Articles | Volume 23, issue 2
https://doi.org/10.5194/acp-23-1677-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-1677-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Natural marine cloud brightening in the Southern Ocean
Department of Atmospheric Sciences, University of Utah, Salt Lake
City, Utah, United States of America
Sally Benson
Department of Atmospheric Sciences, University of Utah, Salt Lake
City, Utah, United States of America
Ruhi Humphries
Climate Science Centre, CSIRO Oceans and Atmosphere, Melbourne,
Australia
Australian Antarctic Program Partnership, Institute for Marine and
Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
Peter M. Gombert
Department of Atmospheric Sciences, University of Utah, Salt Lake
City, Utah, United States of America
Elizabeth Sterner
Department of Atmospheric Sciences, University of Utah, Salt Lake
City, Utah, United States of America
Related authors
Gerald G. Mace, Sally Benson, Peter Gombert, and Tiffany Smallwood
EGUsphere, https://doi.org/10.5194/egusphere-2025-2075, https://doi.org/10.5194/egusphere-2025-2075, 2025
Short summary
Short summary
The amount of sunlight reflected by marine boundary layer clouds in the Eastern North Atlantic do not change due to a decrease in aerosol caused by reduced sulphur in shipping fuel because adjustments to liquid water path offset the decease in cloud droplet number concentration.
Gerald G. Mace
Atmos. Meas. Tech., 17, 3679–3695, https://doi.org/10.5194/amt-17-3679-2024, https://doi.org/10.5194/amt-17-3679-2024, 2024
Short summary
Short summary
The number of cloud droplets per unit volume, Nd, in a cloud is important for understanding aerosol–cloud interaction. In this study, we develop techniques to derive cloud droplet number concentration from lidar measurements combined with other remote sensing measurements such as cloud radar and microwave radiometers. We show that deriving Nd is very uncertain, although a synergistic algorithm seems to produce useful characterizations of Nd and effective particle size.
Ruhi S. Humphries, Melita D. Keywood, Jason P. Ward, James Harnwell, Simon P. Alexander, Andrew R. Klekociuk, Keiichiro Hara, Ian M. McRobert, Alain Protat, Joel Alroe, Luke T. Cravigan, Branka Miljevic, Zoran D. Ristovski, Robyn Schofield, Stephen R. Wilson, Connor J. Flynn, Gourihar R. Kulkarni, Gerald G. Mace, Greg M. McFarquhar, Scott D. Chambers, Alastair G. Williams, and Alan D. Griffiths
Atmos. Chem. Phys., 23, 3749–3777, https://doi.org/10.5194/acp-23-3749-2023, https://doi.org/10.5194/acp-23-3749-2023, 2023
Short summary
Short summary
Observations of aerosols in pristine regions are rare but are vital to constraining the natural baseline from which climate simulations are calculated. Here we present recent seasonal observations of aerosols from the Southern Ocean and contrast them with measurements from Antarctica, Australia and regionally relevant voyages. Strong seasonal cycles persist, but striking differences occur at different latitudes. This study highlights the need for more long-term observations in remote regions.
Yuli Liu and Gerald G. Mace
Atmos. Meas. Tech., 15, 927–944, https://doi.org/10.5194/amt-15-927-2022, https://doi.org/10.5194/amt-15-927-2022, 2022
Short summary
Short summary
We propose a suite of Bayesian algorithms for synergistic radar and radiometer retrievals to evaluate the next-generation NASA Cloud, Convection and Precipitation (CCP) observing system. The algorithms address pixel-level retrievals using active-only, passive-only, and synergistic active–passive observations. Novel techniques in developing synergistic algorithms are presented. Quantitative assessments of the CCP observing system's capability in retrieving ice cloud microphysics are provided.
Ruhi S. Humphries, Melita D. Keywood, Sean Gribben, Ian M. McRobert, Jason P. Ward, Paul Selleck, Sally Taylor, James Harnwell, Connor Flynn, Gourihar R. Kulkarni, Gerald G. Mace, Alain Protat, Simon P. Alexander, and Greg McFarquhar
Atmos. Chem. Phys., 21, 12757–12782, https://doi.org/10.5194/acp-21-12757-2021, https://doi.org/10.5194/acp-21-12757-2021, 2021
Short summary
Short summary
The Southern Ocean region is one of the most pristine in the world and serves as an important proxy for the pre-industrial atmosphere. Improving our understanding of the natural processes in this region is likely to result in the largest reductions in the uncertainty of climate and earth system models. In this paper we present a statistical summary of the latitudinal gradient of aerosol and cloud condensation nuclei concentrations obtained from five voyages spanning the Southern Ocean.
Jhonathan Ramirez-Gamboa, Clare Paton-Walsh, Melita Keywood, Ruhi Humphries, Asher Mouat, Jennifer Kaiser, Malcom Possell, Jack Simmons, and Travis Naylor
Atmos. Chem. Phys., 25, 9937–9955, https://doi.org/10.5194/acp-25-9937-2025, https://doi.org/10.5194/acp-25-9937-2025, 2025
Short summary
Short summary
Tiny air particles (aerosols) influence clouds, sunlight, and air chemistry. Our study examined how these particles form in a plant-rich region of Southeast Australia. We found frequent new particle formation (NPF) events, often linked to pollution plumes. Volatile organic compounds (VOCs) from plants and other factors influence NPF and aerosol growth. Nighttime NPF requires further study. Overall, plant emissions play a key role in aerosol formation in this region.
Gerald G. Mace, Sally Benson, Peter Gombert, and Tiffany Smallwood
EGUsphere, https://doi.org/10.5194/egusphere-2025-2075, https://doi.org/10.5194/egusphere-2025-2075, 2025
Short summary
Short summary
The amount of sunlight reflected by marine boundary layer clouds in the Eastern North Atlantic do not change due to a decrease in aerosol caused by reduced sulphur in shipping fuel because adjustments to liquid water path offset the decease in cloud droplet number concentration.
Tahereh Alinejadtabrizi, Yi Huang, Francisco Lang, Steven Siems, Michael Manton, Luis Ackermann, Melita Keywood, Ruhi Humphries, Paul Krummel, Alastair Williams, and Greg Ayers
Atmos. Chem. Phys., 25, 2631–2648, https://doi.org/10.5194/acp-25-2631-2025, https://doi.org/10.5194/acp-25-2631-2025, 2025
Short summary
Short summary
Clouds over the Southern Ocean are crucial to Earth's energy balance, but understanding the factors that control them is complex. Our research examines how weather patterns affect tiny particles called cloud condensation nuclei (CCN), which influence cloud properties. Using data from Kennaook / Cape Grim, we found that winter air from Antarctica brings cleaner conditions with lower CCN, while summer patterns from Australia transport more particles. Precipitation also helps reduce CCN in winter.
Sonya L. Fiddes, Matthew T. Woodhouse, Marc D. Mallet, Liam Lamprey, Ruhi S. Humphries, Alain Protat, Simon P. Alexander, Hakase Hayashida, Samuel G. Putland, Branka Miljevic, and Robyn Schofield
EGUsphere, https://doi.org/10.5194/egusphere-2024-3125, https://doi.org/10.5194/egusphere-2024-3125, 2024
Short summary
Short summary
The interaction between natural marine aerosols, clouds and radiation in the Southern Ocean is a major source of uncertainty in climate models. We evaluate the Australian climate model using aerosol observations and find it underestimates aerosol number often by over 50 %. Model changes were tested to improve aerosol concentrations, but some of our changes had severe negative effects on the larger climate system, highlighting issues in aerosol-cloud interaction modelling.
Gerald G. Mace
Atmos. Meas. Tech., 17, 3679–3695, https://doi.org/10.5194/amt-17-3679-2024, https://doi.org/10.5194/amt-17-3679-2024, 2024
Short summary
Short summary
The number of cloud droplets per unit volume, Nd, in a cloud is important for understanding aerosol–cloud interaction. In this study, we develop techniques to derive cloud droplet number concentration from lidar measurements combined with other remote sensing measurements such as cloud radar and microwave radiometers. We show that deriving Nd is very uncertain, although a synergistic algorithm seems to produce useful characterizations of Nd and effective particle size.
Ruhi S. Humphries, Melita D. Keywood, Jason P. Ward, James Harnwell, Simon P. Alexander, Andrew R. Klekociuk, Keiichiro Hara, Ian M. McRobert, Alain Protat, Joel Alroe, Luke T. Cravigan, Branka Miljevic, Zoran D. Ristovski, Robyn Schofield, Stephen R. Wilson, Connor J. Flynn, Gourihar R. Kulkarni, Gerald G. Mace, Greg M. McFarquhar, Scott D. Chambers, Alastair G. Williams, and Alan D. Griffiths
Atmos. Chem. Phys., 23, 3749–3777, https://doi.org/10.5194/acp-23-3749-2023, https://doi.org/10.5194/acp-23-3749-2023, 2023
Short summary
Short summary
Observations of aerosols in pristine regions are rare but are vital to constraining the natural baseline from which climate simulations are calculated. Here we present recent seasonal observations of aerosols from the Southern Ocean and contrast them with measurements from Antarctica, Australia and regionally relevant voyages. Strong seasonal cycles persist, but striking differences occur at different latitudes. This study highlights the need for more long-term observations in remote regions.
Yuli Liu and Gerald G. Mace
Atmos. Meas. Tech., 15, 927–944, https://doi.org/10.5194/amt-15-927-2022, https://doi.org/10.5194/amt-15-927-2022, 2022
Short summary
Short summary
We propose a suite of Bayesian algorithms for synergistic radar and radiometer retrievals to evaluate the next-generation NASA Cloud, Convection and Precipitation (CCP) observing system. The algorithms address pixel-level retrievals using active-only, passive-only, and synergistic active–passive observations. Novel techniques in developing synergistic algorithms are presented. Quantitative assessments of the CCP observing system's capability in retrieving ice cloud microphysics are provided.
Sonya L. Fiddes, Matthew T. Woodhouse, Steve Utembe, Robyn Schofield, Simon P. Alexander, Joel Alroe, Scott D. Chambers, Zhenyi Chen, Luke Cravigan, Erin Dunne, Ruhi S. Humphries, Graham Johnson, Melita D. Keywood, Todd P. Lane, Branka Miljevic, Yuko Omori, Alain Protat, Zoran Ristovski, Paul Selleck, Hilton B. Swan, Hiroshi Tanimoto, Jason P. Ward, and Alastair G. Williams
Atmos. Chem. Phys., 22, 2419–2445, https://doi.org/10.5194/acp-22-2419-2022, https://doi.org/10.5194/acp-22-2419-2022, 2022
Short summary
Short summary
Coral reefs have been found to produce the climatically relevant chemical compound dimethyl sulfide (DMS). It has been suggested that corals can modify their environment via the production of DMS. We use an atmospheric chemistry model to test this theory at a regional scale for the first time. We find that it is unlikely that coral-reef-derived DMS has an influence over local climate, in part due to the proximity to terrestrial and anthropogenic aerosol sources.
Ruhi S. Humphries, Melita D. Keywood, Sean Gribben, Ian M. McRobert, Jason P. Ward, Paul Selleck, Sally Taylor, James Harnwell, Connor Flynn, Gourihar R. Kulkarni, Gerald G. Mace, Alain Protat, Simon P. Alexander, and Greg McFarquhar
Atmos. Chem. Phys., 21, 12757–12782, https://doi.org/10.5194/acp-21-12757-2021, https://doi.org/10.5194/acp-21-12757-2021, 2021
Short summary
Short summary
The Southern Ocean region is one of the most pristine in the world and serves as an important proxy for the pre-industrial atmosphere. Improving our understanding of the natural processes in this region is likely to result in the largest reductions in the uncertainty of climate and earth system models. In this paper we present a statistical summary of the latitudinal gradient of aerosol and cloud condensation nuclei concentrations obtained from five voyages spanning the Southern Ocean.
Jack B. Simmons, Ruhi S. Humphries, Stephen R. Wilson, Scott D. Chambers, Alastair G. Williams, Alan D. Griffiths, Ian M. McRobert, Jason P. Ward, Melita D. Keywood, and Sean Gribben
Atmos. Chem. Phys., 21, 9497–9513, https://doi.org/10.5194/acp-21-9497-2021, https://doi.org/10.5194/acp-21-9497-2021, 2021
Short summary
Short summary
Aerosols have a climate forcing effect in the Earth's atmosphere. Few measurements exist of aerosols in the Southern Ocean, a region key to our understanding of this effect. In this study, aerosol measurements from a summer 2017 campaign in the East Antarctic seasonal ice zone are examined. Higher concentrations of aerosols were found in dry air with origins from above the Antarctic continent compared to other periods of the voyage.
Kevin J. Sanchez, Gregory C. Roberts, Georges Saliba, Lynn M. Russell, Cynthia Twohy, J. Michael Reeves, Ruhi S. Humphries, Melita D. Keywood, Jason P. Ward, and Ian M. McRobert
Atmos. Chem. Phys., 21, 3427–3446, https://doi.org/10.5194/acp-21-3427-2021, https://doi.org/10.5194/acp-21-3427-2021, 2021
Short summary
Short summary
Measurements of particles and their properties were made from aircraft over the Southern Ocean. Aerosol transported from the Antarctic coast is shown to greatly enhance particle concentrations over the Southern Ocean. The occurrence of precipitation was shown to be associated with the lowest particle concentrations over the Southern Ocean. These particles are important due to their ability to enhance cloud droplet concentrations, resulting in more sunlight being reflected by the clouds.
Cited articles
Ayers, G. and Gras, J.: Seasonal relationship between cloud condensation nuclei and aerosol methanesulphonate in marine air, Nature, 353, 834–835, https://doi.org/10.1038/353834a0, 1991.
Behrenfeld, M. J., Hu, Y., O'Malley, R. T., Boss, E. S., Hostetler, C. A.,
Siegel, D. A., Sarmiento, J. L., Schulien, J., Hair, J. W., Lu, X., Rodier,
S., and Scarino, A. J.: Annual boom–bust cycles of polar phytoplankton
biomass revealed by space-based lidar, Nat. Geosci., 10, 118–122, https://doi.org/10.1038/ngeo2861, 2017.
Bodas-Salcedo, A., Hill, P. G., Furtado, K., Williams, K. D., Field, P. R.,
Manners, J. C., Hyder, P., and Kato, S.: Large Contribution of Supercooled
Liquid Clouds to the Solar Radiation Budget of the Southern Ocean, J.
Climate, 29, 4213–4228, https://doi.org/10.1175/jcli-d-15-0564.1, 2016.
Brechtel, F. J., Kreidenweis, S. M., and Swan, H. B.: Air mass
characteristics, aerosol particle number concentrations, and number size
distributions at Macquarie Island during the First Aerosol Characterization
Experiment (ACE 1), J. Geophys. Res.-Atmos., 103, 16351–16367, https://doi.org/10.1029/97jd03014, 1998.
Carslaw, K. S., Lee, L. A., Reddington, C. L., Pringle, K. J., Rap, A.,
Forster, P. M., Mann, G. W., Spracklen, D. V., Woodhouse, M. T., Regayre, L.
A., and Pierce, J. R.: Large contribution of natural aerosols to uncertainty
in indirect forcing, Nature, 503, 67–71, https://doi.org/10.1038/nature12674, 2013.
Cavagna, A. J., Fripiat, F., Elskens, M., Mangion, P., Chirurgien, L., Closset, I., Lasbleiz, M., Florez-Leiva, L., Cardinal, D., Leblanc, K., Fernandez, C., Lefèvre, D., Oriol, L., Blain, S., Quéguiner, B., and Dehairs, F.: Production regime and associated N cycling in the vicinity of Kerguelen Island, Southern Ocean, Biogeosciences, 12, 6515–6528, https://doi.org/10.5194/bg-12-6515-2015, 2015.
Deppeler, S. L. and Davidson, A. T.: Southern Ocean Phytoplankton in a
Changing Climate, Frontiers in Marine Science, 4, 2296–7745, https://doi.org/10.3389/fmars.2017.00040, 2017.
Fossum, K. N., Ovadnevaite, J., Ceburnis, D., Preißler, J., Snider, J.
R., Huang, R.-J., Zuend, A., and O'Dowd, C.: Sea-spray regulates sulfate
cloud droplet activation over oceans, npj Climate and Atmospheric Science,
3, 14, https://doi.org/10.1038/s41612-020-0116-2, 2020.
Freud, E. and Rosenfeld, D.: Linear relation between convective cloud drop number concentration and depth for rain initiation, J. Geophys. Res., 117, D02207, https://doi.org/10.1029/2011JD016457, 2012.
Glassmeier, F., Hoffmann, F., Johnson, J. S., Yamaguchi, T., Carslaw, K. S.,
and Feingold, G.: Aerosol-cloud-climate cooling overestimated by ship-track
data, Science, 371, 485–489, https://doi.org/10.1126/science.abd3980, 2021.
Gras, J. L. and Keywood, M.: Cloud condensation nuclei over the Southern Ocean: wind dependence and seasonal cycles, Atmos. Chem. Phys., 17, 4419–4432, https://doi.org/10.5194/acp-17-4419-2017, 2017.
Grosvenor, D. P. and Wood, R.: The effect of solar zenith angle on MODIS cloud optical and microphysical retrievals within marine liquid water clouds, Atmos. Chem. Phys., 14, 7291–7321, https://doi.org/10.5194/acp-14-7291-2014, 2014.
Grosvenor, D. P., Sourdeval, O., Zuidema, P., Ackerman, A., Alexandrov, M.
D., Bennartz, R., Boers, R., Cairns, B., Chiu, J. C., Christensen, M.,
Deneke, H., Diamond, M., Feingold, G., Fridlind, A., Hünerbein, A.,
Knist, C., Kollias, P., Marshak, A., McCoy, D., and Quaas, J.: Remote Sensing of
Droplet Number Concentration in Warm Clouds: A Review of the Current State
of Knowledge and Perspectives, Rev. Geophys., 56, 409–453, https://doi.org/10.1029/2017rg000593, 2018.
Hoppel, W. A., Frick, G. M., and Larson, R. E.: Effect of nonprecipitating
clouds on the aerosol size distribution in the marine boundary layer,
Geophys. Res. Lett., 13, 125–128, https://doi.org/10.1029/gl013i002p00125, 1986.
Hu, C., Feng, L., Lee, Z., Franz, B. A., Bailey, S. W., Werdell, P. J., and
Proctor, C. W.: Improving satellite global chlorophyll a data products
through algorithm refinement and data recovery, J. Geophys. Res.-Oceans, 124,
1524–1543, https://doi.org/10.1029/2019JC014941, 2019.
Huang, Y., Siems, S. T., Manton, M. J., Rosenfeld, D., Marchand, R.,
McFarquhar, G. M., and Protat, A.: What is the Role of Sea Surface
Temperature in Modulating Cloud and Precipitation Properties over the
Southern Ocean?, J. Climate, 29, 7453–7476, https://doi.org/10.1175/jcli-d-15-0768.1, 2016.
Humphries, R. S., Klekociuk, A. R., Schofield, R., Keywood, M., Ward, J., and Wilson, S. R.: Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea ice, Atmos. Chem. Phys., 16, 2185–2206, https://doi.org/10.5194/acp-16-2185-2016, 2016.
Humphries, R. S., Keywood, M. D., Gribben, S., McRobert, I. M., Ward, J. P., Selleck, P., Taylor, S., Harnwell, J., Flynn, C., Kulkarni, G. R., Mace, G. G., Protat, A., Alexander, S. P., and McFarquhar, G.: Southern Ocean latitudinal gradients of cloud condensation nuclei, Atmos. Chem. Phys., 21, 12757–12782, https://doi.org/10.5194/acp-21-12757-2021, 2021.
Kang, L., Marchand, R. R., Wood, R., and McCoy, I. L.: Coalescence
Scavenging Drives Droplet Number Concentration in Southern Ocean Low Clouds,
J. Geophys. Res., 49, e2022GL097819, https://doi.org/10.1029/2022GL097819, 2022.
Kanamitsu, M.: Description of the NMC Global Data Assimilation and Forecast System, Weather Forecast., 4, 335–342, https://doi.org/10.1175/1520-0434(1989)004<0335:dotngd>2.0.co;2, 1989.
Korhonen, H., Carslaw, K. S., Spracklen, D. V., Mann, G. W., and Woodhouse,
M. T.: Influence of oceanic dimethyl sulfide emissions on cloud condensation
nuclei concentrations and seasonality over the remote Southern Hemisphere
oceans: A global model study, J. Geophys. Res., 113, D15204,
https://doi.org/10.1029/2007JD009718, 2008.
Krüger, O. and Graßl, H.: Southern Ocean phytoplankton increases
cloud albedo and reduces precipitation, Geophys. Res. Lett., 38, L08809,
https://doi.org/10.1029/2011gl047116, 2011.
Lana, A., Simó, R., Vallina, S. M., and Dachs, J.: Potential for a biogenic influence on cloud microphysics over the ocean: a correlation study with satellite-derived data, Atmos. Chem. Phys., 12, 7977–7993, https://doi.org/10.5194/acp-12-7977-2012, 2012.
Latham, J., Rasch, P., Chen, C.-C., Kettles, L., Gadian, A., Gettelman, A.,
Morrison, H., Bower, K., and Choularton, T.: Global temperature
stabilization via controlled albedo enhancement of low-level maritime
clouds, Philos. T. R. Soc. A, 366, 3969–3987, https://doi.org/10.1098/rsta.2008.0137, 2008.
Loeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen, C., Corbett, J. G., Liang, L., Mitrescu, C., Rose, F. G., and Kato, S.: Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data Product, J. Climate, 31, 895–918, https://doi.org/10.1175/JCLI-D-17-0208.1, 2018.
Mace, G. G.: Cloud properties and radiative forcing over the maritime storm
tracks of the Southern Ocean and North Atlantic derived from A-train, J.
Geophys. Res.-Atmos., 115, D10201, https://doi.org/10.1029/2009jd012517, 2010.
Mace, G. G. and Avey, S.: Seasonal variability of warm boundary layer cloud
and precipitation properties in the Southern Ocean as diagnosed from A-Train
Data, J. Geophys. Res.-Atmos., 122, 1015–1032, https://doi.org/10.1002/2016jd025348, 2017.
Mace, G. G., Protat, A., and Benson, S.: Mixed-phase clouds over the
Southern Ocean as observed from satellite and surface based lidar and radar,
J. Geophys. Res.-Atmos., 126, e2021JD034569, https://doi.org/10.1029/2021jd034569, 2021a.
Mace, G. G., Protat, A., Humphries, R. S., Alexander, S. P., McRobert, I.
M., Ward, J., Selleck, P., Keywood, M., and McFarquhar, G. M.: Southern
Ocean cloud properties derived from CAPRICORN and MARCUS data, J. Geophys.
Res.-Atmos., 126, e2020JD033368, https://doi.org/10.1029/2020jd033368, 2021b.
Mace, G. G., Benson, S., Humphries, R., Gombert P. M., and Sterner, E.: IDL Code for: “Natural marine cloud brightening in the Southern Ocean.” Atmospheric Chemistry and Physics, The Hive: University of Utah Research Data Repository [code], https://doi.org/10.7278/S50d-bpx8-gmtt, 2022.
McCoy, D. T., Burrows, S. M., Wood, R., Grosvenor, D. P., Elliott, S. M.,
Ma, P.-L., Rasch, P. J., and Hartmann, D. L.: Natural aerosols explain
seasonal and spatial patterns of Southern Ocean cloud albedo, Science
Advances, 1, e1500157, https://doi.org/10.1126/sciadv.1500157,
2015.
McCoy, I. L., McCoy, D. T., Wood, R., Regayre, L., Watson-Parris, D.,
Grosvenor, D. P., Mulcahy, J. P., Hu, Y., Bender, F. A.-M., Field, P. R.,
Carslaw, K. S., and Gordon, H.: The hemispheric contrast in cloud
microphysical properties constrains aerosol forcing, P. Natl. Acad. Sci. USA, 117,
18998–19006, https://doi.org/10.1073/pnas.1922502117, 2020.
McFarquhar, G. M., Bretherton, C. S., Marchand, R., Protat, A., DeMott, P. J., Alexander, S. P., Roberts, G. C., Twohy, C. H., Toohey, D., Siems, S., Huang, Y., Wood, R., Rauber, R. M., Lasher-Trapp, S., Jensen, J., Stith, J. L., Mace, J., Um, J., Järvinen, E., Schnaiter, M., Gettelman, A., Sanchez, K. J., McCluskey, C. S., Russell, L. M., McCoy, I. L., Atlas, R. L., Bardeen, C. G., Moore, K. A., Hill, T. C. J., Humphries, R. S., Keywood, M. D., Ristovski, Z., Cravigan, L., Schofield, R., Fairall, C., Mallet, M. D., Kreidenweis, S. M., Rainwater, B., D’Alessandro, J., Wang, Y., Wu, W., Saliba, G., Levin, E. J. T., Ding, S., Lang, F., Truong, S. C. H., Wolff, C., Haggerty, J., Harvey, M. J., Klekociuk, A. R., and McDonald, A.:
Observations of Clouds, Aerosols, Precipitation, and Surface Radiation over
the Southern Ocean: An Overview of CAPRICORN, MARCUS, MICRE, and SOCRATES, B.
Am. Meteorol. Soc., 102, E894–E928, https://doi.org/10.1175/bams-d-20-0132.1, 2021.
Meskhidze, N. and Nenes, A.: Phytoplankton and Cloudiness in the Southern
Ocean, Science, 314, 1419–1423, https://doi.org/10.1126/science.1131779, 2006.
Miller, M. A. and Yuter, S. E.: Lack of correlation between chlorophyll-a
and cloud droplet effective radius in shallow marine clouds, Geophys. Res.
Lett., 35, L13807, https://doi.org/10.1029/2008gl034354,
2008.
Minnis, P., Garber, D.P., Young, D. F., Arduini, R. F., and Takano, Y.:
Parameterizations of Reflectance and Effective Emittance for Satellite
Remote Sensing of Cloud Properties, J. Atmos. Sci., 55, 3313–3339, https://doi.org/10.1175/1520-0469(1998)055<3313:PORAEE>2.0.CO;2,
1998.
MODIS Characterization Support Team (MCST): MODIS Geolocation Fields
Product, NASA MODIS Adaptive Processing System, Goddard Space Flight Center,
USA [data set], https://doi.org/10.5067/MODIS/MOD03.061, 2017.
Nakajima, T. and King, M. D.: Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reflected Solar Radiation Measurements. Part I: Theory, J. Atmos. Sci., 47, 1878–1893, https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2, 1990.
NASA Goddard Space Flight Center, Ocean Ecology Laboratory, and Ocean Biology Processing Group: Moderate-resolution Imaging Spectroradiometer (MODIS) Terra Chlorophyll Data; 2018 Reprocessing, NASA OB.DAAC, Greenbelt, MD, USA [data set], https://doi.org/10.5067/TERRA/MODIS/L3M/CHL/2018, 2018.
NASA Goddard Space Flight Center, Ocean Ecology Laboratory, and Ocean Biology Processing Group: Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Chlorophyll Data; 2022 Reprocessing, NASA OB.DAAC, Greenbelt, MD, USA [data set], https://doi.org/10.5067/AQUA/MODIS/L3M/CHL/2022, 2022.
NASA Langley Atmospheric Science Data Center DAAC: CERES Single Scanner Footprint (SSF) TOA/Surface Fluxes, Clouds and Aerosols Edition 4A CER_SSF_Aqua-FM3-MODIS_Edition4A_400403.2014013104.hdf NASA/LARC/SD/ASDC, CERES Single Scanner Footprint (SSF) TOA/Surface Fluxes, Clouds and Aerosols Aqua-FM3 Edition4A [Data set], https://doi.org/10.5067/AQUA/CERES/SSF-FM3_L2.004A, 2014.
National Centers for Environmental Prediction (NCEP): Global Data Assimilation System (GDAS), NOAA Air Resources Laboratory (ARL) [data set], ftp://ftp.arl.noaa.gov/pub/archives/gdas1, last access: 1 August 2022.
Naud, C. M., Booth, J. F., and Del Genio, A. D.: The Relationship between
Boundary Layer Stability and Cloud Cover in the Post-Cold-Frontal Region, J.
Climate, 29, 8129–8149, https://doi.org/10.1175/jcli-d-15-0700.1, 2016.
Painemal, D., Chiu, J.-Y. C., Minnis, P., Yost, C., Zhou, X., Cadeddu, M.,
Eloranta, E., Lewis, E. R., Ferrare, R., and Kollias, P.: Aerosol and cloud
microphysics covariability in the northeast Pacific boundary layer estimated
with ship-based and satellite remote sensing observations, J. Geophys.
Res.-Atmos., 122, 2403–2418, https://doi.org/10.1002/2016JD025771, 2017.
Platnick, S., Ackerman, S. A., King, M. D., Meyer, K., Menzel, W. P., Holz, R. E., Baum, B. A., and Yang, P.: MODIS Atmosphere L2 Cloud
Product (06_L2), NASA MODIS Adaptive Processing System,
Goddard Space Flight Center, USA [data set],
https://doi.org/10.5067/MODIS/MYD06_L2.006, 2015.
Shaw, G. E.: Antarctic aerosols: A review, Rev. Geophys., 26, 89–112,
https://doi.org/10.1029/RG026i001p00089,1988.
Shaw, G. E.: Do biologically produced aerosols really modulate climate?,
Environ. Chem., 4, 382–383, https://doi.org/10.1071/EN07073, 2007.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M. D.,
and Ngan, F.: NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling
System, B. Am. Meteorol. Soc., 96, 2059–2077, https://doi.org/10.1175/bams-d-14-00110.1, 2015.
Stephens, G. L.: Radiation Profiles in Extended Water Clouds. II:
Parameterization Schemes, J. Atmos. Sci., 35, 2123–2132, https://doi.org/10.1175/1520-0469(1978)035<2123:RPIEWC>2.0.CO;2, 1978.
Trenberth, K. E. and Fasullo, J. T.: Simulation of Present-Day and
Twenty-First-Century Energy Budgets of the Southern Oceans, J. Climate, 23,
440–454, https://doi.org/10.1175/2009jcli3152.1, 2010.
Twohy, C. H., and Anderson, J. R: Droplet nuclei in non-precipitating
clouds: composition and size matter, Environ. Res. Lett., 3, 045002, https://doi.org/10.1088/1748-9326/3/4/045002, 2008.
Twohy, C. H., DeMott, P. J., Russell, L. M., Toohey, D. W., Rainwater, B.,
Geiss, R., Sanchez, K. J., Lewis, S., Roberts, G. C., Humphries, R. S.,
McCluskey, C. S., Moore, K. A., Selleck, P. W., Keywood, M. D., Ward, J. P.,
and McRobert, I. M.: Cloud-nucleating particles over the Southern Ocean in a
changing climate, Earth's Future, 9, e2020EF001673, https://doi.org/10.1029/2020ef001673, 2021.
Vallina, S. M., Simó, R., and Gassó, S.: What controls CCN
seasonality in the Southern Ocean? A statistical analysis based on
satellite-derived chlorophyll and CCN and model-estimated OH radical and
rainfall, Global Biogeochem. Cy., 20, GB1014, https://doi.org/10.1029/2005gb002597, 2006.
Woodhouse, M. T., Mann, G. W., Carslaw, K. S., and Boucher, O.: Sensitivity of cloud condensation nuclei to regional changes in dimethyl-sulphide emissions, Atmos. Chem. Phys., 13, 2723–2733, https://doi.org/10.5194/acp-13-2723-2013, 2013.
Executive editor
The Southern Ocean can be considered a region exhibiting pristine conditions as during the pre-industrial time. Thus, any changes in radiative forcing in this region can be attributed to natural factors.
Feedbacks of ocean biological activity on Earth’s radiation budget have been put forward as the CLAW hypothesis (Charlson et al., 1987, https://www.nature.com/articles/326655a0). It implies that emissions of biogenic sulfur-containing compounds result in the formation of cloud condensation nuclei, which lead to higher cloud droplet number concentrations. Such clouds are more reflective and thus lead to a cooling effect.
The current study provides satellite-based evidence of the increase droplet number concentrations and cloud reflectivity (‘albedo’) triggered by chlorophyll emissions, as a proxy for biological activity. Specifically, it demonstrates for the first time the extent to which the cloud albedo is modulated by biological factors as a function of latitude along the Antarctic shelf. While the study does not extend to discussing the subsequent feedbacks of cloud reflectivity to biological activity, it clearly demonstrates how biological ocean activity affects cloudiness above the Southern Ocean and thus may regulate temperature.
The Southern Ocean can be considered a region exhibiting pristine conditions as during the...
Short summary
The number of cloud droplets per unit volume is a significantly important property of clouds that controls their reflective properties. Computer models of the Earth's atmosphere and climate have low skill at predicting the reflective properties of Southern Ocean clouds. Here we investigate the properties of those clouds using satellite data and find that the cloud droplet number and cloud albedo in the Southern Ocean are related to the oceanic phytoplankton abundance near Antarctica.
The number of cloud droplets per unit volume is a significantly important property of clouds...
Altmetrics
Final-revised paper
Preprint