Articles | Volume 22, issue 14
https://doi.org/10.5194/acp-22-9283-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-9283-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Volatility parameterization of ambient organic aerosols at a rural site of the North China Plain
Siman Ren
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention (LAP), Department of Environmental Science &
Engineering, Jiangwan Campus, Fudan University, Shanghai 200438, China
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention (LAP), Department of Environmental Science &
Engineering, Jiangwan Campus, Fudan University, Shanghai 200438, China
Yuwei Wang
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention (LAP), Department of Environmental Science &
Engineering, Jiangwan Campus, Fudan University, Shanghai 200438, China
Gan Yang
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention (LAP), Department of Environmental Science &
Engineering, Jiangwan Campus, Fudan University, Shanghai 200438, China
Yiliang Liu
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention (LAP), Department of Environmental Science &
Engineering, Jiangwan Campus, Fudan University, Shanghai 200438, China
Yueyang Li
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention (LAP), Department of Environmental Science &
Engineering, Jiangwan Campus, Fudan University, Shanghai 200438, China
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention (LAP), Department of Environmental Science &
Engineering, Jiangwan Campus, Fudan University, Shanghai 200438, China
Lihong Wang
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention (LAP), Department of Environmental Science &
Engineering, Jiangwan Campus, Fudan University, Shanghai 200438, China
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention (LAP), Department of Environmental Science &
Engineering, Jiangwan Campus, Fudan University, Shanghai 200438, China
Collaborative Innovation Center of Climate Change, Nanjing 210023,
China
Shanghai Institute of Pollution Control and Ecological Security,
Shanghai 200092, China
IRDR International Center of Excellence on Risk Interconnectivity
and Governance on Weather/ Climate Extremes Impact and Public Health, Fudan
University, Shanghai 200438, China
National Observations and Research Station for Wetland Ecosystems of
the Yangtze Estuary, Shanghai, China
Related authors
No articles found.
Ying Zhang, Yuwei Wang, Chuang Li, Yueyang Li, Sijia Yin, Megan S. Claflin, Brian M. Lerner, Douglas Worsnop, and Lin Wang
Atmos. Meas. Tech., 18, 3547–3568, https://doi.org/10.5194/amt-18-3547-2025, https://doi.org/10.5194/amt-18-3547-2025, 2025
Short summary
Short summary
This study provides insight into how individual ions measured by proton-transfer-reaction (PTR) mass spectrometry are produced by multiple volatile organic compounds (VOCs). A reference table is provided for attributing the PTR signal to contributing VOC species. The signals are grouped according to the complexity of their potential identities. We find that a number of signal ions such as C6H7+ for benzene and C5H9+ for isoprene merely give an upper limit of their corresponding concentrations.
Jiaqi Jin, Runlong Cai, Yiliang Liu, Gan Yang, Yueyang Li, Chuang Li, Lei Yao, Jingkun Jiang, Xiuhui Zhang, and Lin Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2787, https://doi.org/10.5194/egusphere-2025-2787, 2025
Short summary
Short summary
Based on observed atmospheric new particle formation events at multiple sites in eastern China, we find that the dominant nucleation mechanism in this region is sulfuric acid-dimethylamine and the differences in the nucleation intensity among campaigns can be largely attributed to temperature and precursor concentrations. Our results also show that oxygenated organic molecules can make a great contribution to the initial growth of freshly nucleated particles in the real atmosphere.
Chuang Li, Lei Yao, Yuwei Wang, Mingliang Fang, Xiaojia Chen, Lihong Wang, Yueyang Li, Gan Yang, and Lin Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-607, https://doi.org/10.5194/egusphere-2025-607, 2025
Short summary
Short summary
Our laboratory experiments revealed that abundant Cl-OOMs were formed from the reactions between Cl atoms and aromatics, and Cl-addition was identified as a non-negligible pathway for the formation of Cl-OOMs. Furthermore, many ambient Cl-OOMs potentially derived from Cl atoms and aromatics were measured in suburban Shanghai and most of them have adverse health effects. These findings provide critical insights into the formation mechanisms of Cl-OOMs in polluted settings.
Yuwei Wang, Chuang Li, Ying Zhang, Yueyang Li, Gan Yang, Xueyan Yang, Yizhen Wu, Lei Yao, Hefeng Zhang, and Lin Wang
Atmos. Chem. Phys., 24, 7961–7981, https://doi.org/10.5194/acp-24-7961-2024, https://doi.org/10.5194/acp-24-7961-2024, 2024
Short summary
Short summary
The formation and evolution mechanisms of aromatics-derived highly oxygenated organic molecules (HOMs) are essential to understand the formation of secondary organic aerosol pollution. Our conclusion highlights an underappreciated formation pathway of aromatics-derived HOMs and elucidates detailed formation mechanisms of certain HOMs, which advances our understanding of HOMs and potentially explains the existing gap between model prediction and ambient measurement of the HOMs' concentrations.
Qianqian Gao, Shengqiang Zhu, Kaili Zhou, Jinghao Zhai, Shaodong Chen, Qihuang Wang, Shurong Wang, Jin Han, Xiaohui Lu, Hong Chen, Liwu Zhang, Lin Wang, Zimeng Wang, Xin Yang, Qi Ying, Hongliang Zhang, Jianmin Chen, and Xiaofei Wang
Atmos. Chem. Phys., 23, 13049–13060, https://doi.org/10.5194/acp-23-13049-2023, https://doi.org/10.5194/acp-23-13049-2023, 2023
Short summary
Short summary
Dust is a major source of atmospheric aerosols. Its chemical composition is often assumed to be similar to the parent soil. However, this assumption has not been rigorously verified. Dust aerosols are mainly generated by wind erosion, which may have some chemical selectivity. Mn, Cd and Pb were found to be highly enriched in fine-dust (PM2.5) aerosols. In addition, estimation of heavy metal emissions from dust generation by air quality models may have errors without using proper dust profiles.
Yizhen Wu, Juntao Huo, Gan Yang, Yuwei Wang, Lihong Wang, Shijian Wu, Lei Yao, Qingyan Fu, and Lin Wang
Atmos. Chem. Phys., 23, 2997–3014, https://doi.org/10.5194/acp-23-2997-2023, https://doi.org/10.5194/acp-23-2997-2023, 2023
Short summary
Short summary
Based on a field campaign in a suburban area of Shanghai during summer 2021, we calculated formaldehyde (HCHO) production rates from 24 volatile organic compounds (VOCs). In addition, HCHO photolysis, reactions with OH radicals, and dry deposition were considered for the estimation of HCHO loss rates. Our results reveal the key precursors of HCHO and suggest that HCHO wet deposition may be an important loss term on cloudy and rainy days, which needs to be further investigated.
Chao Yan, Yicheng Shen, Dominik Stolzenburg, Lubna Dada, Ximeng Qi, Simo Hakala, Anu-Maija Sundström, Yishuo Guo, Antti Lipponen, Tom V. Kokkonen, Jenni Kontkanen, Runlong Cai, Jing Cai, Tommy Chan, Liangduo Chen, Biwu Chu, Chenjuan Deng, Wei Du, Xiaolong Fan, Xu-Cheng He, Juha Kangasluoma, Joni Kujansuu, Mona Kurppa, Chang Li, Yiran Li, Zhuohui Lin, Yiliang Liu, Yuliang Liu, Yiqun Lu, Wei Nie, Jouni Pulliainen, Xiaohui Qiao, Yonghong Wang, Yifan Wen, Ye Wu, Gan Yang, Lei Yao, Rujing Yin, Gen Zhang, Shaojun Zhang, Feixue Zheng, Ying Zhou, Antti Arola, Johanna Tamminen, Pauli Paasonen, Yele Sun, Lin Wang, Neil M. Donahue, Yongchun Liu, Federico Bianchi, Kaspar R. Daellenbach, Douglas R. Worsnop, Veli-Matti Kerminen, Tuukka Petäjä, Aijun Ding, Jingkun Jiang, and Markku Kulmala
Atmos. Chem. Phys., 22, 12207–12220, https://doi.org/10.5194/acp-22-12207-2022, https://doi.org/10.5194/acp-22-12207-2022, 2022
Short summary
Short summary
Atmospheric new particle formation (NPF) is a dominant source of atmospheric ultrafine particles. In urban environments, traffic emissions are a major source of primary pollutants, but their contribution to NPF remains under debate. During the COVID-19 lockdown, traffic emissions were significantly reduced, providing a unique chance to examine their relevance to NPF. Based on our comprehensive measurements, we demonstrate that traffic emissions alone are not able to explain the NPF in Beijing.
Yishuo Guo, Chao Yan, Yuliang Liu, Xiaohui Qiao, Feixue Zheng, Ying Zhang, Ying Zhou, Chang Li, Xiaolong Fan, Zhuohui Lin, Zemin Feng, Yusheng Zhang, Penggang Zheng, Linhui Tian, Wei Nie, Zhe Wang, Dandan Huang, Kaspar R. Daellenbach, Lei Yao, Lubna Dada, Federico Bianchi, Jingkun Jiang, Yongchun Liu, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 10077–10097, https://doi.org/10.5194/acp-22-10077-2022, https://doi.org/10.5194/acp-22-10077-2022, 2022
Short summary
Short summary
Gaseous oxygenated organic molecules (OOMs) are able to form atmospheric aerosols, which will impact on human health and climate change. Here, we find that OOMs in urban Beijing are dominated by anthropogenic sources, i.e. aromatic (29 %–41 %) and aliphatic (26 %–41 %) OOMs. They are also the main contributors to the condensational growth of secondary organic aerosols (SOAs). Therefore, the restriction on anthropogenic VOCs is crucial for the reduction of SOAs and haze formation.
Jing Cai, Cheng Wu, Jiandong Wang, Wei Du, Feixue Zheng, Simo Hakala, Xiaolong Fan, Biwu Chu, Lei Yao, Zemin Feng, Yongchun Liu, Yele Sun, Jun Zheng, Chao Yan, Federico Bianchi, Markku Kulmala, Claudia Mohr, and Kaspar R. Daellenbach
Atmos. Chem. Phys., 22, 1251–1269, https://doi.org/10.5194/acp-22-1251-2022, https://doi.org/10.5194/acp-22-1251-2022, 2022
Short summary
Short summary
This study investigates the connection between organic aerosol (OA) molecular composition and particle absorptive properties in autumn in Beijing. We find that the molecular properties of OA compounds in different episodes influence particle light absorption properties differently: the light absorption enhancement of black carbon and light absorption coefficient of brown carbon were mostly related to more oxygenated OA (low C number and four O atoms) and aromatics/nitro-aromatics, respectively.
Zhuohui Lin, Yonghong Wang, Feixue Zheng, Ying Zhou, Yishuo Guo, Zemin Feng, Chang Li, Yusheng Zhang, Simo Hakala, Tommy Chan, Chao Yan, Kaspar R. Daellenbach, Biwu Chu, Lubna Dada, Juha Kangasluoma, Lei Yao, Xiaolong Fan, Wei Du, Jing Cai, Runlong Cai, Tom V. Kokkonen, Putian Zhou, Lili Wang, Tuukka Petäjä, Federico Bianchi, Veli-Matti Kerminen, Yongchun Liu, and Markku Kulmala
Atmos. Chem. Phys., 21, 12173–12187, https://doi.org/10.5194/acp-21-12173-2021, https://doi.org/10.5194/acp-21-12173-2021, 2021
Short summary
Short summary
We find that ammonium nitrate and aerosol water content contributed most during low mixing layer height conditions; this may further trigger enhanced formation of sulfate and organic aerosol via heterogeneous reactions. The results of this study contribute towards a more detailed understanding of the aerosol–chemistry–radiation–boundary layer feedback that is likely to be responsible for explosive aerosol mass growth events in urban Beijing.
Xiaolong Fan, Jing Cai, Chao Yan, Jian Zhao, Yishuo Guo, Chang Li, Kaspar R. Dällenbach, Feixue Zheng, Zhuohui Lin, Biwu Chu, Yonghong Wang, Lubna Dada, Qiaozhi Zha, Wei Du, Jenni Kontkanen, Theo Kurtén, Siddhart Iyer, Joni T. Kujansuu, Tuukka Petäjä, Douglas R. Worsnop, Veli-Matti Kerminen, Yongchun Liu, Federico Bianchi, Yee Jun Tham, Lei Yao, and Markku Kulmala
Atmos. Chem. Phys., 21, 11437–11452, https://doi.org/10.5194/acp-21-11437-2021, https://doi.org/10.5194/acp-21-11437-2021, 2021
Short summary
Short summary
We observed significant concentrations of gaseous HBr and HCl throughout the winter and springtime in urban Beijing, China. Our results indicate that gaseous HCl and HBr are most likely originated from anthropogenic emissions such as burning activities, and the gas–aerosol partitioning may play a crucial role in contributing to the gaseous HCl and HBr. These observations suggest that there is an important recycling pathway of halogen species in inland megacities.
Yishuo Guo, Chao Yan, Chang Li, Wei Ma, Zemin Feng, Ying Zhou, Zhuohui Lin, Lubna Dada, Dominik Stolzenburg, Rujing Yin, Jenni Kontkanen, Kaspar R. Daellenbach, Juha Kangasluoma, Lei Yao, Biwu Chu, Yonghong Wang, Runlong Cai, Federico Bianchi, Yongchun Liu, and Markku Kulmala
Atmos. Chem. Phys., 21, 5499–5511, https://doi.org/10.5194/acp-21-5499-2021, https://doi.org/10.5194/acp-21-5499-2021, 2021
Short summary
Short summary
Fog, cloud and haze are very common natural phenomena. Sulfuric acid (SA) is one of the key compounds forming those suspended particles, technically called aerosols, through gas-to-particle conversion. Therefore, the concentration level, source and sink of SA is very important. Our results show that ozonolysis of alkenes plays a major role in nighttime SA formation under unpolluted conditions in urban Beijing, and nighttime cluster mode particles are probably driven by SA in urban environments.
Runlong Cai, Chao Yan, Dongsen Yang, Rujing Yin, Yiqun Lu, Chenjuan Deng, Yueyun Fu, Jiaxin Ruan, Xiaoxiao Li, Jenni Kontkanen, Qiang Zhang, Juha Kangasluoma, Yan Ma, Jiming Hao, Douglas R. Worsnop, Federico Bianchi, Pauli Paasonen, Veli-Matti Kerminen, Yongchun Liu, Lin Wang, Jun Zheng, Markku Kulmala, and Jingkun Jiang
Atmos. Chem. Phys., 21, 2457–2468, https://doi.org/10.5194/acp-21-2457-2021, https://doi.org/10.5194/acp-21-2457-2021, 2021
Short summary
Short summary
Based on long-term measurements, we discovered that the collision of H2SO4–amine clusters is the governing mechanism that initializes fast new particle formation in the polluted atmospheric environment of urban Beijing. The mechanism and the governing factors for H2SO4–amine nucleation in the polluted atmosphere are quantitatively investigated in this study.
Runlong Cai, Chenxi Li, Xu-Cheng He, Chenjuan Deng, Yiqun Lu, Rujing Yin, Chao Yan, Lin Wang, Jingkun Jiang, Markku Kulmala, and Juha Kangasluoma
Atmos. Chem. Phys., 21, 2287–2304, https://doi.org/10.5194/acp-21-2287-2021, https://doi.org/10.5194/acp-21-2287-2021, 2021
Short summary
Short summary
Growth rate determines the survival probability of atmospheric new particles and hence their impacts. We clarify the impacts of coagulation on the values retrieved by the appearance time method, which is widely used for growth rate evaluation. A new formula with coagulation correction is proposed based on derivation and tested using both models and atmospheric data. We show that the sub-3 nm particle growth rate in polluted environments may be overestimated without the coagulation correction.
Jing Cai, Biwu Chu, Lei Yao, Chao Yan, Liine M. Heikkinen, Feixue Zheng, Chang Li, Xiaolong Fan, Shaojun Zhang, Daoyuan Yang, Yonghong Wang, Tom V. Kokkonen, Tommy Chan, Ying Zhou, Lubna Dada, Yongchun Liu, Hong He, Pauli Paasonen, Joni T. Kujansuu, Tuukka Petäjä, Claudia Mohr, Juha Kangasluoma, Federico Bianchi, Yele Sun, Philip L. Croteau, Douglas R. Worsnop, Veli-Matti Kerminen, Wei Du, Markku Kulmala, and Kaspar R. Daellenbach
Atmos. Chem. Phys., 20, 12721–12740, https://doi.org/10.5194/acp-20-12721-2020, https://doi.org/10.5194/acp-20-12721-2020, 2020
Short summary
Short summary
By applying both OA PMF and size PMF at the same urban measurement site in Beijing, similar particle source types, including vehicular emissions, cooking emissions and secondary formation-related sources, were resolved by both frameworks and agreed well. It is also found that in the absence of new particle formation, vehicular and cooking emissions dominate the particle number concentration, while secondary particulate matter governed PM2.5 mass during spring and summer in Beijing.
Lubna Dada, Ilona Ylivinkka, Rima Baalbaki, Chang Li, Yishuo Guo, Chao Yan, Lei Yao, Nina Sarnela, Tuija Jokinen, Kaspar R. Daellenbach, Rujing Yin, Chenjuan Deng, Biwu Chu, Tuomo Nieminen, Yonghong Wang, Zhuohui Lin, Roseline C. Thakur, Jenni Kontkanen, Dominik Stolzenburg, Mikko Sipilä, Tareq Hussein, Pauli Paasonen, Federico Bianchi, Imre Salma, Tamás Weidinger, Michael Pikridas, Jean Sciare, Jingkun Jiang, Yongchun Liu, Tuukka Petäjä, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 20, 11747–11766, https://doi.org/10.5194/acp-20-11747-2020, https://doi.org/10.5194/acp-20-11747-2020, 2020
Short summary
Short summary
We rely on sulfuric acid measurements in four contrasting environments, Hyytiälä, Finland; Agia Marina, Cyprus; Budapest, Hungary; and Beijing, China, representing semi-pristine boreal forest, rural environment in the Mediterranean area, urban environment, and heavily polluted megacity, respectively, in order to define the sources and sinks of sulfuric acid in these environments and to derive a new sulfuric acid proxy to be utilized in locations and during periods when it is not measured.
Tommy Chan, Runlong Cai, Lauri R. Ahonen, Yiliang Liu, Ying Zhou, Joonas Vanhanen, Lubna Dada, Yan Chao, Yongchun Liu, Lin Wang, Markku Kulmala, and Juha Kangasluoma
Atmos. Meas. Tech., 13, 4885–4898, https://doi.org/10.5194/amt-13-4885-2020, https://doi.org/10.5194/amt-13-4885-2020, 2020
Short summary
Short summary
Using a particle size magnifier (PSM; Airmodus, Finland), we determined the particle size distribution using four inversion methods and compared each method to the others to establish their strengths and weaknesses. Furthermore, we provided a step-by-step procedure on how to invert measured data using the PSM. Finally, we provided recommendations, code and data related to the data inversion. This is an important paper, as no operating procedure exists regarding how to process measured PSM data.
Cited articles
Bannan, T. J., Le Breton, M., Priestley, M., Worrall, S. D., Bacak, A., Marsden, N. A., Mehra, A., Hammes, J., Hallquist, M., Alfarra, M. R., Krieger, U. K., Reid, J. P., Jayne, J., Robinson, W., McFiggans, G., Coe, H., Percival, C. J., and Topping, D.: A method for extracting calibrated volatility information from the FIGAERO-HR-ToF-CIMS and its experimental application, Atmos. Meas. Tech., 12, 1429–1439, https://doi.org/10.5194/amt-12-1429-2019, 2019.
Bertram, T. H., Kimmel, J. R., Crisp, T. A., Ryder, O. S., Yatavelli, R. L. N., Thornton, J. A., Cubison, M. J., Gonin, M., and Worsnop, D. R.: A field-deployable, chemical ionization time-of-flight mass spectrometer, Atmos. Meas. Tech., 4, 1471–1479, https://doi.org/10.5194/amt-4-1471-2011, 2011.
Capouet, M. and Müller, J.-F.: A group contribution method for estimating the vapour pressures of α-pinene oxidation products, Atmos. Chem. Phys., 6, 1455–1467, https://doi.org/10.5194/acp-6-1455-2006, 2006.
Chow, J. C., Watson, J. G., Lowenthal, D. H., Chen, L. W. A., Zielinska, B., Mazzoleni, L. R., and Magliano, K. L.: Evaluation of organic markers for chemical mass balance source apportionment at the Fresno Supersite, Atmos. Chem. Phys., 7, 1741–1754, https://doi.org/10.5194/acp-7-1741-2007, 2007.
Donahue, N. M., Robinson, A. L., and Pandis, S. N.: Atmospheric organic
particulate matter: From smoke to secondary organic aerosol, Atmos.
Environ., 43, 94–106, https://doi.org/10.1016/j.atmosenv.2008.09.055, 2009.
Donahue, N. M., Epstein, S. A., Pandis, S. N., and Robinson, A. L.: A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics, Atmos. Chem. Phys., 11, 3303–3318, https://doi.org/10.5194/acp-11-3303-2011, 2011.
Drisdell, W. S., Saykally, R. J., and Cohen, R. C.: On the evaporation of
ammonium sulfate solution, P. Natl. Acad. Sci. USA, 106,
18897–18901, https://doi.org/10.1073/pnas.0907988106, 2009.
Eichler, P., Müller, M., D'Anna, B., and Wisthaler, A.: A novel inlet system for online chemical analysis of semi-volatile submicron particulate matter, Atmos. Meas. Tech., 8, 1353–1360, https://doi.org/10.5194/amt-8-1353-2015, 2015.
Faulhaber, A. E., Thomas, B. M., Jimenez, J. L., Jayne, J. T., Worsnop, D. R., and Ziemann, P. J.: Characterization of a thermodenuder-particle beam mass spectrometer system for the study of organic aerosol volatility and composition, Atmos. Meas. Tech., 2, 15–31, https://doi.org/10.5194/amt-2-15-2009, 2009.
Gaston, C. J., Lopez-Hilfiker, F. D., Whybrew, L. E., Hadley, O., McNair,
F., Gao, H., Jaffe, D. A., and Thornton, J. A.: Online molecular
characterization of fine particulate matter in Port Angeles, WA: Evidence
for a major impact from residential wood smoke, Atmos. Environ., 138,
99–107, https://doi.org/10.1016/j.atmosenv.2016.05.013, 2016.
Goodman, K. J. and Brenna, J. T.: Curve Fitting for Restoration of Accuracy
for Overlapping Peaks in Gas Chromatography/Combustion Isotope Ratio Mass
Spectrometry, Anal. Chem., 66, 1294–1301, https://doi.org/10.1021/ac00080a015, 1994.
Hu, X., Yang, G., Liu, Y., Lu, Y., Wang, Y., Chen, H., Chen, J., and Wang,
L.: Atmospheric gaseous organic acids in winter in a rural site of the North
China Plain, J. Environ. Sci., 113, 190–203,
https://doi.org/10.1016/j.jes.2021.05.035, 2022.
Huang, W., Saathoff, H., Pajunoja, A., Shen, X., Naumann, K.-H., Wagner, R., Virtanen, A., Leisner, T., and Mohr, C.: α-Pinene secondary organic aerosol at low temperature: chemical composition and implications for particle viscosity, Atmos. Chem. Phys., 18, 2883–2898, https://doi.org/10.5194/acp-18-2883-2018, 2018.
Huang, W., Saathoff, H., Shen, X., Ramisetty, R., Leisner, T., and Mohr, C.: Seasonal characteristics of organic aerosol chemical composition and volatility in Stuttgart, Germany, Atmos. Chem. Phys., 19, 11687–11700, https://doi.org/10.5194/acp-19-11687-2019, 2019.
Isaacman-VanWertz, G. and Aumont, B.: Impact of organic molecular structure on the estimation of atmospherically relevant physicochemical parameters, Atmos. Chem. Phys., 21, 6541–6563, https://doi.org/10.5194/acp-21-6541-2021, 2021.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang,
Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken,
A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,
Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y.
L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,
Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P.
I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer,
S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A.,
Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina,
K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A.
M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E.,
Baltensperger, U., and Worsnop, D. R.: Evolution of organic aerosols in the
atmosphere, Science, 326, 1525–1529,
https://doi.org/10.1126/science.1180353, 2009.
Lee, B. H., Lopez-Hilfiker, F. D., Mohr, C., Kurtén, T., Worsnop, D. R., and Thornton, J. A.: An iodide-adduct high-resolution time-of-flight
chemical-ionization mass spectrometer: Application to atmospheric inorganic
and organic compounds, Environ. Sci. Technol., 48, 6309–6317,
https://doi.org/10.1021/es500362a, 2014.
Li, H., Zhang, Q., Zhang, Q., Chen, C., Wang, L., Wei, Z., Zhou, S., Parworth, C., Zheng, B., Canonaco, F., Prévôt, A. S. H., Chen, P., Zhang, H., Wallington, T. J., and He, K.: Wintertime aerosol chemistry and haze evolution in an extremely polluted city of the North China Plain: significant contribution from coal and biomass combustion, Atmos. Chem. Phys., 17, 4751–4768, https://doi.org/10.5194/acp-17-4751-2017, 2017.
Li, Y., Pöschl, U., and Shiraiwa, M.: Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols, Atmos. Chem. Phys., 16, 3327–3344, https://doi.org/10.5194/acp-16-3327-2016, 2016.
Lopez-Hilfiker, F. D., Mohr, C., Ehn, M., Rubach, F., Kleist, E., Wildt, J., Mentel, Th. F., Lutz, A., Hallquist, M., Worsnop, D., and Thornton, J. A.: A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO), Atmos. Meas. Tech., 7, 983–1001, https://doi.org/10.5194/amt-7-983-2014, 2014.
Lopez-Hilfiker, F. D., Mohr, C., Ehn, M., Rubach, F., Kleist, E., Wildt, J., Mentel, Th. F., Carrasquillo, A. J., Daumit, K. E., Hunter, J. F., Kroll, J. H., Worsnop, D. R., and Thornton, J. A.: Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds, Atmos. Chem. Phys., 15, 7765–7776, https://doi.org/10.5194/acp-15-7765-2015, 2015.
Lopez-Hilfiker, F. D., Mohr, C., D'Ambro, E. L., Lutz, A., Riedel, T. P.,
Gaston, C. J., Iyer, S., Zhang, Z., Gold, A., Surratt, J. D., Lee, B. H.,
Kurten, T., Hu, W. W., Jimenez, J., Hallquist, M., and Thornton, J. A.:
Molecular Composition and Volatility of Organic Aerosol in the Southeastern
U.S.: Implications for IEPOX Derived SOA, Environ. Sci. Technol., 50,
2200–2209, https://doi.org/10.1021/acs.est.5b04769, 2016.
Mazzoleni, L. R., Ehrmann, B. M., Shen, X., Marshall, A. G., and Collett, J.
L.: Water-Soluble Atmospheric Organic Matter in Fog: Exact Masses and
Chemical Formula Identification by Ultrahigh-Resolution Fourier Transform
Ion Cyclotron Resonance Mass Spectrometry, Environ. Sci. Technol., 44,
3690–3697, https://doi.org/10.1021/es903409k, 2010.
Mohr, C., Thornton, J. A., Heitto, A., Lopez-Hilfiker, F. D., Lutz, A.,
Riipinen, I., Hong, J., Donahue, N. M., Hallquist, M., Petäjä, T.,
Kulmala, M., and Yli-Juuti, T.: Molecular identification of organic vapors
driving atmospheric nanoparticle growth, Nat. Commun., 10, 1–7,
https://doi.org/10.1038/s41467-019-12473-2, 2019.
Nah, T., Xu, L., Osborne-Benthaus, K. A., White, S. M., France, S., and Ng,
N. L.: Mixing order of sulfate aerosols and isoprene epoxydiols affects
secondary organic aerosol formation in chamber experiments, Atmos. Environ.,
217, 116953, https://doi.org/10.1016/j.atmosenv.2019.116953, 2019.
Pankow, J. F. and Asher, W. E.: SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds, Atmos. Chem. Phys., 8, 2773–2796, https://doi.org/10.5194/acp-8-2773-2008, 2008.
Pei, B., Cui, H., Liu, H., and Yan, N.: Chemical characteristics of fine
particulate matter emitted from commercial cooking, Front. Environ. Sci.
Eng., 10, 559–568, https://doi.org/10.1007/s11783-016-0829-y, 2016.
Pöschl, U.: Atmospheric aerosols: Composition, transformation, climate and health effects, Angew. Chemie – Int. Ed., 44, 7520–7540, https://doi.org/10.1002/anie.200501122, 2005.
Riva, M., Heikkinen, L., Bell, D. M., Peräkylä, O., Zha, Q.,
Schallhart, S., Rissanen, M. P., Imre, D., Petäjä, T., Thornton, J.
A., Zelenyuk, A., and Ehn, M.: Chemical transformations in
monoterpene-derived organic aerosol enhanced by inorganic composition, npj
Clim. Atmos. Sci., 2, 1–9, https://doi.org/10.1038/s41612-018-0058-0, 2019.
Shiraiwa, M. and Seinfeld, J. H.: Equilibration timescale of atmospheric
secondary organic aerosol partitioning, Geophys. Res. Lett., 39,
2012GL054008, https://doi.org/10.1029/2012GL054008, 2012.
Smith, J. N., Moore, K. F., McMurry, P. H., and Eisele, F. L.: Atmospheric
Measurements of Sub-20 nm Diameter Particle Chemical Composition by Thermal
Desorption Chemical Ionization Mass Spectrometry, Aerosol Sci. Tech.,
38, 100–110, https://doi.org/10.1080/02786820490249036, 2004.
Stark, H., Yatavelli, R. L. N., Thompson, S. L., Kang, H., Krechmer, J. E.,
Kimmel, J. R., Palm, B. B., Hu, W., Hayes, P. L., Day, D. A.,
Campuzano-Jost, P., Canagaratna, M. R., Jayne, J. T., Worsnop, D. R., and
Jimenez, J. L.: Impact of Thermal Decomposition on Thermal Desorption
Instruments: Advantage of Thermogram Analysis for Quantifying Volatility
Distributions of Organic Species, Environ. Sci. Technol., 51,
8491–8500, https://doi.org/10.1021/acs.est.7b00160, 2017.
Stolzenburg, D., Fischer, L., Vogel, A. L., Heinritzi, M., Schervish, M.,
Simon, M., Wagner, A. C., Dada, L., Ahonen, L. R., Amorim, A., Baccarini,
A., Bauer, P. S., Baumgartner, B., Bergen, A., Bianchi, F., Breitenlechner,
M., Brilke, S., Mazon, S. B., Chen, D., Dias, A., Draper, D. C., Duplissy,
J., Haddad, I. El, Finkenzeller, H., Frege, C., Fuchs, C., Garmash, O.,
Gordon, H., He, X., Helm, J., Hofbauer, V., Hoyle, C. R., Kim, C., Kirkby,
J., Kontkanen, J., Kürten, A., Lampilahti, J., Lawler, M., Lehtipalo,
K., Leiminger, M., Mai, H., Mathot, S., Mentler, B., Molteni, U., Nie, W.,
Nieminen, T., Nowak, J. B., Ojdanic, A., Onnela, A., Passananti, M.,
Petäjä, T., Quéléver, L. L. J., Rissanen, M. P., Sarnela,
N., Schallhart, S., Tauber, C., Tomé, A., Wagner, R., Wang, M., Weitz,
L., Wimmer, D., Xiao, M., Yan, C., Ye, P., Zha, Q., Baltensperger, U.,
Curtius, J., Dommen, J., Flagan, R. C., Kulmala, M., Smith, J. N., Worsnop,
D. R., Hansel, A., Donahue, N. M., and Winkler, P. M.: Rapid growth of
organic aerosol nanoparticles over a wide tropospheric temperature range,
P. Natl. Acad. Sci. USA, 115, 9122–9127,
https://doi.org/10.1073/pnas.1807604115, 2018.
Thornton, J. A., Mohr, C., Schobesberger, S., D'Ambro, E. L., Lee, B. H., and
Lopez-Hilfiker, F. D.: Evaluating Organic Aerosol Sources and Evolution with
a Combined Molecular Composition and Volatility Framework Using the Filter
Inlet for Gases and Aerosols (FIGAERO), Acc. Chem. Res., 53, 1415–1426,
https://doi.org/10.1021/acs.accounts.0c00259, 2020.
Tröstl, J., Chuang, W. K., Gordon, H., Heinritzi, M., Yan, C., Molteni,
U., Ahlm, L., Frege, C., Bianchi, F., Wagner, R., Simon, M., Lehtipalo, K.,
Williamson, C., Craven, J. S., Duplissy, J., Adamov, A., Almeida, J.,
Bernhammer, A. K., Breitenlechner, M., Brilke, S., Dias, A., Ehrhart, S.,
Flagan, R. C., Franchin, A., Fuchs, C., Guida, R., Gysel, M., Hansel, A.,
Hoyle, C. R., Jokinen, T., Junninen, H., Kangasluoma, J., Keskinen, H., Kim,
J., Krapf, M., Kürten, A., Laaksonen, A., Lawler, M., Leiminger, M.,
Mathot, S., Möhler, O., Nieminen, T., Onnela, A., Petäjä, T.,
Piel, F. M., Miettinen, P., Rissanen, M. P., Rondo, L., Sarnela, N.,
Schobesberger, S., Sengupta, K., Sipilä, M., Smith, J. N., Steiner, G.,
Tomè, A., Virtanen, A., Wagner, A. C., Weingartner, E., Wimmer, D.,
Winkler, P. M., Ye, P., Carslaw, K. S., Curtius, J., Dommen, J., Kirkby, J.,
Kulmala, M., Riipinen, I., Worsnop, D. R., Donahue, N. M., and Baltensperger,
U.: The role of low-volatility organic compounds in initial particle growth
in the atmosphere, Nature, 533, 527–531, https://doi.org/10.1038/nature18271,
2016.
Wang, D. S. and Hildebrandt Ruiz, L.: Chlorine-initiated oxidation of n-alkanes under high-NOx conditions: insights into secondary organic aerosol composition and volatility using a FIGAERO–CIMS, Atmos. Chem. Phys., 18, 15535–15553, https://doi.org/10.5194/acp-18-15535-2018, 2018.
Wang, M., Yao, L., Zheng, J., Wang, X., Chen, J., Yang, X., Worsnop, D. R.,
Donahue, N. M., and Wang, L.: Reactions of Atmospheric Particulate Stabilized
Criegee Intermediates Lead to High-Molecular-Weight Aerosol Components,
Environ. Sci. Technol., 50, 5702–5710, https://doi.org/10.1021/acs.est.6b02114,
2016.
Wang, M., Chen, D., Xiao, M., Ye, Q., Stolzenburg, D., Hofbauer, V., Ye, P.,
Vogel, A. L., Mauldin, R. L., Amorim, A., Baccarini, A., Baumgartner, B.,
Brilke, S., Dada, L., Dias, A., Duplissy, J., Finkenzeller, H., Garmash, O.,
He, X. C., Hoyle, C. R., Kim, C., Kvashnin, A., Lehtipalo, K., Fischer, L.,
Molteni, U., Petäjä, T., Pospisilova, V., Quéléver, L. L.
J., Rissanen, M., Simon, M., Tauber, C., Tomé, A., Wagner, A. C., Weitz,
L., Volkamer, R., Winkler, P. M., Kirkby, J., Worsnop, D. R., Kulmala, M.,
Baltensperger, U., Dommen, J., El-Haddad, I., and Donahue, N. M.:
Photo-oxidation of Aromatic Hydrocarbons Produces Low-Volatility Organic
Compounds, Environ. Sci. Technol., 54, 7911–7921,
https://doi.org/10.1021/acs.est.0c02100, 2020.
Wang, Y., Yang, G., Lu, Y., Liu, Y., Chen, J., and Wang, L.: Detection of
gaseous dimethylamine using vocus proton-transfer-reaction time-of-flight
mass spectrometry, Atmos. Environ., 243, 117875,
https://doi.org/10.1016/j.atmosenv.2020.117875, 2020.
Xu, W., Chen, C., Qiu, Y., Li, Y., Zhang, Z., Karnezi, E., Pandis, S. N., Xie, C., Li, Z., Sun, J., Ma, N., Xu, W., Fu, P., Wang, Z., Zhu, J., Worsnop, D. R., Ng, N. L., and Sun, Y.: Organic aerosol volatility and viscosity in the North China Plain: contrast between summer and winter, Atmos. Chem. Phys., 21, 5463–5476, https://doi.org/10.5194/acp-21-5463-2021, 2021.
Yang, L. H., Takeuchi, M., Chen, Y., and Ng, N. L.: Characterization of
thermal decomposition of oxygenated organic compounds in FIGAERO-CIMS,
Aerosol Sci. Technol., 55, 1321–1342,
https://doi.org/10.1080/02786826.2021.1945529, 2021.
Yatavelli, R. L. N. and Thornton, J. A.: Particulate Organic Matter
Detection Using a Micro-Orifice Volatilization Impactor Coupled to a
Chemical Ionization Mass Spectrometer (MOVI-CIMS), Aerosol Sci. Technol.,
44, 61–74, https://doi.org/10.1080/02786820903380233, 2010.
Ye, C., Yuan, B., Lin, Y., Wang, Z., Hu, W., Li, T., Chen, W., Wu, C., Wang, C., Huang, S., Qi, J., Wang, B., Wang, C., Song, W., Wang, X., Zheng, E., Krechmer, J. E., Ye, P., Zhang, Z., Wang, X., Worsnop, D. R., and Shao, M.: Chemical characterization of oxygenated organic compounds in the gas phase and particle phase using iodide CIMS with FIGAERO in urban air, Atmos. Chem. Phys., 21, 8455–8478, https://doi.org/10.5194/acp-21-8455-2021, 2021.
Ye, Q., Wang, M., Hofbauer, V., Stolzenburg, D., Chen, D., Schervish, M.,
Vogel, A., Mauldin, R. L., Baalbaki, R., Brilke, S., Dada, L., Dias, A.,
Duplissy, J., El Haddad, I., Finkenzeller, H., Fischer, L., He, X., Kim, C.,
Kürten, A., Lamkaddam, H., Lee, C. P., Lehtipalo, K., Leiminger, M.,
Manninen, H. E., Marten, R., Mentler, B., Partoll, E., Petäjä, T.,
Rissanen, M., Schobesberger, S., Schuchmann, S., Simon, M., Tham, Y. J.,
Vazquez-Pufleau, M., Wagner, A. C., Wang, Y., Wu, Y., Xiao, M.,
Baltensperger, U., Curtius, J., Flagan, R., Kirkby, J., Kulmala, M.,
Volkamer, R., Winkler, P. M., Worsnop, D., and Donahue, N. M.: Molecular
Composition and Volatility of Nucleated Particles from α-Pinene
Oxidation between −50 ∘C and +25 ∘C, Environ. Sci.
Technol., 53, 12357–12365, https://doi.org/10.1021/acs.est.9b03265, 2019.
Ylisirniö, A., Buchholz, A., Mohr, C., Li, Z., Barreira, L., Lambe, A., Faiola, C., Kari, E., Yli-Juuti, T., Nizkorodov, S. A., Worsnop, D. R., Virtanen, A., and Schobesberger, S.: Composition and volatility of secondary organic aerosol (SOA) formed from oxidation of real tree emissions compared to simplified volatile organic compound (VOC) systems, Atmos. Chem. Phys., 20, 5629–5644, https://doi.org/10.5194/acp-20-5629-2020, 2020.
Ylisirniö, A., Barreira, L. M. F., Pullinen, I., Buchholz, A., Jayne, J., Krechmer, J. E., Worsnop, D. R., Virtanen, A., and Schobesberger, S.: On the calibration of FIGAERO-ToF-CIMS: importance and impact of calibrant delivery for the particle-phase calibration, Atmos. Meas. Tech., 14, 355–367, https://doi.org/10.5194/amt-14-355-2021, 2021.
Zhang, B., Hu, X., Yao, L., Wang, M., Yang, G., Lu, Y., Liu, Y., and Wang,
L.: Hydroxyl radical-initiated aging of particulate squalane, Atmos.
Environ., 237, 117663, https://doi.org/10.1016/j.atmosenv.2020.117663, 2020.
Zhao, Y., Hallar, A. G., and Mazzoleni, L. R.: Atmospheric organic matter in clouds: exact masses and molecular formula identification using ultrahigh-resolution FT-ICR mass spectrometry, Atmos. Chem. Phys., 13, 12343–12362, https://doi.org/10.5194/acp-13-12343-2013, 2013.
Zhou, W., Xu, W., Kim, H., Zhang, Q., Fu, P., Worsnop, D. R., and Sun, Y.: A
review of aerosol chemistry in Asia: Insights from aerosol mass spectrometer
measurements, Environ. Sci. Process. Impacts, 22, 1616–1653,
https://doi.org/10.1039/d0em00212g, 2020.
Short summary
We improved the empirical functions between volatility and chemical formulas of organic aerosols based on lab experiments and field observations. It was found that organic compounds in ambient aerosols can be divided into two groups according to their O / C ratios and that there should be specialized volatility parameterizations for different O / C organic compounds.
We improved the empirical functions between volatility and chemical formulas of organic aerosols...
Altmetrics
Final-revised paper
Preprint