Articles | Volume 23, issue 18
https://doi.org/10.5194/acp-23-10677-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-23-10677-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Future dust concentration over the Middle East and North Africa region under global warming and stratospheric aerosol intervention scenarios
Seyed Vahid Mousavi
CORRESPONDING AUTHOR
Center for Research in Climate Change and Global Warming, Institute
for Advanced Studies in Basic Sciences, Zanjan, Iran
Khalil Karami
Leipzig Institute for Meteorology, University of Leipzig, Leipzig, Germany
Simone Tilmes
National Center for Atmospheric Research, Boulder, CO, USA
Helene Muri
Industrial Ecology Programme, Department of Energy and Process
Engineering, Norwegian University of Science and Technology, Trondheim,
Norway
Department of Environmental Sciences, Rutgers University, New
Brunswick, NJ, USA
Abolfazl Rezaei
Center for Research in Climate Change and Global Warming, Institute
for Advanced Studies in Basic Sciences, Zanjan, Iran
Department of Earth Sciences, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran
Related authors
No articles found.
Azfar Hussain, Abolfazl Rezaei, Ping Zhu, Guanglang Xu, Chao Yang, Yan Ma, Tianye Cao, and Huizeng Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3493, https://doi.org/10.5194/egusphere-2025-3493, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We studied how future climate change and a potential cooling method called stratospheric aerosol injection could affect water availability in Central and South Asia and the Tibetan Plateau. Using climate model simulations, we found that this method could reduce extreme changes in temperature and water cycles caused by global warming. This suggests it may help protect water resources, though its effects vary by region and may not fully solve all climate challenges.
Simone Tilmes, Ewa M. Bednarz, Andrin Jörimann, Daniele Visioni, Douglas E. Kinnison, Gabriel Chiodo, and David Plummer
Atmos. Chem. Phys., 25, 6001–6023, https://doi.org/10.5194/acp-25-6001-2025, https://doi.org/10.5194/acp-25-6001-2025, 2025
Short summary
Short summary
In this paper, we describe the details of a new multi-model intercomparison experiment to assess the effects of Stratospheric Aerosol Intervention (SAI) on stratospheric chemistry and dynamics and, therefore, ozone. Second, we discuss the advantages and differences of the more constrained experiment compared to fully interactive model experiments. This way, we advance the process-level understanding of the drivers of SAI-induced atmospheric responses.
Pengfei Yu, Yifeng Peng, Karen H. Rosenlof, Ru-Shan Gao, Robert W. Portmann, Martin Ross, Eric Ray, Jianchun Bian, Simone Tilmes, and Owen B. Toon
EGUsphere, https://doi.org/10.5194/egusphere-2025-2312, https://doi.org/10.5194/egusphere-2025-2312, 2025
Short summary
Short summary
Stratospheric aerosol injection (SAI) at 50 km improves climate intervention by reducing global cooling by 22 % and polar cooling by 40 %, preserving Arctic sea ice 20 % more effectively than traditional 25-km SAI. It also reduces Antarctic ozone depletion, shortening recovery delay from 25–55 years to about 5 years. Additionally, SAI at 50 km halves tropical lower stratospheric warming, minimizing disruptions to stratospheric water vapor and jet streams compared to the 25-km method.
Genevieve Rose Lorenzo, Luke D. Ziemba, Avelino F. Arellano, Mary C. Barth, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Richard Ferrare, Miguel Ricardo A. Hilario, Michael A. Shook, Simone Tilmes, Jian Wang, Qian Xiao, Jun Zhang, and Armin Sorooshian
Atmos. Chem. Phys., 25, 5469–5495, https://doi.org/10.5194/acp-25-5469-2025, https://doi.org/10.5194/acp-25-5469-2025, 2025
Short summary
Short summary
Novel aerosol hygroscopicity analyses of CAMP2Ex (Cloud, Aerosol, and Monsoon Processes Philippines Experiment) field campaign data show low aerosol hygroscopicity values in Southeast Asia. Organic carbon from smoke decreases hygroscopicity to levels more like those in continental than in polluted marine regions. Hygroscopicity changes at cloud level demonstrate how surface particles impact clouds in the region, affecting model representation of aerosol and cloud interactions in similar polluted marine regions with high organic carbon emissions.
Christoph Jacobi, Khalil Karami, Ales Kuchar, Manfred Ern, Toralf Renkwitz, Ralph Latteck, and Jorge L. Chau
Adv. Radio Sci., 23, 21–31, https://doi.org/10.5194/ars-23-21-2025, https://doi.org/10.5194/ars-23-21-2025, 2025
Short summary
Short summary
Half-hourly mean winds have been obtained using ground-based low-frequency and very high frequency radio observations of the mesopause region at Collm, Germany, since 1984. Long-term changes of wind variances, which are proxies for short-period atmospheric gravity waves, have been analysed. Gravity wave amplitudes increase with time in winter, but mainly decrease in summer. The trends are consistent with mean wind changes according to wave theory.
Zhihong Zhuo, Xinyue Wang, Yunqian Zhu, Ewa M. Bednarz, Eric Fleming, Peter R. Colarco, Shingo Watanabe, David Plummer, Georgiy Stenchikov, William Randel, Adam Bourassa, Valentina Aquila, Takashi Sekiya, Mark R. Schoeberl, Simone Tilmes, Wandi Yu, Jun Zhang, Paul J. Kushner, and Francesco S. R. Pausata
EGUsphere, https://doi.org/10.5194/egusphere-2025-1505, https://doi.org/10.5194/egusphere-2025-1505, 2025
Short summary
Short summary
The 2022 Hunga eruption caused unprecedented stratospheric water injection, triggering unique atmospheric impacts. This study combines observations and model simulations, projecting a stratospheric water vapor anomaly lasting 4–7 years, with significant temperature variations and ozone depletion in the upper atmosphere lasting 7–10 years. These findings offer critical insights into the role of stratospheric water vapor in shaping climate and atmospheric chemistry.
Danny M. Leung, Jasper F. Kok, Longlei Li, David M. Lawrence, Natalie M. Mahowald, Simone Tilmes, and Erik Kluzek
Atmos. Chem. Phys., 25, 2311–2331, https://doi.org/10.5194/acp-25-2311-2025, https://doi.org/10.5194/acp-25-2311-2025, 2025
Short summary
Short summary
This study derives a gridded dust emission dataset for 1841–2000 by employing a combination of observed dust from core records and reanalyzed global dust cycle constraints. We evaluate the ability of global models to replicate the observed historical dust variability by using the emission dataset to force a historical simulation in an Earth system model. We show that prescribing our emissions forces the model to better match observations than other mechanistic models.
Prashant Chavan, Suvarna Fadnavis, Anton Laakso, Jean-Paul Vernier, Simone Tilmes, and Rolf Müller
EGUsphere, https://doi.org/10.5194/egusphere-2024-3825, https://doi.org/10.5194/egusphere-2024-3825, 2025
Preprint archived
Short summary
Short summary
Our simulations with volcanoes, when compared without volcanoes, show that volcanic aerosol precursors enter the tropical stratosphere, propagating upward and enhancing sulphate aerosol and heating. This stratospheric heating caused by the volcanoes reduces the amplitude of the QBO and disrupts its phases. Since QBO also modulates tropical convection and weather, we suggest including volcanic emissions and the QBO in the weather prediction model for a better forecast.
Yunqian Zhu, Hideharu Akiyoshi, Valentina Aquila, Elisabeth Asher, Ewa M. Bednarz, Slimane Bekki, Christoph Brühl, Amy H. Butler, Parker Case, Simon Chabrillat, Gabriel Chiodo, Margot Clyne, Lola Falletti, Peter R. Colarco, Eric Fleming, Andrin Jörimann, Mahesh Kovilakam, Gerbrand Koren, Ales Kuchar, Nicolas Lebas, Qing Liang, Cheng-Cheng Liu, Graham Mann, Michael Manyin, Marion Marchand, Olaf Morgenstern, Paul Newman, Luke D. Oman, Freja F. Østerstrøm, Yifeng Peng, David Plummer, Ilaria Quaglia, William Randel, Samuel Rémy, Takashi Sekiya, Stephen Steenrod, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, Rei Ueyama, Daniele Visioni, Xinyue Wang, Shingo Watanabe, Yousuke Yamashita, Pengfei Yu, Wandi Yu, Jun Zhang, and Zhihong Zhuo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3412, https://doi.org/10.5194/egusphere-2024-3412, 2024
Short summary
Short summary
To understand the climate impact of the 2022 Hunga volcanic eruption, we developed a climate model-observation comparison project. The paper describes the protocols and models that participate in the experiments. We designed several experiments to achieve our goal of this activity: 1. evaluate the climate model performance; 2. understand the Earth system responses to this eruption.
Florian Jehn, Łukasz Gajewski, Johanna Hedlund, Constantin Arnscheidt, Lili Xia, Nico Wunderling, and David Denkenberger
EGUsphere, https://doi.org/10.31223/X5MQ4R, https://doi.org/10.31223/X5MQ4R, 2024
Short summary
Short summary
The global food trade system can handle small disturbances, but large disasters could cause major disruptions. We looked at how nuclear war or severe infrastructure loss would affect global trade in key crops. Both would be catastrophic, but a nuclear war would cause more severe disruptions, with many countries losing most of their food imports. Both scenarios highlight the need for better preparation to protect global food security.
Sina Mehrdad, Dörthe Handorf, Ines Höschel, Khalil Karami, Johannes Quaas, Sudhakar Dipu, and Christoph Jacobi
Weather Clim. Dynam., 5, 1223–1268, https://doi.org/10.5194/wcd-5-1223-2024, https://doi.org/10.5194/wcd-5-1223-2024, 2024
Short summary
Short summary
This study introduces a novel deep learning (DL) approach to analyze how regional radiative forcing in Europe impacts the Arctic climate. By integrating atmospheric poleward energy transport with DL-based clustering of atmospheric patterns and attributing anomalies to specific clusters, our method reveals crucial, nuanced interactions within the climate system, enhancing our understanding of intricate climate dynamics.
Christina V. Brodowsky, Timofei Sukhodolov, Gabriel Chiodo, Valentina Aquila, Slimane Bekki, Sandip S. Dhomse, Michael Höpfner, Anton Laakso, Graham W. Mann, Ulrike Niemeier, Giovanni Pitari, Ilaria Quaglia, Eugene Rozanov, Anja Schmidt, Takashi Sekiya, Simone Tilmes, Claudia Timmreck, Sandro Vattioni, Daniele Visioni, Pengfei Yu, Yunqian Zhu, and Thomas Peter
Atmos. Chem. Phys., 24, 5513–5548, https://doi.org/10.5194/acp-24-5513-2024, https://doi.org/10.5194/acp-24-5513-2024, 2024
Short summary
Short summary
The aerosol layer is an essential part of the climate system. We characterize the sulfur budget in a volcanically quiescent (background) setting, with a special focus on the sulfate aerosol layer using, for the first time, a multi-model approach. The aim is to identify weak points in the representation of the atmospheric sulfur budget in an intercomparison of nine state-of-the-art coupled global circulation models.
Anton Laakso, Daniele Visioni, Ulrike Niemeier, Simone Tilmes, and Harri Kokkola
Earth Syst. Dynam., 15, 405–427, https://doi.org/10.5194/esd-15-405-2024, https://doi.org/10.5194/esd-15-405-2024, 2024
Short summary
Short summary
This study is the second in a two-part series in which we explore the dependency of the impacts of stratospheric sulfur injections on both the model employed and the strategy of injection utilized. The study uncovers uncertainties associated with these techniques to cool climate, highlighting how the simulated climate impacts are dependent on both the selected model and the magnitude of the injections. We also show that estimating precipitation impacts of aerosol injection is a complex task.
Daniele Visioni, Alan Robock, Jim Haywood, Matthew Henry, Simone Tilmes, Douglas G. MacMartin, Ben Kravitz, Sarah J. Doherty, John Moore, Chris Lennard, Shingo Watanabe, Helene Muri, Ulrike Niemeier, Olivier Boucher, Abu Syed, Temitope S. Egbebiyi, Roland Séférian, and Ilaria Quaglia
Geosci. Model Dev., 17, 2583–2596, https://doi.org/10.5194/gmd-17-2583-2024, https://doi.org/10.5194/gmd-17-2583-2024, 2024
Short summary
Short summary
This paper describes a new experimental protocol for the Geoengineering Model Intercomparison Project (GeoMIP). In it, we describe the details of a new simulation of sunlight reflection using the stratospheric aerosols that climate models are supposed to run, and we explain the reasons behind each choice we made when defining the protocol.
Danny M. Leung, Jasper F. Kok, Longlei Li, Natalie M. Mahowald, David M. Lawrence, Simone Tilmes, Erik Kluzek, Martina Klose, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 2287–2318, https://doi.org/10.5194/acp-24-2287-2024, https://doi.org/10.5194/acp-24-2287-2024, 2024
Short summary
Short summary
This study uses a premier Earth system model to evaluate a new desert dust emission scheme proposed in our companion paper. We show that our scheme accounts for more dust emission physics, hence matching better against observations than other existing dust emission schemes do. Our scheme's dust emissions also couple tightly with meteorology, hence likely improving the modeled dust sensitivity to climate change. We believe this work is vital for improving dust representation in climate models.
Abolfazl Rezaei, Khalil Karami, Simone Tilmes, and John C. Moore
Earth Syst. Dynam., 15, 91–108, https://doi.org/10.5194/esd-15-91-2024, https://doi.org/10.5194/esd-15-91-2024, 2024
Short summary
Short summary
Water storage (WS) plays a profound role in the lives of people in the Middle East and North Africa as well as Mediterranean climate "hot spots". WS change by greenhouse gas (GHG) warming is simulated with and without stratospheric aerosol intervention (SAI). WS significantly increases in the Arabian Peninsula and decreases around the Mediterranean under GHG. While SAI partially ameliorates GHG impacts, projected WS increases in dry regions and decreases in wet areas relative to present climate.
Sam S. Rabin, William J. Sacks, Danica L. Lombardozzi, Lili Xia, and Alan Robock
Geosci. Model Dev., 16, 7253–7273, https://doi.org/10.5194/gmd-16-7253-2023, https://doi.org/10.5194/gmd-16-7253-2023, 2023
Short summary
Short summary
Climate models can help us simulate how the agricultural system will be affected by and respond to environmental change, but to be trustworthy they must realistically reproduce historical patterns. When farmers plant their crops and what varieties they choose will be important aspects of future adaptation. Here, we improve the crop component of a global model to better simulate observed growing seasons and examine the impacts on simulated crop yields and irrigation demand.
Simone Tilmes, Michael J. Mills, Yunqian Zhu, Charles G. Bardeen, Francis Vitt, Pengfei Yu, David Fillmore, Xiaohong Liu, Brian Toon, and Terry Deshler
Geosci. Model Dev., 16, 6087–6125, https://doi.org/10.5194/gmd-16-6087-2023, https://doi.org/10.5194/gmd-16-6087-2023, 2023
Short summary
Short summary
We implemented an alternative aerosol scheme in the high- and low-top model versions of the Community Earth System Model Version 2 (CESM2) with a more detailed description of tropospheric and stratospheric aerosol size distributions than the existing aerosol model. This development enables the comparison of different aerosol schemes with different complexity in the same model framework. It identifies improvements compared to a range of observations in both the troposphere and stratosphere.
Wenfu Tang, Louisa K. Emmons, Helen M. Worden, Rajesh Kumar, Cenlin He, Benjamin Gaubert, Zhonghua Zheng, Simone Tilmes, Rebecca R. Buchholz, Sara-Eva Martinez-Alonso, Claire Granier, Antonin Soulie, Kathryn McKain, Bruce C. Daube, Jeff Peischl, Chelsea Thompson, and Pieternel Levelt
Geosci. Model Dev., 16, 6001–6028, https://doi.org/10.5194/gmd-16-6001-2023, https://doi.org/10.5194/gmd-16-6001-2023, 2023
Short summary
Short summary
The new MUSICAv0 model enables the study of atmospheric chemistry across all relevant scales. We develop a MUSICAv0 grid for Africa. We evaluate MUSICAv0 with observations and compare it with a previously used model – WRF-Chem. Overall, the performance of MUSICAv0 is comparable to WRF-Chem. Based on model–satellite discrepancies, we find that future field campaigns in an eastern African region (30°E–45°E, 5°S–5°N) could substantially improve the predictive skill of air quality models.
Yunqian Zhu, Robert W. Portmann, Douglas Kinnison, Owen Brian Toon, Luis Millán, Jun Zhang, Holger Vömel, Simone Tilmes, Charles G. Bardeen, Xinyue Wang, Stephanie Evan, William J. Randel, and Karen H. Rosenlof
Atmos. Chem. Phys., 23, 13355–13367, https://doi.org/10.5194/acp-23-13355-2023, https://doi.org/10.5194/acp-23-13355-2023, 2023
Short summary
Short summary
The 2022 Hunga Tonga eruption injected a large amount of water into the stratosphere. Ozone depletion was observed inside the volcanic plume. Chlorine and water vapor injected by this eruption exceeded the normal range, which made the ozone chemistry during this event occur at a higher temperature than polar ozone depletion. Unlike polar ozone chemistry where chlorine nitrate is more important, hypochlorous acid plays a large role in the in-plume chlorine balance and heterogeneous processes.
Duseong S. Jo, Simone Tilmes, Louisa K. Emmons, Siyuan Wang, and Francis Vitt
Geosci. Model Dev., 16, 3893–3906, https://doi.org/10.5194/gmd-16-3893-2023, https://doi.org/10.5194/gmd-16-3893-2023, 2023
Short summary
Short summary
A new simple secondary organic aerosol (SOA) scheme has been developed for the Community Atmosphere Model (CAM) based on the complex SOA scheme in CAM with detailed chemistry (CAM-chem). The CAM with the new SOA scheme shows better agreements with CAM-chem in terms of aerosol concentrations and radiative fluxes, which ensures more consistent results between different compsets in the Community Earth System Model. The new SOA scheme also has technical advantages for future developments.
Alan Robock, Lili Xia, Cheryl S. Harrison, Joshua Coupe, Owen B. Toon, and Charles G. Bardeen
Atmos. Chem. Phys., 23, 6691–6701, https://doi.org/10.5194/acp-23-6691-2023, https://doi.org/10.5194/acp-23-6691-2023, 2023
Short summary
Short summary
A nuclear war could produce a nuclear winter, with catastrophic consequences for global food supplies. Nuclear winter theory helped to end the nuclear arms race in the 1980s, but more than 10 000 nuclear weapons still exist. This means they can be used, by unstable leaders, accidently from technical malfunctions or human error, or by terrorists. Therefore, it is urgent for scientists to study these issues, broadly communicate their results, and work for the elimination of nuclear weapons.
Abolfazl Rezaei, Khalil Karami, Simone Tilmes, and John C. Moore
Atmos. Chem. Phys., 23, 5835–5850, https://doi.org/10.5194/acp-23-5835-2023, https://doi.org/10.5194/acp-23-5835-2023, 2023
Short summary
Short summary
Teleconnection patterns are important characteristics of the climate system; well-known examples include the El Niño and La Niña events driven from the tropical Pacific. We examined how spatiotemporal patterns that arise in the Pacific and Atlantic oceans behave under stratospheric aerosol geoengineering and greenhouse gas (GHG)-induced warming. In general, geoengineering reverses trends; however, the changes in decadal oscillation for the AMO, NAO, and PDO imposed by GHG are not suppressed.
Wenfu Tang, Simone Tilmes, David M. Lawrence, Fang Li, Cenlin He, Louisa K. Emmons, Rebecca R. Buchholz, and Lili Xia
Atmos. Chem. Phys., 23, 5467–5486, https://doi.org/10.5194/acp-23-5467-2023, https://doi.org/10.5194/acp-23-5467-2023, 2023
Short summary
Short summary
Globally, total wildfire burned area is projected to increase over the 21st century under scenarios without geoengineering and decrease under the two geoengineering scenarios. Geoengineering reduces fire by decreasing surface temperature and wind speed and increasing relative humidity and soil water. However, geoengineering also yields reductions in precipitation, which offset some of the fire reduction.
Daniele Visioni, Ben Kravitz, Alan Robock, Simone Tilmes, Jim Haywood, Olivier Boucher, Mark Lawrence, Peter Irvine, Ulrike Niemeier, Lili Xia, Gabriel Chiodo, Chris Lennard, Shingo Watanabe, John C. Moore, and Helene Muri
Atmos. Chem. Phys., 23, 5149–5176, https://doi.org/10.5194/acp-23-5149-2023, https://doi.org/10.5194/acp-23-5149-2023, 2023
Short summary
Short summary
Geoengineering indicates methods aiming to reduce the temperature of the planet by means of reflecting back a part of the incoming radiation before it reaches the surface or allowing more of the planetary radiation to escape into space. It aims to produce modelling experiments that are easy to reproduce and compare with different climate models, in order to understand the potential impacts of these techniques. Here we assess its past successes and failures and talk about its future.
Khalil Karami, Rolando Garcia, Christoph Jacobi, Jadwiga H. Richter, and Simone Tilmes
Atmos. Chem. Phys., 23, 3799–3818, https://doi.org/10.5194/acp-23-3799-2023, https://doi.org/10.5194/acp-23-3799-2023, 2023
Short summary
Short summary
Alongside mitigation and adaptation efforts, stratospheric aerosol intervention (SAI) is increasingly considered a third pillar to combat dangerous climate change. We investigate the teleconnection between the quasi-biennial oscillation in the equatorial stratosphere and the Arctic stratospheric polar vortex under a warmer climate and an SAI scenario. We show that the Holton–Tan relationship weakens under both scenarios and discuss the physical mechanisms responsible for such changes.
Yangxin Chen, Duoying Ji, Qian Zhang, John C. Moore, Olivier Boucher, Andy Jones, Thibaut Lurton, Michael J. Mills, Ulrike Niemeier, Roland Séférian, and Simone Tilmes
Earth Syst. Dynam., 14, 55–79, https://doi.org/10.5194/esd-14-55-2023, https://doi.org/10.5194/esd-14-55-2023, 2023
Short summary
Short summary
Solar geoengineering has been proposed as a way of counteracting the warming effects of increasing greenhouse gases by reflecting solar radiation. This work shows that solar geoengineering can slow down the northern-high-latitude permafrost degradation but cannot preserve the permafrost ecosystem as that under a climate of the same warming level without solar geoengineering.
Mari R. Tye, Katherine Dagon, Maria J. Molina, Jadwiga H. Richter, Daniele Visioni, Ben Kravitz, and Simone Tilmes
Earth Syst. Dynam., 13, 1233–1257, https://doi.org/10.5194/esd-13-1233-2022, https://doi.org/10.5194/esd-13-1233-2022, 2022
Short summary
Short summary
We examined the potential effect of stratospheric aerosol injection (SAI) on extreme temperature and precipitation. SAI may cause daytime temperatures to cool but nighttime to warm. Daytime cooling may occur in all seasons across the globe, with the largest decreases in summer. In contrast, nighttime warming may be greatest at high latitudes in winter. SAI may reduce the frequency and intensity of extreme rainfall. The combined changes may exacerbate drying over parts of the global south.
Mengdie Xie, John C. Moore, Liyun Zhao, Michael Wolovick, and Helene Muri
Atmos. Chem. Phys., 22, 4581–4597, https://doi.org/10.5194/acp-22-4581-2022, https://doi.org/10.5194/acp-22-4581-2022, 2022
Short summary
Short summary
We use data from six Earth system models to estimate Atlantic meridional overturning circulation (AMOC) changes and its drivers under four different solar geoengineering methods. Solar dimming seems relatively more effective than marine cloud brightening or stratospheric aerosol injection at reversing greenhouse-gas-driven declines in AMOC. Geoengineering-induced AMOC amelioration is due to better maintenance of air–sea temperature differences and reduced loss of Arctic summer sea ice.
Simone Tilmes, Daniele Visioni, Andy Jones, James Haywood, Roland Séférian, Pierre Nabat, Olivier Boucher, Ewa Monica Bednarz, and Ulrike Niemeier
Atmos. Chem. Phys., 22, 4557–4579, https://doi.org/10.5194/acp-22-4557-2022, https://doi.org/10.5194/acp-22-4557-2022, 2022
Short summary
Short summary
This study assesses the impacts of climate interventions, using stratospheric sulfate aerosol and solar dimming on stratospheric ozone, based on three Earth system models with interactive stratospheric chemistry. The climate interventions have been applied to a high emission (baseline) scenario in order to reach global surface temperatures of a medium emission scenario. We find significant increases and decreases in total column ozone, depending on regions and seasons.
Andy Jones, Jim M. Haywood, Adam A. Scaife, Olivier Boucher, Matthew Henry, Ben Kravitz, Thibaut Lurton, Pierre Nabat, Ulrike Niemeier, Roland Séférian, Simone Tilmes, and Daniele Visioni
Atmos. Chem. Phys., 22, 2999–3016, https://doi.org/10.5194/acp-22-2999-2022, https://doi.org/10.5194/acp-22-2999-2022, 2022
Short summary
Short summary
Simulations by six Earth-system models of geoengineering by introducing sulfuric acid aerosols into the tropical stratosphere are compared. A robust impact on the northern wintertime North Atlantic Oscillation is found, exacerbating precipitation reduction over parts of southern Europe. In contrast, the models show no consistency with regard to impacts on the Quasi-Biennial Oscillation, although results do indicate a risk that the oscillation could become locked into a permanent westerly phase.
Daniel Moran, Peter-Paul Pichler, Heran Zheng, Helene Muri, Jan Klenner, Diogo Kramel, Johannes Többen, Helga Weisz, Thomas Wiedmann, Annemie Wyckmans, Anders Hammer Strømman, and Kevin R. Gurney
Earth Syst. Sci. Data, 14, 845–864, https://doi.org/10.5194/essd-14-845-2022, https://doi.org/10.5194/essd-14-845-2022, 2022
Short summary
Short summary
This paper presents the modeling methods used for the website https://openghgmap.net, which provides estimates of CO2 emissions for 108 000 European cities.
Daniele Visioni, Simone Tilmes, Charles Bardeen, Michael Mills, Douglas G. MacMartin, Ben Kravitz, and Jadwiga H. Richter
Atmos. Chem. Phys., 22, 1739–1756, https://doi.org/10.5194/acp-22-1739-2022, https://doi.org/10.5194/acp-22-1739-2022, 2022
Short summary
Short summary
Aerosols are simulated in a simplified way in climate models: in the model analyzed here, they are represented in every grid as described by three simple logarithmic distributions, mixing all different species together. The size can evolve when new particles are formed, particles merge together to create a larger one or particles are deposited to the surface. This approximation normally works fairly well. Here we show however that when large amounts of sulfate are simulated, there are problems.
Nicholas A. Davis, Patrick Callaghan, Isla R. Simpson, and Simone Tilmes
Atmos. Chem. Phys., 22, 197–214, https://doi.org/10.5194/acp-22-197-2022, https://doi.org/10.5194/acp-22-197-2022, 2022
Short summary
Short summary
Specified dynamics schemes attempt to constrain the atmospheric circulation in a climate model to isolate the role of transport in chemical variability, evaluate model physics, and interpret field campaign observations. We show that the specified dynamics scheme in CESM2 erroneously suppresses convection and induces circulation errors that project onto errors in tracers, even using the most optimal settings. Development of a more sophisticated scheme is necessary for future progress.
Anton Laakso, Ulrike Niemeier, Daniele Visioni, Simone Tilmes, and Harri Kokkola
Atmos. Chem. Phys., 22, 93–118, https://doi.org/10.5194/acp-22-93-2022, https://doi.org/10.5194/acp-22-93-2022, 2022
Short summary
Short summary
The use of different spatio-temporal sulfur injection strategies with different magnitudes to create an artificial reflective aerosol layer to cool the climate is studied using sectional and modal aerosol schemes in a climate model. There are significant differences in the results depending on the aerosol microphysical module used. Different spatio-temporal injection strategies have a significant impact on the magnitude and zonal distribution of radiative forcing and atmospheric dynamics.
Thierno Doumbia, Claire Granier, Nellie Elguindi, Idir Bouarar, Sabine Darras, Guy Brasseur, Benjamin Gaubert, Yiming Liu, Xiaoqin Shi, Trissevgeni Stavrakou, Simone Tilmes, Forrest Lacey, Adrien Deroubaix, and Tao Wang
Earth Syst. Sci. Data, 13, 4191–4206, https://doi.org/10.5194/essd-13-4191-2021, https://doi.org/10.5194/essd-13-4191-2021, 2021
Short summary
Short summary
Most countries around the world have implemented control measures to combat the spread of the COVID-19 pandemic, resulting in significant changes in economic and personal activities. We developed the CONFORM (COvid-19 adjustmeNt Factors fOR eMissions) dataset to account for changes in emissions during lockdowns. This dataset was created with the intention of being directly applicable to existing global and regional inventories used in chemical transport models.
Daniele Visioni, Douglas G. MacMartin, Ben Kravitz, Olivier Boucher, Andy Jones, Thibaut Lurton, Michou Martine, Michael J. Mills, Pierre Nabat, Ulrike Niemeier, Roland Séférian, and Simone Tilmes
Atmos. Chem. Phys., 21, 10039–10063, https://doi.org/10.5194/acp-21-10039-2021, https://doi.org/10.5194/acp-21-10039-2021, 2021
Short summary
Short summary
A new set of simulations is used to investigate commonalities, differences and sources of uncertainty when simulating the injection of SO2 in the stratosphere in order to mitigate the effects of climate change (solar geoengineering). The models differ in how they simulate the aerosols and how they spread around the stratosphere, resulting in differences in projected regional impacts. Overall, however, the models agree that aerosols have the potential to mitigate the warming produced by GHGs.
Masoud Saatsaz and Aboulfazl Rezaie
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-173, https://doi.org/10.5194/hess-2021-173, 2021
Manuscript not accepted for further review
Short summary
Short summary
In Iran, as a water-scared country, water resources development has been consistently challenging. Iranians have long practiced various managing strategies based on the region's geo-climatological features, needs, tools, available resources (surface water and groundwater), political stability, economic power, and socio-cultural characteristics. This article explains how ancient Iranians confronted various water-related problems and how they tackled these restrictions.
Fernando Chouza, Thierry Leblanc, Mark Brewer, Patrick Wang, Sabino Piazzolla, Gabriele Pfister, Rajesh Kumar, Carl Drews, Simone Tilmes, Louisa Emmons, and Matthew Johnson
Atmos. Chem. Phys., 21, 6129–6153, https://doi.org/10.5194/acp-21-6129-2021, https://doi.org/10.5194/acp-21-6129-2021, 2021
Short summary
Short summary
The tropospheric ozone lidar at the JPL Table Mountain Facility (TMF) was used to investigate the impact of Los Angeles (LA) Basin pollution transport and stratospheric intrusions in the planetary boundary layer on the San Gabriel Mountains. The results of this study indicate a dominant role of the LA Basin pollution on days when high ozone levels were observed at TMF (March–October period).
Ben Kravitz, Douglas G. MacMartin, Daniele Visioni, Olivier Boucher, Jason N. S. Cole, Jim Haywood, Andy Jones, Thibaut Lurton, Pierre Nabat, Ulrike Niemeier, Alan Robock, Roland Séférian, and Simone Tilmes
Atmos. Chem. Phys., 21, 4231–4247, https://doi.org/10.5194/acp-21-4231-2021, https://doi.org/10.5194/acp-21-4231-2021, 2021
Short summary
Short summary
This study investigates multi-model response to idealized geoengineering (high CO2 with solar reduction) across two different generations of climate models. We find that, with the exception of a few cases, the results are unchanged between the different generations. This gives us confidence that broad conclusions about the response to idealized geoengineering are robust.
Paul T. Griffiths, Lee T. Murray, Guang Zeng, Youngsub Matthew Shin, N. Luke Abraham, Alexander T. Archibald, Makoto Deushi, Louisa K. Emmons, Ian E. Galbally, Birgit Hassler, Larry W. Horowitz, James Keeble, Jane Liu, Omid Moeini, Vaishali Naik, Fiona M. O'Connor, Naga Oshima, David Tarasick, Simone Tilmes, Steven T. Turnock, Oliver Wild, Paul J. Young, and Prodromos Zanis
Atmos. Chem. Phys., 21, 4187–4218, https://doi.org/10.5194/acp-21-4187-2021, https://doi.org/10.5194/acp-21-4187-2021, 2021
Short summary
Short summary
We analyse the CMIP6 Historical and future simulations for tropospheric ozone, a species which is important for many aspects of atmospheric chemistry. We show that the current generation of models agrees well with observations, being particularly successful in capturing trends in surface ozone and its vertical distribution in the troposphere. We analyse the factors that control ozone and show that they evolve over the period of the CMIP6 experiments.
Hanna Lee, Helene Muri, Altug Ekici, Jerry Tjiputra, and Jörg Schwinger
Earth Syst. Dynam., 12, 313–326, https://doi.org/10.5194/esd-12-313-2021, https://doi.org/10.5194/esd-12-313-2021, 2021
Short summary
Short summary
We assess how three different geoengineering methods using aerosol affect land ecosystem carbon storage. Changes in temperature and precipitation play a large role in vegetation carbon uptake and storage, but our results show that increased levels of CO2 also play a considerable role. We show that there are unforeseen regional consequences under geoengineering applications, and these consequences should be taken into account in future climate policies before implementing them.
Chaim I. Garfinkel, Ohad Harari, Shlomi Ziskin Ziv, Jian Rao, Olaf Morgenstern, Guang Zeng, Simone Tilmes, Douglas Kinnison, Fiona M. O'Connor, Neal Butchart, Makoto Deushi, Patrick Jöckel, Andrea Pozzer, and Sean Davis
Atmos. Chem. Phys., 21, 3725–3740, https://doi.org/10.5194/acp-21-3725-2021, https://doi.org/10.5194/acp-21-3725-2021, 2021
Short summary
Short summary
Water vapor is the dominant greenhouse gas in the atmosphere, and El Niño is the dominant mode of variability in the ocean–atmosphere system. The connection between El Niño and water vapor above ~ 17 km is unclear, with single-model studies reaching a range of conclusions. This study examines this connection in 12 different models. While there are substantial differences among the models, all models appear to capture the fundamental physical processes correctly.
Duseong S. Jo, Alma Hodzic, Louisa K. Emmons, Simone Tilmes, Rebecca H. Schwantes, Michael J. Mills, Pedro Campuzano-Jost, Weiwei Hu, Rahul A. Zaveri, Richard C. Easter, Balwinder Singh, Zheng Lu, Christiane Schulz, Johannes Schneider, John E. Shilling, Armin Wisthaler, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 3395–3425, https://doi.org/10.5194/acp-21-3395-2021, https://doi.org/10.5194/acp-21-3395-2021, 2021
Short summary
Short summary
Secondary organic aerosol (SOA) is a major component of submicron particulate matter, but there are a lot of uncertainties in the future prediction of SOA. We used CESM 2.1 to investigate future IEPOX SOA concentration changes. The explicit chemistry predicted substantial changes in IEPOX SOA depending on the future scenario, but the parameterization predicted weak changes due to simplified chemistry, which shows the importance of correct physicochemical dependencies in future SOA prediction.
Sabine Robrecht, Bärbel Vogel, Simone Tilmes, and Rolf Müller
Atmos. Chem. Phys., 21, 2427–2455, https://doi.org/10.5194/acp-21-2427-2021, https://doi.org/10.5194/acp-21-2427-2021, 2021
Short summary
Short summary
Column ozone protects life on Earth from radiation damage. Stratospheric chlorine compounds cause immense ozone loss in polar winter. Whether similar loss processes can occur in the lower stratosphere above North America today or in future is a matter of debate. We show that these ozone loss processes are very unlikely today or in future independently of whether sulfate geoengineering is applied and that less than 0.1 % of column ozone would be destroyed by this process in any future scenario.
Andy Jones, Jim M. Haywood, Anthony C. Jones, Simone Tilmes, Ben Kravitz, and Alan Robock
Atmos. Chem. Phys., 21, 1287–1304, https://doi.org/10.5194/acp-21-1287-2021, https://doi.org/10.5194/acp-21-1287-2021, 2021
Short summary
Short summary
Two different methods of simulating a geoengineering scenario are compared using data from two different Earth system models. One method is very idealised while the other includes details of a plausible mechanism. The results from both models agree that the idealised approach does not capture an impact found when detailed modelling is included, namely that geoengineering induces a positive phase of the North Atlantic Oscillation which leads to warmer, wetter winters in northern Europe.
Marc von Hobe, Felix Ploeger, Paul Konopka, Corinna Kloss, Alexey Ulanowski, Vladimir Yushkov, Fabrizio Ravegnani, C. Michael Volk, Laura L. Pan, Shawn B. Honomichl, Simone Tilmes, Douglas E. Kinnison, Rolando R. Garcia, and Jonathon S. Wright
Atmos. Chem. Phys., 21, 1267–1285, https://doi.org/10.5194/acp-21-1267-2021, https://doi.org/10.5194/acp-21-1267-2021, 2021
Short summary
Short summary
The Asian summer monsoon (ASM) is known to foster transport of polluted tropospheric air into the stratosphere. To test and amend our picture of ASM vertical transport, we analyse distributions of airborne trace gas observations up to 20 km altitude near the main ASM vertical conduit south of the Himalayas. We also show that a new high-resolution version of the global chemistry climate model WACCM is able to reproduce the observations well.
Gillian Thornhill, William Collins, Dirk Olivié, Ragnhild B. Skeie, Alex Archibald, Susanne Bauer, Ramiro Checa-Garcia, Stephanie Fiedler, Gerd Folberth, Ada Gjermundsen, Larry Horowitz, Jean-Francois Lamarque, Martine Michou, Jane Mulcahy, Pierre Nabat, Vaishali Naik, Fiona M. O'Connor, Fabien Paulot, Michael Schulz, Catherine E. Scott, Roland Séférian, Chris Smith, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, and James Weber
Atmos. Chem. Phys., 21, 1105–1126, https://doi.org/10.5194/acp-21-1105-2021, https://doi.org/10.5194/acp-21-1105-2021, 2021
Short summary
Short summary
We find that increased temperatures affect aerosols and reactive gases by changing natural emissions and their rates of removal from the atmosphere. Changing the composition of these species in the atmosphere affects the radiative budget of the climate system and therefore amplifies or dampens the climate response of climate models of the Earth system. This study found that the largest effect is a dampening of climate change as warmer temperatures increase the emissions of cooling aerosols.
Gillian D. Thornhill, William J. Collins, Ryan J. Kramer, Dirk Olivié, Ragnhild B. Skeie, Fiona M. O'Connor, Nathan Luke Abraham, Ramiro Checa-Garcia, Susanne E. Bauer, Makoto Deushi, Louisa K. Emmons, Piers M. Forster, Larry W. Horowitz, Ben Johnson, James Keeble, Jean-Francois Lamarque, Martine Michou, Michael J. Mills, Jane P. Mulcahy, Gunnar Myhre, Pierre Nabat, Vaishali Naik, Naga Oshima, Michael Schulz, Christopher J. Smith, Toshihiko Takemura, Simone Tilmes, Tongwen Wu, Guang Zeng, and Jie Zhang
Atmos. Chem. Phys., 21, 853–874, https://doi.org/10.5194/acp-21-853-2021, https://doi.org/10.5194/acp-21-853-2021, 2021
Short summary
Short summary
This paper is a study of how different constituents in the atmosphere, such as aerosols and gases like methane and ozone, affect the energy balance in the atmosphere. Different climate models were run using the same inputs to allow an easy comparison of the results and to understand where the models differ. We found the effect of aerosols is to reduce warming in the atmosphere, but this effect varies between models. Reactions between gases are also important in affecting climate.
Benjamin Gaubert, Louisa K. Emmons, Kevin Raeder, Simone Tilmes, Kazuyuki Miyazaki, Avelino F. Arellano Jr., Nellie Elguindi, Claire Granier, Wenfu Tang, Jérôme Barré, Helen M. Worden, Rebecca R. Buchholz, David P. Edwards, Philipp Franke, Jeffrey L. Anderson, Marielle Saunois, Jason Schroeder, Jung-Hun Woo, Isobel J. Simpson, Donald R. Blake, Simone Meinardi, Paul O. Wennberg, John Crounse, Alex Teng, Michelle Kim, Russell R. Dickerson, Hao He, Xinrong Ren, Sally E. Pusede, and Glenn S. Diskin
Atmos. Chem. Phys., 20, 14617–14647, https://doi.org/10.5194/acp-20-14617-2020, https://doi.org/10.5194/acp-20-14617-2020, 2020
Short summary
Short summary
This study investigates carbon monoxide pollution in East Asia during spring using a numerical model, satellite remote sensing, and aircraft measurements. We found an underestimation of emission sources. Correcting the emission bias can improve air quality forecasting of carbon monoxide and other species including ozone. Results also suggest that controlling VOC and CO emissions, in addition to widespread NOx controls, can improve ozone pollution over East Asia.
Steven T. Turnock, Robert J. Allen, Martin Andrews, Susanne E. Bauer, Makoto Deushi, Louisa Emmons, Peter Good, Larry Horowitz, Jasmin G. John, Martine Michou, Pierre Nabat, Vaishali Naik, David Neubauer, Fiona M. O'Connor, Dirk Olivié, Naga Oshima, Michael Schulz, Alistair Sellar, Sungbo Shim, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, Tongwen Wu, and Jie Zhang
Atmos. Chem. Phys., 20, 14547–14579, https://doi.org/10.5194/acp-20-14547-2020, https://doi.org/10.5194/acp-20-14547-2020, 2020
Short summary
Short summary
A first assessment is made of the historical and future changes in air pollutants from models participating in the 6th Coupled Model Intercomparison Project (CMIP6). Substantial benefits to future air quality can be achieved in future scenarios that implement measures to mitigate climate and involve reductions in air pollutant emissions, particularly methane. However, important differences are shown between models in the future regional projection of air pollutants under the same scenario.
Augustin Mortier, Jonas Gliß, Michael Schulz, Wenche Aas, Elisabeth Andrews, Huisheng Bian, Mian Chin, Paul Ginoux, Jenny Hand, Brent Holben, Hua Zhang, Zak Kipling, Alf Kirkevåg, Paolo Laj, Thibault Lurton, Gunnar Myhre, David Neubauer, Dirk Olivié, Knut von Salzen, Ragnhild Bieltvedt Skeie, Toshihiko Takemura, and Simone Tilmes
Atmos. Chem. Phys., 20, 13355–13378, https://doi.org/10.5194/acp-20-13355-2020, https://doi.org/10.5194/acp-20-13355-2020, 2020
Short summary
Short summary
We present a multiparameter analysis of the aerosol trends over the last 2 decades in the different regions of the world. In most of the regions, ground-based observations show a decrease in aerosol content in both the total atmospheric column and at the surface. The use of climate models, assessed against these observations, reveals however an increase in the total aerosol load, which is not seen with the sole use of observation due to partial coverage in space and time.
Yuanhong Zhao, Marielle Saunois, Philippe Bousquet, Xin Lin, Antoine Berchet, Michaela I. Hegglin, Josep G. Canadell, Robert B. Jackson, Makoto Deushi, Patrick Jöckel, Douglas Kinnison, Ole Kirner, Sarah Strode, Simone Tilmes, Edward J. Dlugokencky, and Bo Zheng
Atmos. Chem. Phys., 20, 13011–13022, https://doi.org/10.5194/acp-20-13011-2020, https://doi.org/10.5194/acp-20-13011-2020, 2020
Short summary
Short summary
Decadal trends and variations in OH are critical for understanding atmospheric CH4 evolution. We quantify the impacts of OH trends and variations on the CH4 budget by conducting CH4 inversions on a decadal scale with an ensemble of OH fields. We find the negative OH anomalies due to enhanced fires can reduce the optimized CH4 emissions by up to 10 Tg yr−1 during El Niño years and the positive OH trend from 1986 to 2010 results in a ∼ 23 Tg yr−1 additional increase in optimized CH4 emissions.
David S. Stevenson, Alcide Zhao, Vaishali Naik, Fiona M. O'Connor, Simone Tilmes, Guang Zeng, Lee T. Murray, William J. Collins, Paul T. Griffiths, Sungbo Shim, Larry W. Horowitz, Lori T. Sentman, and Louisa Emmons
Atmos. Chem. Phys., 20, 12905–12920, https://doi.org/10.5194/acp-20-12905-2020, https://doi.org/10.5194/acp-20-12905-2020, 2020
Short summary
Short summary
We present historical trends in atmospheric oxidizing capacity (OC) since 1850 from the latest generation of global climate models and compare these with estimates from measurements. OC controls levels of many key reactive gases, including methane (CH4). We find small model trends up to 1980, then increases of about 9 % up to 2014, disagreeing with (uncertain) measurement-based trends. Major drivers of OC trends are emissions of CH4, NOx, and CO; these will be important for future CH4 trends.
Wenfu Tang, Benjamin Gaubert, Louisa Emmons, Yonghoon Choi, Joshua P. DiGangi, Glenn S. Diskin, Xiaomei Xu, Cenlin He, Helen Worden, Simone Tilmes, Rebecca Buchholz, Hannah S. Halliday, and Avelino F. Arellano
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-864, https://doi.org/10.5194/acp-2020-864, 2020
Revised manuscript not accepted
Short summary
Short summary
A specific demonstration of the potential use of correlative information from carbon monoxide to refine estimates of regional carbon dioxide emissions from fossil fuel combustion.
Cited articles
Albani, S., Mahowald, N. M., Perry, A. T., Scanza, R. A., Zender, C. S.,
Heavens, N. G., Maggi, V., Kok, J. F., and Otto Bliesner, B. L.: Improved
dust representation in the Community Atmosphere Model, J. Adv. Model. Earth
Syst., 6, 541–570, https://doi.org/10.1002/2013MS000279, 2014.
Albani, S., Balkanski, Y., Mahowald, N., Winckler, G., Maggi, V., and
Delmonte, B.: Aerosol-Climate Interactions During the Last Glacial Maximum,
Curr. Clim. Change Rep., 4, 99–114, https://doi.org/10.1007/s40641-018-0100-7, 2018.
Alboghdady, M. and El-Hendawy, S. E.: Economic impacts of climate change
and variability on agricultural production in the Middle East and North
Africa region, IJCCSM, 8, 463–472, https://doi.org/10.1108/ijccsm-07-2015-0100,
2016.
Alpert, P., Kaufman, Y., Shay-El, Y., Tanre, D., da Silva, A., Schubert, S.,
and Joseph, J. H.: Quantification of dust-forced heating of the lower
troposphere, Nature, 395, 367–370, https://doi.org/10.1038/26456, 1998.
Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F., Baustian, K.
J., Carslaw, K. S., Dobbie, S., O'Sullivan, D., and Malkin, T. L.: The
importance of feldspar for ice nucleation by mineral dust in mixed-phase
clouds, Nature, 498, 355–358, https://doi.org/10.1038/nature12278, 2013.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V. M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and aerosols, in: Climate
change 2013: the physical science basis. Contribution of Working Group I to
the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M.,
Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.
M., Cambridge University Press, Cambridge, UK, 571–657, https://doi.org/10.1017/CBO9781107415324.016, 2013.
Caldeira, K. and Matthews, H.D.: Transient climate-carbon simulations of
planetary geoengineering, P. Natl. Acad. Sci. USA, 104, 9949–9954,
https://doi.org/10.1073/pnas.0700419104, 2007.
Cao, J. J., Lee, S. C., Zhang, X. Y., Chow, J. C., An, Z. S., Ho, K. F.,
Watson, J. G., Fung, K., Wang, Y. Q., and Shen, Z. X.: Characterization of
airborne carbonate over a site near Asian dust source regions during spring
2002 and its climatic and environmental significance, J. Geophys. Res., 110,
D03203, https://doi.org/10.1029/2004JD005244, 2005.
Crutzen, P. J.: Albedo Enhancement by Stratospheric Sulfur Injections: A
Contribution to Resolve a Policy Dilemma?, Clim. Change, 77, 211–219,
https://doi.org/10.1007/s10584-006-9101-y, 2006.
de Sherbinin, A., Balk, D., Yager, K., Jaiteh, M., Pozzi, F., Giri, C., and Wannebo, A.: the Socioeconomic Data and Applications Center (SEDECA), CIESIN Columbia University [data set], https://sedac.ciesin.columbia.edu/ (last access: June 2023), 2023.
Dufresne, J.-L., Gautier, C., Ricchiazzi, P., and Fouquart, Y.: Longwave
Scattering Effects of Mineral Aerosols, J. Atmos. Sci., 59, 1959–1966,
https://doi.org/10.1175/1520-0469(2002)059<1959:lseoma>2.0.co;2,
2002.
Gasso, S., Grassian, V. H., and Miller, R. L.: Interactions between Mineral
Dust, Climate, and Ocean Ecosystems, Elements, 6, 247–252,
https://doi.org/10.2113/gselements.6.4.247, 2010.
Giles, J.: The dustiest place on Earth, Nature, 434, 816–819,
https://doi.org/10.1038/434816a, 2005.
Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C., and Zhao, M.:
Global-scale attribution of anthropogenic and natural dust sources and their
emission rates based on MODIS Deep Blue aerosol products, Rev. Geophys., 50,
RG3005, https://doi.org/10.1029/2012RG000388, 2012.
Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M. B., Bi, X. Q.,
Elguindi, N., Diro, G. T., Nair, V., Giuliani, G., Turuncoglu, U. U., Cozzini,
S., Güttler, I., O'Brien, T. A., Tawfik, A. B., Shalaby, A., Zakey, A. S.,
Steiner, A. L., Stordal, F., Sloan, L. C., and Brankovic, C.: RegCM4: model
description and preliminary tests over multiple CORDEX domains, Clim. Res.,
52, 7–29, https://doi.org/10.3354/cr01018, 2012.
Hillel, D.: Introduction to Soil Physics, Academic, San Diego, Calif., 353 pp., ISBN 978-0-08-091869-3, 0-12-348520-7, 1982.
Holland, M.: The great sea-ice dwindle. Nat. Geosci., 6, 10–11, https://doi.org/10.1038/ngeo1681, 2013.
Huneeus, N., Schulz, M., Balkanski, Y., Griesfeller, J., Prospero, J., Kinne, S., Bauer, S., Boucher, O., Chin, M., Dentener, F., Diehl, T., Easter, R., Fillmore, D., Ghan, S., Ginoux, P., Grini, A., Horowitz, L., Koch, D., Krol, M. C., Landing, W., Liu, X., Mahowald, N., Miller, R., Morcrette, J.-J., Myhre, G., Penner, J., Perlwitz, J., Stier, P., Takemura, T., and Zender, C. S.: Global dust model intercomparison in AeroCom phase I, Atmos. Chem. Phys., 11, 7781–7816, https://doi.org/10.5194/acp-11-7781-2011, 2011.
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl, J., and Marshall, S.: The Community Earth System Model: A framework for collaborative research, B. Am. Meteorol. Soc., 94, 1339–1360, https://doi.org/10.1175/BAMS-D-12-00121.1, 2013.
Ji, Z., Wang, G., Yu, M., and Pal, J. S.: Potential climate effect of
mineral aerosols over West Africa: Part II – contribution of dust and land
cover to future climate change, Clim. Dynam., 50, 2335–2353,
https://doi.org/10.1007/s00382-015-2792-x, 2018.
Jickells, T. D.: Global Iron Connections Between Desert Dust, Ocean
Biogeochemistry, and Climate, Science, 308, 67–71,
https://doi.org/10.1126/science.1105959, 2005.
Karami, K.: Upper tropospheric Rossby wave packets: long-term trends
and variability, Theor. Appl. Climatol., 138, 527–540, 2019.
Karami, K., Tilmes, S., Muri, H., and Mousavi, S. V.: Storm track changes in
the Middle East and North Africa under stratospheric aerosol geoengineering,
Geophys. Res. Lett., 47, e2020GL086954, https://doi.org/10.1029/2020GL086954,
2020.
Keith, D., Weisenstein, D., Vattioni, S., Feinberg, A., Peter, T., and Stenke, A. (2019): GeoMIP Test Bed Experiment: Injection of accumulation mode H2SO4 particles in chemistry-climate models, 2019 Fall Meeting, AGU, San Francisco, CA, 9–13 December, GC33G-1416, https://doi.org/10.1002/essoar.10501967.1, 2019.
Kok, J. F., Albani, S., Mahowald, N. M., and Ward, D. S.: An improved dust emission model – Part 2: Evaluation in the Community Earth System Model, with implications for the use of dust source functions, Atmos. Chem. Phys., 14, 13043–13061, https://doi.org/10.5194/acp-14-13043-2014, 2014.
Kok, J. F., Ridley, D. A., Zhou, Q., Miller, R. L., Zhao, C., Heald, C. L.,
Ward, D. S., Albani, S., and Haustein, K.: Smaller desert dust cooling effect
estimated from analysis of dust size and abundance, Nat. Geosci., 10,
274–278, https://doi.org/10.1038/ngeo2912, 2017.
Kok, J. F., Ward, D. S., Mahowald, N. M., and Evan, A. T.: Global and
regional importance of the direct dust-climate feedback, Nat. Commun., 9, 241,
https://doi.org/10.1038/s41467-017-02620-y, 2018.
Kravitz, B., MacMartin, D. G., Mills, M. J., Richter, J. H., Tilmes, S.,
Lamarque, J.-F., Tribbia, J. J., and Vitt, F.: First Simulations of Designing
Stratospheric Sulfate Aerosol Geoengineering to Meet Multiple Simultaneous
Climate Objectives, J. Geophys. Res.-Atmos., 122, 12616–12634,
https://doi.org/10.1002/2017jd026874, 2017.
Krinner, G., Boucher, O., and Balkanski, Y.: Ice-free glacial northern Asia
due to dust deposition on snow, Clim. Dynam., 27, 613–625,
https://doi.org/10.1007/s00382-006-0159-z, 2006.
Liu, J., Wu, D., Liu, G., Mao, R., Chen, S., Ji, M., Fu, P., Sun, Y., Pan, X., Jin, H., Zhou, Y., Wang, X..: Impact of Arctic amplification on declining spring dust events in East Asia, Clim. Dynam., 54, 1913–1935, https://doi.org/10.1007/s00382-019-05094-4, 2020.
Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., Lamarque, J.-F., Gettelman, A., Morrison, H., Vitt, F., Conley, A., Park, S., Neale, R., Hannay, C., Ekman, A. M. L., Hess, P., Mahowald, N., Collins, W., Iacono, M. J., Bretherton, C. S., Flanner, M. G., and Mitchell, D.: Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5, Geosci. Model Dev., 5, 709–739, https://doi.org/10.5194/gmd-5-709-2012, 2012.
MacMartin, D. G., Wang, W., Kravitz, B., Tilmes, S., Richter, J. H., and Mills, M. J.: Timescale for detecting the climate response to stratospheric aerosol geoengineering, J. Geophys. Res.-Atmos., 124, 1233–1247, https://doi.org/10.1029/2018JD028906, 2019
Macnaghten, P. and Szerszynski, B.: Living the global social experiment: An analysis of public discourse on solar radiation management and its implications for governance, Global Environ. Change, 23, 465–474, https://doi.org/10.1016/j.gloenvcha.2012.12.008, 2013.
Mahowald, N., Kohfeld, K., Hansson, M., Balkanski, Y., Harrison, S. P.,
Printice, I. C., Schulz, M., and Rodhe, H.: Dust sources and deposition
during the last glacial maximum and current climate: A comparison of model
results with paleodata from ice cores and marine sediments, J. Geophys.
Res., 104, 15895–15916, https://doi.org/10.1029/1999JD900084, 1999.
Mahowald, N., Albani, S., Kok, J. F., Engelstaeder, S., Scanza, R., Ward, D.
S., and Flanner, M. G.: The size distribution of desert dust aerosols and
its impact on the Earth system, Aeolian Res., 15, 53–71,
https://doi.org/10.1016/j.aeolia.2013.09.002, 2014.
Mahowald, N. M. and Luo, C.: A less dusty future?, Geophys. Res. Lett., 30,
1903, https://doi.org/10.1029/2003GL017880, 2003.
Mahowald, N. M., Muhs, D. R., Levis, S., Rasch, P. J., Yoshioka, M., Zender,
C. S., and C. Luo: Change in atmospheric mineral aerosols in response to
climate: Last glacial period, preindustrial, modern, and doubled carbon
dioxide climates, J. Geophys. Res., 111, D10202, https://doi.org/10.1029/2005JD006653,
2006.
Mahowald, N. M., Kloster, S., Engelstaedter, S., Moore, J. K., Mukhopadhyay, S., McConnell, J. R., Albani, S., Doney, S. C., Bhattacharya, A., Curran, M. A. J., Flanner, M. G., Hoffman, F. M., Lawrence, D. M., Lindsay, K., Mayewski, P. A., Neff, J., Rothenberg, D., Thomas, E., Thornton, P. E., and Zender, C. S.: Observed 20th century desert dust variability: impact on climate and biogeochemistry, Atmos. Chem. Phys., 10, 10875–10893, https://doi.org/10.5194/acp-10-10875-2010, 2010.
Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque J.-F., Calvo N., and
Polvani L. M.: Climate change from 1850 to 2005 simulated in CESM1(WACCM),
J. Climate, 26, 7372–7391, https://doi.org/10.1175/JCLI-D-12-00558.1, 2013.
McClellan, J., Sisco, J., Suarez, B., and Keogh, G.: Geoengineering cost analysis. Final report, Aurora Flight Sciences Corporation, Cambridge, Massachusetts, 86 pp., UC01-001, AR10-182, 2010.
Middleton, N. J.: Desert dust hazards: A global review, Aeolian Res.,
24, 53–63, https://doi.org/10.1016/j.aeolia.2016.12.001, 2017.
Millar, R. J., Fuglestvedt, J. S., Friedlingstein, P., Rogelj, J., Grubb,
M. J., Matthews, H. D., Skeie, R. B., Forster, P. M., Frame, D. J., and Allen,
M. R.: Emission budgets and pathways consistent with limiting warming to 1.5 ∘C, Nat. Geosci., 10, 741–747, https://doi.org/10.1038/ngeo3031, 2017.
Miller, J. N. and Miller, J. C..: Statistics and Chemometrics for Analytical Chemistry, Sixth edition, Pearson, 297 pp., ISBN 978-0-273-73042-2, 2010.
Mills, M. J., Schmidt, A., Easter, R., Solomon, S., Kinnison, D. E., Ghan,
S. J., Neely, R. R., Marsh, D. R., Conley, A., Bardeen, Ch. G., and Gettelman,
A.: Global volcanic aerosol properties derived from emissions, 1990–2014,
using CESM1(WACCM), J. Geophys. Res. Atmos., 121, 2332–2348,
https://doi.org/10.1002/2015JD024290, 2016.
Mills, M. J., Richter, J. H., Tilmes, S., Kravitz, B., MacMartin, D. G.,
Glanville, A. A., Tribbia, J. J., Lamarque, J. F., Vitt, F., Schmidt, A.,
Gettelman, A., Hannay, C., Bacmeister, J. T., and Kinnison, D. E.: Radiative
and Chemical Response to Interactive Stratospheric Sulfate Aerosols in Fully
Coupled CESM1(WACCM), J. Geophys. Res.-Atmos., 122, 13061–13078,
https://doi.org/10.1002/2017JD027006, 2017.
Nicholson, S. E., Tucker, C. J., and Ba, M. B.: Desertification, drought, and surface vegetation: An example from the West African Sahel, B. Am. Meteorol. Soc., 79, 815–829, https://doi.org/10.1175/1520-0477(1998)079<0815:DDASVA>2.0.CO;2, 1998.
Nurse, P.: I hope we never need geoengineering, but we must research it. The
Guardian 08 September,
http://www.guardian.co.uk/environment/2011/sep/08/geoengineering-research-royal-society (last access: 9 February 2020), 2011.
Oleson, K., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Koven,
C. D., Levis, S., Li, F., Riley, J. P., Subin, M. Ch., Swenson, S. C.,
Thornton, E., Bozbiyik, A., Fisher, R. A., Heald, L., Kluzek, E., Lamarque,
J. F., Lawrence, J., Leung, R., Lipscomb, W. H., Muszala, P., Ricciuto, M.,
Sacks, J., Sun, Y., Tang, J., and Yang, Z. L.: Technical description of version
4.5 of the Community Land Model (CLM) (No. NCAR/TN-503+STR),
https://doi.org/10.5065/D6RR1W7M, 2013.
Orlovsky, L., Orlovsky, N., and Durdyev, A.: Dust storms in Turkmenistan, J. Arid Environ, 60, 83–97, https://doi.org/10.1016/j.jaridenv.2004.02.008, 2005.
Painter, T. H., Flanner, M. G., Kaser, G., Marzeion, B., VanCuren, R. A.,
and Abdalati, W.: End of the Little Ice Age in the Alps forced by
industrial black carbon, P. Natl. Acad. Sci. USA, 110, 15216–15221,
https://doi.org/10.1073/pnas.1302570110, 2013.
Pasztor, J. and Turner, M.: Optimism and prudence in geoengineering governance,
Carnegie Climate Geoengineering Governance Initiative,
https://www.c2g2.net/optimism-vs-prudence-geo-governance (last access: September 2023), 2018.
Prospero, J. M.: Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product, Rev. Geophys., 40, 1002, https://doi.org/10.1029/2000rg000095, 2002.
Rasch, P. J., Tilmes, S., Turco, R., Robock, A., Oman, L., Chen, C.-C., Stenchikov, G., and Garcia, R.: An overview of geoengineering of climate using stratospheric sulphate aerosols, Phil. Trans. R. Soc. A, 366, 4007–4037, https://doi.org/10.1098/rsta.2008.0131, 2008.
Raupach, M. R.: Simplified expressions for vegetation roughness length and
zero-plane displacement as functions of canopy height and area index,
Bound.-Lay. Meteorol., 71, 211–216, https://doi.org/10.1007/BF00709229, 1994.
Robock, A.: 20 reasons why geoengineering may be a bad idea, Bull.
At. Sci., 64, 14–18, https://doi.org/10.2968/064002006, 2008.
Rozenberg, J., Davis, S. J., Narloch, U., and Hallegatte, S.: Climate
constraints on the carbon intensity of economic growth, Environ. Res. Lett.,
10, 095006, https://doi.org/10.1088/1748-9326/10/9/095006, 2015.
Sagoo, N. and Storelvmo, T.: Testing the sensitivity of past climates to
the indirect effects of dust, Geophys. Res. Lett, 44, 5807–5817,
https://doi.org/10.1002/2017gl072584, 2017.
Sanderson, M.-B., O'Neill, B., and Tebaldi, B.: What would it take to achieve the Paris temperature targets?, Geophys. Res. Lett, 43, 7133–7142, https://doi.org/10.1002/2016GL069563, 2016.
Sarangi, C., Qian, Y., Rittger, K., Leung, L. R., Chand, D., Bormann, K. J., and Painter, T. H.: Dust dominates high-altitude snow darkening and melt over high-mountain Asia, Nat. Clim. Change, 10, 1045–1051, https://doi.org/10.1038/s41558-020-00909-3, 2020.
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B.,
Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil
moisture–climate interactions in a changing climate: A review,
Earth-Sci. Rev.,
99, 125–161, https://doi.org/10.1016/j.earscirev.2010.02.004,
2010.
Simpson, I. R., Tilmes, S., Richter, J. H., Kravitz, B., MacMartin, D. G., Mills, M. J., Fasullo, J. T., and Pendergrass, A. G.: The regional hydroclimate response to stratospheric sulfate geoengineering and the role of stratospheric heating, J. Geophys. Res.-Atmos., 124, 12587–12616, https://doi.org/10.1029/2019jd031093, 2019.
Sternberg, T. and Edwards, M.: Desert Dust and Health: A Central Asian
Review and Steppe Case Study, IJERPH, 14, 1342
https://doi.org/10.3390/ijerph14111342, 2017.
Tegen, I. and Fung, I.: Modeling of mineral dust in the atmosphere:
Sources, transport, and optical thickness, J. Geophys. Res.-Atmos., 99, 22897–22914, https://doi.org/10.1029/94JD01928, 1994.
Tegen, I., Harrison, S. P., Kohfeld, K., Prentice, I. C., Coe, M., and
Heimann, M.: Impact of vegetation and preferential source areas on global
dust aerosol: results from a model study, J. Geophys. Res., 107, 1–36,
4576, https://doi.org/10.1029/2001JD000963, 2002.
Tegen, I., Werner, M., Harrison, S. P., and Kohfeld, K. E.: Relative
importance of climate and land use in determining present and future global
soil dust emission, Geophys. Res. Lett., 31, L05105,
https://doi.org/10.1029/2003GL019216, 2004.
Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T., Boucher, O., Chin, M., Dentener, F., Diehl, T., Easter, R., Feichter, H., Fillmore, D., Ghan, S., Ginoux, P., Gong, S., Grini, A., Hendricks, J., Horowitz, L., Huang, P., Isaksen, I., Iversen, I., Kloster, S., Koch, D., Kirkevåg, A., Kristjansson, J. E., Krol, M., Lauer, A., Lamarque, J. F., Liu, X., Montanaro, V., Myhre, G., Penner, J., Pitari, G., Reddy, S., Seland, Ø., Stier, P., Takemura, T., and Tie, X.: Analysis and quantification of the diversities of aerosol life cycles within AeroCom, Atmos. Chem. Phys., 6, 1777–1813, https://doi.org/10.5194/acp-6-1777-2006, 2006.
Tilmes, S., Richter, J. H., Kravitz, B., MacMartin, D. G., Mills, M. J., Simpson, I. R., Glanville, A. S., Fasullo, J. T., Phillips, A. S., Lamarque, J.-F., Tribbia, J., Edwards, J., Mickelson, S., and Ghosh, S.: CESMI (WACCM) stratospheric aerosol geoengineering large ensemble project, B. Am. Meteorol. Soc., 99, 2361–2371, https://doi.org/10.1175/bams-d-17-0267.1, 2018.
Tilmes, S., Richter, J. H., Mills, M., Kravitz, B., and MacMartin, D. G.: Stratospheric Aerosol Geoengineering Large Ensemble Project – GLENS, UCAR [data set], https://www.cesm.ucar.edu/projects/community-projects/GLENS/ (last access: September 2023), 2023a.
Tilmes, S.,
Richter, J. H.,
Kravitz, B.,
MacMartin, D. G.,
Mills, M. J.,
Simpson, I. R.,
Glanville, A. S.,
Fasullo, J. T.,
Phillips, A. S.,
Lamarque, J.-F.,
Tribbia, J.,
Edwards, J.,
Mickelson, S., and
Ghosh, S.: Stratospheric Aerosol Geoengineering Large Ensemble project (GLENS), NCAR [data set], https://doi.org/10.5065/D6JH3JXX, 2023b.
Ueyama, M., Ichii, K., Kobayashi, H., Kumagai, T., Beringer, J., Merbold, L., Euskirchen, E. S., Hirano, T., Marchesini, L. B., Baldocchi, D., Saitoh, T. M., Mizoguchi, Y., Ono, K., Kim, J., Varlagin, A., Kang, M., Shimizu, T., Kosugi, Y., Bret-Harte, M. S., Machimura, T., Matsuura, Y., Ohta, T., Takagi, K., Takanashi, S., Yasuda, Y.: Inferring CO2 fertilization effect based on global monitoring land-atmosphere exchange with a theoretical model, Environ. Res. Lett., 15, 084009, https://doi.org/10.1088/1748-9326/ab79e5, 2020.
Vattioni, S., Weisenstein, D., Keith, D., Feinberg, A., Peter, T., and Stenke, A.: Exploring accumulation-mode H2SO4 versus SO2 stratospheric sulfate geoengineering in a sectional aerosol–chemistry–climate model, Atmos. Chem. Phys., 19, 4877–4897, https://doi.org/10.5194/acp-19-4877-2019, 2019.
Wang, F., Zhao, X., Gerlein-Safdi, C., Mu, Y., Wang, D., and Lu, Q.: Global sources, emissions, transport and deposition of dust and sand and their effects on the climate and environment: a review Front, Environ. Sci. Eng., 11, 13, https://doi.org/10.1007/s11783-017-0904-z, 2017
WMO and UNEP: Establishing a WMO sand and dust storm warning advisory and assessment system regional node for West Asia: current capabilities and needs, in: WMO Technical Report, 1121, 18 pp., https://doi.org/10.25607/OBP-1569, 2013.
Woodward, S., Roberts, D. L., and Betts, R. A.: A simulation of the effect of climate change-induced desertification on mineral dust aerosol, Geophys. Res. Lett., 32, 18, https://doi.org/10.1029/2005gl023482, 2005.
Wu, C., Lin, Z., and Liu, X.: The global dust cycle and uncertainty in CMIP5 (Coupled Model Intercomparison Project phase 5) models, Atmos. Chem. Phys., 20, 10401–10425, https://doi.org/10.5194/acp-20-10401-2020, 2020.
Yue, X., Wang, H., Liao, H., and Fan, K.: Simulation of dust aerosol
radiative feedback using the GMOD: 2, Dust-climate interactions, J. Geophys.
Res., 115, D04201, https://doi.org/10.1029/2009jd012063, 2010.
Žagar, N., Zaplotnik, Z., Karami, K.: Atmospheric Subseasonal Variability and Circulation Regimes: Spectra, Trends, and Uncertainties, J. Climate, 33, 9375–9390, https://doi.org/10.1175/JCLI-D-20-0225.1, 2020.
Zender, C. S., Bian, H., and Newman, D.: Mineral dust entrainment and
deposition (DEAD) model: Description and 1990s dust climatology, J. Geophys.
Res., 108, 4416, https://doi.org/10.1029/2002JD002775, 2003.
Short summary
Understanding atmospheric dust changes in the Middle East and North Africa (MENA) region under future climate scenarios is essential. By injecting sulfate aerosols into the stratosphere, stratospheric aerosol injection (SAI) geoengineering reflects some of the incoming sunlight back to space. This study shows that the MENA region would experience lower dust concentration under both SAI and RCP8.5 scenarios compared to the current climate (CTL) by the end of the century.
Understanding atmospheric dust changes in the Middle East and North Africa (MENA) region under...
Altmetrics
Final-revised paper
Preprint