-2022, 2022
Short summary
Short summary
To build on the previous investigations of the Voronoi model in the remote sensing retrievals of ice cloud products, this paper developed an ice cloud parameterization scheme based on the single-scattering properties of the Voronoi model and evaluate it through simulations with the Community Integrated Earth System Model (CIESM). Compared with four representative ice cloud schemes, results show that the Voronoi model has good capabilities of ice cloud modeling in the climate model.
Pradeep Khatri, Tadahiro Hayasaka, Hitoshi Irie, Husi Letu, Takashi Y. Nakajima, Hiroshi Ishimoto, and Tamio Takamura
Atmos. Meas. Tech., 15, 1967–1982, https://doi.org/10.5194/amt-15-1967-2022, https://doi.org/10.5194/amt-15-1967-2022, 2022
Short summary
Short summary
Cloud properties observed by the Second-generation Global Imager (SGLI) onboard the Global Change Observation Mission – Climate (GCOM-C) satellite are evaluated using surface observation data. The study finds that SGLI-observed cloud properties are qualitative enough, although water cloud properties are suggested to be more qualitative, and both water and ice cloud properties can reproduce surface irradiance quite satisfactorily. Thus, SGLI cloud products are very useful for different studies.
Valery Shcherbakov, Frédéric Szczap, Alaa Alkasem, Guillaume Mioche, and Céline Cornet
Atmos. Meas. Tech., 15, 1729–1754, https://doi.org/10.5194/amt-15-1729-2022, https://doi.org/10.5194/amt-15-1729-2022, 2022
Short summary
Short summary
We performed extensive Monte Carlo (MC) simulations of lidar signals and developed an empirical model to account for the multiple scattering in the lidar signals. The simulations have taken into consideration four types of lidar configurations (the ground based, the airborne, the CALIOP, and the ATLID) and four types of particles (coarse aerosol, water cloud, jet-stream cirrus, and cirrus).
The empirical model has very good quality of MC data fitting for all considered cases.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Souichiro Hioki, Jérôme Riedi, and Mohamed S. Djellali
Atmos. Meas. Tech., 14, 1801–1816, https://doi.org/10.5194/amt-14-1801-2021, https://doi.org/10.5194/amt-14-1801-2021, 2021
Short summary
Short summary
This research estimates the magnitude of a motion-induced error in the measurement of polarimetric state of light by a planned instrument on a future satellite. We discovered that the motion-induced error can not be cancelled out by spatiotemporal averaging, but it can be predicted from the along-track change of the intensity of light. With the estimated statistics and the simulation model, this research paves a way to provide pixel-level quality information in the future satellite products.
Frédéric Szczap, Alaa Alkasem, Guillaume Mioche, Valery Shcherbakov, Céline Cornet, Julien Delanoë, Yahya Gour, Olivier Jourdan, Sandra Banson, and Edouard Bray
Atmos. Meas. Tech., 14, 199–221, https://doi.org/10.5194/amt-14-199-2021, https://doi.org/10.5194/amt-14-199-2021, 2021
Short summary
Short summary
Spaceborne lidar and radar are suitable tools to investigate cloud vertical properties on a global scale. This paper presents the McRALI code that provides simulations of lidar and radar signals from the EarthCARE mission. Regarding radar signals, cloud heterogeneity induces a severe bias in velocity estimates. Regarding lidar signals, multiple scattering is not negligible. Our results also give some insight into the reliability of lidar signal modeling using independent column approximation.
Cited articles
Alexandrov, M. D., Miller, D. J., Rajapakshe, C., Fridlind, A., van
Diedenhoven, B., Cairns, B., Ackerman, A. S., and Zhang, Z.: Vertical
profiles of droplet size distributions derived from cloud-side observations
by the research scanning polarimeter: Tests on simulated data, J. Atmos. Res., 239, 104924, https://doi.org/10.1016/j.atmosres.2020.104924, 2020a.
Alexandrov, M. D., Miller, D. J., Rajapakshe, C., Fridlind, A., van
Diedenhoven, B., Cairns, B., Ackerman, A. S., and Zhang, Z.: Vertical
profiles of droplet size distributions derived from cloud-side observations
by the research scanning polarimeter: Tests on simulated data,
Atmos. Res., 239, 104924, https://doi.org/10.1016/j.atmosres.2020.104924,
2020b.
Alexandrov, M. D., Cairns, B., Sinclair, K., Wasilewski, A. P., Ziemba, L.,
Crosbie, E., Moore, R., Hair, J., Scarino, A. J., and Hu, Y.: Retrievals of
cloud droplet size from the research scanning polarimeter data: Validation
using in situ measurements, Remote Sens. Environ., 210, 76–95, 2018.
Arabas, S., Pawlowska, H., and Grabowski, W.: Effective radius and droplet
spectral width from in-situ aircraft observations in trade-wind cumuli
during RICO, Geophys. Res. Lett., 36, L11803, https://doi.org/10.1029/2009GL038257, 2009.
Bréon, F.-M. and Goloub, P.: Cloud droplet effective radius from
spaceborne polarization measurements, Geophys. Res. Lett., 25,
1879–1882, https://doi.org/10.1029/98gl01221, 1998.
Breon, F. M. and Doutriaux-Boucher, M.: A comparison of cloud droplet radii
measured from space, IEEE T. Geosci. Remote, 43,
1796–1805, https://doi.org/10.1109/TGRS.2005.852838, 2005.
Burns, D., Kollias, P., Tatarevic, A., Battaglia, A., and Tanelli, S.: The
performance of the EarthCARE Cloud Profiling Radar in marine stratiform
clouds, J. Geophys. Res.-Atmos., 121, 14525–514537,
https://doi.org/10.1002/2016JD025090, 2016.
Carey, L. D., Niu, J., Yang, P., Kankiewicz, J. A., Larson, V. E., and Haar,
T. H. V.: The Vertical Profile of Liquid and Ice Water Content in
Midlatitude Mixed-Phase Altocumulus Clouds,
J. Appl. Meteorol. Clim., 47, 2487–2495, https://doi.org/10.1175/2008jamc1885.1, 2008.
Chang, F. L. and Li, Z.: Estimating the vertical variation of cloud droplet
effective radius using multispectral near-infrared satellite measurements,
J. Geophys. Res.-Atmos., 107, AAC 7-1–AAC 7-12, 2002.
Chang, F. L. and Li, Z.: Retrieving vertical profiles of water-cloud droplet
effective radius: Algorithm modification and preliminary application, J. Geophys. Res.-Atmos., 108, 4763, https://doi.org/10.1029/2003JD003906, 2003.
Chen, R., Wood, R., Li, Z., Ferraro, R., and Chang, F.-L.: Studying the
vertical variation of cloud droplet effective radius using ship and space-borne remote sensing data, J. Geophys. Res., 113, D00A02,
https://doi.org/10.1029/2007jd009596, 2008.
Chen, Y., Chen, G., Cui, C., Zhang, A., Wan, R., Zhou, S., Wang, D., and Fu, Y.: Retrieval of the vertical evolution of the cloud effective radius from the Chinese FY-4 (Feng Yun 4) next-generation geostationary satellites, Atmos. Chem. Phys., 20, 1131–1145, https://doi.org/10.5194/acp-20-1131-2020, 2020.
Colorado State University: Cloud Processes Research Group, https://vandenheever.atmos.colostate.edu/vdhpage/rams/indexregister.php, last access: 22 February 2023.
Cornet, C., C.-Labonnote, L., Waquet, F., Szczap, F., Deaconu, L., Parol, F., Vanbauce, C., Thieuleux, F., and Riédi, J.: Cloud heterogeneity on cloud and aerosol above cloud properties retrieved from simulated total and polarized reflectances, Atmos. Meas. Tech., 11, 3627–3643, https://doi.org/10.5194/amt-11-3627-2018, 2018.
Dadashazar, H., Corral, A. F., Crosbie, E., Dmitrovic, S., Kirschler, S., McCauley, K., Moore, R., Robinson, C., Schlosser, J. S., Shook, M., Thornhill, K. L., Voigt, C., Winstead, E., Ziemba, L., and Sorooshian, A.: Organic enrichment in droplet residual particles relative to out of cloud over the northwestern Atlantic: analysis of airborne ACTIVATE data, Atmos. Chem. Phys., 22, 13897–13913, https://doi.org/10.5194/acp-22-13897-2022, 2022.
Davis, A. B., Merlin, G., Cornet, C., Labonnote, L. C., Riédi, J.,
Ferlay, N., Dubuisson, P., Min, Q., Yang, Y., and Marshak, A.: Cloud
information content in EPIC/DSCOVR's oxygen A- and B-band channels: An
optimal estimation approach,
J. Quant. Spectrosc. Ra., 216, 6–16, https://doi.org/10.1016/j.jqsrt.2018.05.007,
2018.
de Rooy, W. C., Bechtold, P., Fröhlich, K., Hohenegger, C., Jonker, H.,
Mironov, D., Pier Siebesma, A., Teixeira, J., and Yano, J.-I.: Entrainment
and detrainment in cumulus convection: an overview,
Q. J. Roy. Meteor. Soc., 139, 1–19, https://doi.org/10.1002/qj.1959,
2013.
Dong, X. and Mace, G. G.: Profiles of Low-Level Stratus Cloud Microphysics
Deduced from Ground-Based Measurements,
J. Atmos. Ocean. Tech., 20, 42–53, https://doi.org/10.1175/1520-0426(2003)020<0042:Pollsc>2.0.Co;2, 2003.
Donovan, D. P. and van Lammeren, A. C. A. P.: Cloud effective particle size
and water content profile retrievals using combined lidar and radar
observations: 1. Theory and examples, J. Geophys. Res.-Atmos., 106, 27425–27448, https://doi.org/10.1029/2001JD900243, 2001.
Fougnie, B., Marbach, T., Lacan, A., Lang, R., Schlüssel, P., Poli, G.,
Munro, R., and Couto, A. B.: The multi-viewing multi-channel
multi-polarisation imager – Overview of the 3MI polarimetric mission for
aerosol and cloud characterization, J. Quant. Spectrosc. Ra., 219, 23–32, https://doi.org/10.1016/j.jqsrt.2018.07.008,
2018.
Frisch, A. S., Fairall, C. W., and Snider, J. B.: Measurement of Stratus
Cloud and Drizzle Parameters in ASTEX with a Kα-Band Doppler Radar
and a Microwave Radiometer, J. Atmos. Sci., 52, 2788–2799,
https://doi.org/10.1175/1520-0469(1995)052<2788:Moscad>2.0.Co;2, 1995.
Grosvenor, D. P., Sourdeval, O., Zuidema, P., Ackerman, A., Alexandrov, M.
D., Bennartz, R., Boers, R., Cairns, B., Chiu, J. C., Christensen, M.,
Deneke, H., Diamond, M., Feingold, G., Fridlind, A., Hünerbein, A.,
Knist, C., Kollias, P., Marshak, A., McCoy, D., Merk, D., Painemal, D.,
Rausch, J., Rosenfeld, D., Russchenberg, H., Seifert, P., Sinclair, K.,
Stier, P., van Diedenhoven, B., Wendisch, M., Werner, F., Wood, R., Zhang,
Z., and Quaas, J.: Remote Sensing of Droplet Number Concentration in Warm
Clouds: A Review of the Current State of Knowledge and Perspectives, Rev. Geophys., 56, 409–453, https://doi.org/10.1029/2017RG000593, 2018a.
Grosvenor, D. P., Sourdeval, O., Zuidema, P., Ackerman, A., Alexandrov, M.
D., Bennartz, R., Boers, R., Cairns, B., Chiu, J. C., Christensen, M.,
Deneke, H., Diamond, M., Feingold, G., Fridlind, A., Hünerbein, A.,
Knist, C., Kollias, P., Marshak, A., McCoy, D., Merk, D., Painemal, D.,
Rausch, J., Rosenfeld, D., Russchenberg, H., Seifert, P., Sinclair, K.,
Stier, P., van Diedenhoven, B., Wendisch, M., Werner, F., Wood, R., Zhang,
Z., and Quaas, J.: Remote Sensing of Droplet Number Concentration in Warm
Clouds: A Review of the Current State of Knowledge and Perspectives, Rev. Geophys., 56, 409–453, https://doi.org/10.1029/2017RG000593, 2018b.
Illingworth, A. J., Barker, H. W., Beljaars, A., Ceccaldi, M., Chepfer, H.,
Clerbaux, N., Cole, J., Delanoë, J., Domenech, C., Donovan, D. P.,
Fukuda, S., Hirakata, M., Hogan, R. J., Huenerbein, A., Kollias, P., Kubota,
T., Nakajima, T., Nakajima, T. Y., Nishizawa, T., Ohno, Y., Okamoto, H.,
Oki, R., Sato, K., Satoh, M., Shephard, M. W., Velázquez-Blázquez,
A., Wandinger, U., Wehr, T., and van Zadelhoff, G.-J.: The EarthCARE
Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols,
Precipitation, and Radiation, B. Am. Meteorol. Soc., 96, 1311–1332, https://doi.org/10.1175/bams-d-12-00227.1, 2015.
Kokhanovsky, A. and Rozanov, V. V.: Droplet vertical sizing in warm clouds using passive optical measurements from a satellite, Atmos. Meas. Tech., 5, 517–528, https://doi.org/10.5194/amt-5-517-2012, 2012.
Kollias, P., Bharadwaj, N., Widener, K., Jo, I., and Johnson, K.: Scanning
ARM Cloud Radars. Part I: Operational Sampling Strategies, J. Atmos. Ocean. Tech., 31, 569–582, https://doi.org/10.1175/jtech-d-13-00044.1,
2014.
Lawson, R. P., Baker, B. A., Schmitt, C. G., and Jensen, T. L.: An overview
of microphysical properties of Arctic clouds observed in May and July 1998
during FIRE ACE, J. Geophys. Res., 106, 14989–15014, https://doi.org/10.1029/2000JD900789, 2001.
Letu, H., Yang, K., Nakajima, T. Y., Ishimoto, H., Nagao, T. M., Riedi, J.,
Baran, A. J., Ma, R., Wang, T., Shang, H., Khatri, P., Chen, L., Shi, C.,
and Shi, J.: High-resolution retrieval of cloud microphysical properties and
surface solar radiation using Himawari-8/AHI next-generation geostationary
satellite, Remote Sens. Environ., 239, 111583,
https://doi.org/10.1016/j.rse.2019.111583, 2020.
Lhermitte, R. M.: Cloud and precipitation remote sensing at 94 GHz, IEEE T. Geosci. Remote, 26, 207–216, https://doi.org/10.1109/36.3024,
1988.
Lu, C., Niu, S., Liu, Y., and Vogelmann, A. M.: Empirical relationship
between entrainment rate and microphysics in cumulus clouds, Geophys. Res.
Lett., 40, 2333–2338, https://doi.org/10.1002/grl.50445, 2013.
Lu, C., Liu, Y., Zhang, G. J., Wu, X., Endo, S., Cao, L., Li, Y., and Guo,
X.: Improving Parameterization of Entrainment Rate for Shallow Convection
with Aircraft Measurements and Large-Eddy Simulation, J. Atmos. Sci., 73, 761–773, https://doi.org/10.1175/jas-d-15-0050.1, 2016.
Lu, M.-L., Conant, W. C., Jonsson, H. H., Varutbangkul, V., Flagan, R. C.,
and Seinfeld, J. H.: The Marine Stratus/Stratocumulus Experiment (MASE):
Aerosol-cloud relationships in marine stratocumulus, J. Geophys. Res.-Atmos., 112, D10209, https://doi.org/10.1029/2006JD007985, 2007.
Lu, M.-L., Sorooshian, A., Jonsson, H. H., Feingold, G., Flagan, R. C., and
Seinfeld, J. H.: Marine stratocumulus aerosol-cloud relationships in the
MASE-II experiment: Precipitation susceptibility in eastern Pacific marine
stratocumulus, J. Geophys. Res.-Atmos., 114, D24203, https://doi.org/10.1029/2009JD012774, 2009.
Mace, G. G. and Sassen, K.: A constrained algorithm for retrieval of
stratocumulus cloud properties using solar radiation, microwave radiometer,
and millimeter cloud radar data, J. Geophys. Res., 105, 29099–29108,
https://doi.org/10.1029/2000JD900403, 2000.
Magaritz-Ronen, L., Pinsky, M., and Khain, A.: Drizzle formation in stratocumulus clouds: effects of turbulent mixing, Atmos. Chem. Phys., 16, 1849–1862, https://doi.org/10.5194/acp-16-1849-2016, 2016.
Marbach, T., Phillips, P., Lacan, A., and Schlüssel, P.: The
Multi-Viewing, -Channel, -Polarisation Imager (3MI) of the EUMETSAT Polar
System – Second Generation (EPS-SG) dedicated to aerosol characterisation,
SPIE Remote Sensing, Proc. SPIE, 8889, 88890I, https://doi.org/10.1117/12.2028221, 2013.
Merlin, G., Riedi, J., Labonnote, L. C., Cornet, C., Davis, A. B., Dubuisson, P., Desmons, M., Ferlay, N., and Parol, F.: Cloud information content analysis of multi-angular measurements in the oxygen A-band: application to 3MI and MSPI, Atmos. Meas. Tech., 9, 4977–4995, https://doi.org/10.5194/amt-9-4977-2016, 2016.
Miles, N. L., Verlinde, J., and Clothiaux, E. E.: Cloud droplet size
distributions in low-level stratiform clouds, J. Atmos. Sci., 57, 295–311, https://doi.org/10.1175/1520-0469(2000)057<0295:cdsdil>2.0.co;2, 2000.
Nagao, T. M., Suzuki, K., and Nakajima, T. Y.: Interpretation of
Multiwavelength-Retrieved Droplet Effective Radii for Warm Water Clouds in
Terms of In-Cloud Vertical Inhomogeneity by Using a Spectral Bin
Microphysics Cloud Model, J. Atmos. Sci., 70,
2376–2392, https://doi.org/10.1175/jas-d-12-0225.1, 2013.
Nakajima, T. and King, M. D.: Determination of the optical-thickness and
effective particle radius of clouds from reflected solar-radiation
measurements, J. Atmos. Sci., 47, 1878–1893,
https://doi.org/10.1175/1520-0469(1990)047<1878:dotota>2.0.co;2, 1990.
Nakajima, T. Y., Suzuki, K., and Stephens, G. L.: Droplet Growth in Warm
Water Clouds Observed by the A-Train. Part II: A Multisensor View, J. Atmos. Sci., 67, 1897–1907, https://doi.org/10.1175/2010jas3276.1, 2010.
Painemal, D. and Zuidema, P.: Assessment of MODIS cloud effective radius and
optical thickness retrievals over the Southeast Pacific with VOCALS-REx in
situ measurements, J. Geophys. Res., 116, D24206, https://doi.org/10.1029/2011jd016155, 2011.
Pawlowska, H., Grabowski, W. W., and Brenguier, J.-L.: Observations of the
width of cloud droplet spectra in stratocumulus, Geophys. Res. Lett., 33, L19810, https://doi.org/10.1029/2006GL026841, 2006.
Penide, G., Shang, H., Hioki, S., Cornet, C., Letu, H., and Riedi, J.: Simulations of stratocumulus cloud fields using RAMS model, Zenodo [data set], https://doi.org/10.5281/zenodo.7578991, 2023.
Pielke, R. A., Cotton, W. R., Walko, R. L., Tremback, C. J., Lyons, W. A.,
Grasso, L. D., Nicholls, M. E., Moran, M. D., Wesley, D. A., Lee, T. J., and
Copeland, J. H.: A comprehensive meteorological modeling system – RAMS,
Meteorol. Atmos. Phys., 49, 69–91, https://doi.org/10.1007/BF01025401, 1992.
Platnick, S.: Vertical photon transport in cloud remote sensing problems,
J. Geophys. Res.-Atmos., 105, 22919–22935,
https://doi.org/10.1029/2000jd900333, 2000.
Platnick, S.: Approximations for horizontal photon transport in cloud remote
sensing problems, J. Quant. Spectrosc. Ra., 68, 75–99, https://doi.org/10.1016/S0022-4073(00)00016-9, 2001.
Platnick, S., Meyer, K. G., King, M. D., Wind, G., Amarasinghe, N.,
Marchant, B., Arnold, G. T., Zhang, Z., Hubanks, P. A., Holz, R. E., Yang,
P., Ridgway, W. L., and Riedi, J.: The MODIS Cloud Optical and Microphysical
Products: Collection 6 Updates and Examples From Terra and Aqua, IEEE T. Geosci. Remote, 55, 502–525,
https://doi.org/10.1109/TGRS.2016.2610522, 2017.
Rémillard, J., Kollias, P., and Szyrmer, W.: Radar-radiometer retrievals of cloud number concentration and dispersion parameter in nondrizzling marine stratocumulus, Atmos. Meas. Tech., 6, 1817–1828, https://doi.org/10.5194/amt-6-1817-2013, 2013.
Roebeling, R. A., Placidi, S., Donovan, D. P., Russchenberg, H. W. J., and
Feijt, A. J.: Validation of liquid cloud property retrievals from SEVIRI
using ground-based observations, Geophys. Res. Lett., 35, L05814, https://doi.org/10.1029/2007GL032115, 2008.
Rosenfeld, D. and Lensky, I. M.: Satellite-based insights into precipitation
formation processes in continental and maritime convective clouds, B. Am. Meteorol. Soc., 79, 2457–2476,
https://doi.org/10.1175/1520-0477(1998)079<2457:sbiipf>2.0.co;2, 1998.
Saito, M., Yang, P., Hu, Y., Liu, X., Loeb, N., Smith Jr., W. L., and Minnis,
P.: An Efficient Method for Microphysical Property Retrievals in Vertically
Inhomogeneous Marine Water Clouds Using MODIS-CloudSat Measurements, J. Geophys. Res.-Atmos., 124, 2174–2193,
https://doi.org/10.1029/2018JD029659, 2019.
Saleeby, S. M. and Cotton, W. R.: A Large-Droplet Mode and Prognostic Number
Concentration of Cloud Droplets in the Colorado State University Regional
Atmospheric Modeling System (RAMS). Part I: Module Descriptions and
Supercell Test Simulations, J. Appl. Meteorol., 43, 182–195,
https://doi.org/10.1175/1520-0450(2004)043<0182:Almapn>2.0.Co;2, 2004.
Saleeby, S. M. and van den Heever, S. C.: Developments in the CSU-RAMS
Aerosol Model: Emissions, Nucleation, Regeneration, Deposition, and
Radiation, J. Appl. Meteorol. Clim., 52, 2601–2622,
https://doi.org/10.1175/jamc-d-12-0312.1, 2013.
SciPy: Fundamental algorithms for scientific computing in Python, https://scipy.org, last access: 22 February 2023.
Shang, H., Letu, H., Bréon, F.-M., Riedi, J., Ma, R., Wang, Z.,
Nakajima, T. Y., Wang, Z., and Chen, L.: An improved algorithm of cloud
droplet size distribution from POLDER polarized measurements, Remote Sens. Environ., 228, 61–74, 2019.
Shepherd, J. M., Pierce, H., and Negri, A. J.: Rainfall Modification by
Major Urban Areas: Observations from Spaceborne Rain Radar on the TRMM
Satellite, J. Appl. Meteorol., 41, 689–701,
https://doi.org/10.1175/1520-0450(2002)041<0689:Rmbmua>2.0.Co;2, 2002.
Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, K., Wang,
Z., Illingworth, A. J., O'connor, E. J., Rossow, W. B., Durden, S. L.,
Miller, S. D., Austin, R. T., Benedetti, A., and Mitrescu, C.: THE CLOUDSAT
MISSION AND THE A-TRAIN: A New Dimension of Space-Based Observations of
Clouds and Precipitation, B. Am. Meteorol. Soc.,
83, 1771–1790, https://doi.org/10.1175/bams-83-12-1771, 2002.
Stevens, B., Lenschow, D. H., Vali, G., Gerber, H., Bandy, A., Blomquist,
B., Brenguier, J.-L., Bretherton, C. S., Burnet, F., Campos, T., Chai, S.,
Faloona, I., Friesen, D., Haimov, S., Laursen, K., Lilly, D. K., Loehrer, S.
M., Malinowski, S. P., Morley, B., Petters, M. D., Rogers, D. C., Russell,
L., Savic-Jovcic, V., Snider, J. R., Straub, D., Szumowski, M. J., Takagi,
H., Thornton, D. C., Tschudi, M., Twohy, C., Wetzel, M., and van Zanten, M.
C.: Dynamics and Chemistry of Marine Stratocumulus – DYCOMS-II, B. Am. Meteorol. Soc., 84, 579–594, 2003.
Suzuki, K., Nakajima, T. Y., and Stephens, G. L.: Particle Growth and Drop
Collection Efficiency of Warm Clouds as Inferred from Joint CloudSat and MODIS
Observations, J. Atmos. Sci., 67, 3019–3032,
https://doi.org/10.1175/2010jas3463.1, 2010.
van der Dussen, J. J., de Roode, S. R., Dal Gesso, S., and Siebesma, A. P.:
An LES model study of the influence of the free tropospheric thermodynamic
conditions on the stratocumulus response to a climate perturbation,
J. Adv. Model. Earth Sy., 7, 670–691,
https://doi.org/10.1002/2014MS000380, 2015.
Wang, J., Daum, P. H., Yum, S. S., Liu, Y., Senum, G. I., Lu, M.-L.,
Seinfeld, J. H., and Jonsson, H.: Observations of marine stratocumulus
microphysics and implications for processes controlling droplet spectra:
Results from the Marine Stratus/Stratocumulus Experiment, J. Geophys. Res., 114, https://doi.org/10.1029/2008jd011035, 2009.
Wood, R.: CLOUDS AND FOG | Stratus and Stratocumulus, in:
Encyclopedia of Atmospheric Sciences (Second Edition), edited by: North, G.
R., Pyle, J., and Zhang, F., Academic Press, Oxford, 196–200,
https://doi.org/10.1016/B978-0-12-382225-3.00396-0, 2015.
Wu, P., Dong, X., Xi, B., Tian, J., and Ward, D. M.: Profiles of MBL Cloud
and Drizzle Microphysical Properties Retrieved From Ground-Based
Observations and Validated by Aircraft In Situ Measurements Over the Azores,
J. Geophys. Res.-Atmos., 125, e2019JD032205,
https://doi.org/10.1029/2019JD032205, 2020.
Xu, X., Lu, C., Liu, Y., Luo, S., Zhou, X., Endo, S., Zhu, L., and Wang, Y.: Influences of an entrainment–mixing parameterization on numerical simulations of cumulus and stratocumulus clouds, Atmos. Chem. Phys., 22, 5459–5475, https://doi.org/10.5194/acp-22-5459-2022, 2022.
Zhang, Z., Ackerman, A. S., Feingold, G., Platnick, S., Pincus, R., and Xue,
H.: Effects of cloud horizontal inhomogeneity and drizzle on remote sensing
of cloud droplet effective radius: Case studies based on large-eddy
simulations, J. Geophys. Res.-Atmos., 117, D19208, https://doi.org/10.1029/2012jd017655, 2012.
Zhao, C., Qiu, Y., Dong, X., Wang, Z., Peng, Y., Li, B., Wu, Z., and Wang,
Y.: Negative Aerosol-Cloud re Relationship From Aircraft Observations Over
Hebei, China, Earth Space Sci., 5, 19–29, https://doi.org/10.1002/2017EA000346, 2018.
Short summary
We find that cloud profiles can be divided into four prominent patterns, and the frequency of these four patterns is related to intensities of cloud-top entrainment and precipitation. Based on these analyses, we further propose a cloud profile parameterization scheme allowing us to represent these patterns. Our results shed light on how to facilitate the representation of cloud profiles and how to link them to cloud entrainment or precipitating status in future remote-sensing applications.
We find that cloud profiles can be divided into four prominent patterns, and the frequency of...
Altmetrics
Final-revised paper
Preprint