Articles | Volume 22, issue 8
https://doi.org/10.5194/acp-22-5435-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-5435-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Analyzing ozone variations and uncertainties at high latitudes during sudden stratospheric warming events using MERRA-2
Shima Bahramvash Shams
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, Washington State University, Pullman, WA, United States
NCAR, National Center for Atmospheric Research, Boulder, CO, United
States
Von P. Walden
Department of Civil and Environmental Engineering, Washington State University, Pullman, WA, United States
James W. Hannigan
NCAR, National Center for Atmospheric Research, Boulder, CO, United
States
William J. Randel
NCAR, National Center for Atmospheric Research, Boulder, CO, United
States
Irina V. Petropavlovskikh
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, CO, USA
National Oceanic and Atmospheric Administration, Global Monitoring
Division, Boulder, CO, USA
Amy H. Butler
National Oceanic and Atmospheric Administration, Chemical Sciences
Laboratory, Boulder, CO, USA
Alvaro de la Cámara
Dept. Física de la Tierra y Astrofísica, Universidad
Complutense de Madrid, Madrid, Spain
Related authors
Shima Bahramvash Shams, Von P. Walden, Irina Petropavlovskikh, David Tarasick, Rigel Kivi, Samuel Oltmans, Bryan Johnson, Patrick Cullis, Chance W. Sterling, Laura Thölix, and Quentin Errera
Atmos. Chem. Phys., 19, 9733–9751, https://doi.org/10.5194/acp-19-9733-2019, https://doi.org/10.5194/acp-19-9733-2019, 2019
Short summary
Short summary
The Arctic plays a very important role in the global ozone cycle. We use balloon-borne sampling and satellite data to create a high-quality dataset of the vertical profile of ozone from 2005 to 2017 to analyze ozone variations over four high-latitude Arctic locations. No significant annual trend is found at any of the studied locations. We develop a mathematical model to understand how deseasonalized ozone fluctuations can be influenced by various parameters.
Robin Björklund, Corinne Vigouroux, Peter Effertz, Omaira E. García, Alex Geddes, James Hannigan, Koji Miyagawa, Michael Kotkamp, Bavo Langerock, Gerald Nedoluha, Ivan Ortega, Irina Petropavlovskikh, Deniz Poyraz, Richard Querel, John Robinson, Hisako Shiona, Dan Smale, Penny Smale, Roeland Van Malderen, and Martine De Mazière
Atmos. Meas. Tech., 17, 6819–6849, https://doi.org/10.5194/amt-17-6819-2024, https://doi.org/10.5194/amt-17-6819-2024, 2024
Short summary
Short summary
Different ground-based ozone measurements from the last 2 decades at Lauder are compared to each other. We want to know why different trends have been observed in the stratosphere. Also, the quality and relevance of tropospheric datasets need to be evaluated. While remaining drifts are still present, our study explains roughly half of the differences in observed trends in previous studies and shows the necessity for continuous review and improvement of the measurements.
Thomas J. Ballinger, Kent Moore, Qinghua Ding, Amy H. Butler, James E. Overland, Richard L. Thoman, Ian Baxter, Zhe Li, and Edward Hanna
Weather Clim. Dynam., 5, 1473–1488, https://doi.org/10.5194/wcd-5-1473-2024, https://doi.org/10.5194/wcd-5-1473-2024, 2024
Short summary
Short summary
This study chronicles the meteorological conditions that led to the anomalous, tandem March 2023 ice melt event in the Labrador and Bering seas. A sudden stratospheric warming event initiated the development of an anticyclonic circulation pattern over the Greenland–Labrador region, while the La Niña background state supported ridging conditions over Alaska, both of which aided northward transport of warm, moist air and drove the concurrent sea ice melt extremes.
Kimberlee Dubé, Susann Tegtmeier, Adam Bourassa, Daniel Zawada, Douglas Degenstein, William Randel, Sean Davis, Michael Schwartz, Nathaniel Livesey, and Anne Smith
Atmos. Chem. Phys., 24, 12925–12941, https://doi.org/10.5194/acp-24-12925-2024, https://doi.org/10.5194/acp-24-12925-2024, 2024
Short summary
Short summary
Greenhouse gas emissions that warm the troposphere also result in stratospheric cooling. The cooling rate is difficult to quantify above 35 km due to a deficit of long-term observational data with high vertical resolution in this region. We use satellite observations from several instruments, including a new temperature product from OSIRIS, to show that the upper stratosphere, from 35–60 km, cooled by 0.5 to 1 K per decade over 2005–2021 and by 0.6 K per decade over 1979–2021.
Yunqian Zhu, Hideharu Akiyoshi, Valentina Aquila, Elisabeth Asher, Ewa M. Bednarz, Slimane Bekki, Christoph Brühl, Amy H. Butler, Parker Case, Simon Chabrillat, Gabriel Chiodo, Margot Clyne, Lola Falletti, Peter R. Colarco, Eric Fleming, Andrin Jörimann, Mahesh Kovilakam, Gerbrand Koren, Ales Kuchar, Nicolas Lebas, Qing Liang, Cheng-Cheng Liu, Graham Mann, Michael Manyin, Marion Marchand, Olaf Morgenstern, Paul Newman, Luke D. Oman, Freja F. Østerstrøm, Yifeng Peng, David Plummer, Ilaria Quaglia, William Randel, Samuel Rémy, Takashi Sekiya, Stephen Steenrod, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, Rei Ueyama, Daniele Visioni, Xinyue Wang, Shingo Watanabe, Yousuke Yamashita, Pengfei Yu, Wandi Yu, Jun Zhang, and Zhihong Zhuo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3412, https://doi.org/10.5194/egusphere-2024-3412, 2024
Short summary
Short summary
To understand the climate impact of the 2022 Hunga volcanic eruption, we developed a climate model-observation comparison project. The paper describes the protocols and models that participate in the experiments. We designed several experiments to achieve our goal of this activity: 1. evaluate the climate model performance; 2. understand the Earth system responses to this eruption.
Andrew O. Langford, Raul J. Alvarez II, Kenneth C. Aikin, Sunil Baidar, W. Alan Brewer, Steven S. Brown, Matthew M. Coggan, Patrick D. Cullis, Jessica Gilman, Georgios I. Gkatzelis, Detlev Helmig, Bryan J. Johnson, K. Emma Knowland, Rajesh Kumar, Aaron D. Lamplugh, Audra McClure-Begley, Brandi J. McCarty, Ann M. Middlebrook, Gabriele Pfister, Jeff Peischl, Irina Petropavlovskikh, Pamela S. Rickley, Andrew W. Rollins, Scott P. Sandberg, Christoph J. Senff, and Carsten Warneke
EGUsphere, https://doi.org/10.5194/egusphere-2024-1938, https://doi.org/10.5194/egusphere-2024-1938, 2024
Short summary
Short summary
High ozone (O3) formed by reactions of nitrogen oxides (NOx) and volatile organic compounds (VOCs) can harm human health and welfare. High O3 is usually associated with hot summer days, but under certain conditions, high O3 can also form under winter conditions. In this study, we describe a high O3 event that occurred in Colorado during the COVID-19 quarantine that was caused in part by the decrease in traffic, and in part by a shallow inversion created by descent of stratospheric air.
Verónica Martínez-Andradas, Alvaro de la Cámara, Pablo Zurita-Gotor, François Lott, and Federico Serva
EGUsphere, https://doi.org/10.5194/egusphere-2024-2554, https://doi.org/10.5194/egusphere-2024-2554, 2024
Short summary
Short summary
Global Circulation Models biases are present when simulating Sudden Stratospheric Warmings (SSWs). These are important extreme phenomena that occur in the wintertime stratosphere, driven by the breaking of atmospheric waves. The present work shows that there is large spread of the wave forcing during the development of SSWs in different models. In the mesosphere, gravity waves are found to force advection of the residual circulation while planetary waves tend to decelerate the wind.
Zhongming Gao, Heping Liu, Dan Li, Bai Yang, Von Walden, Lei Li, and Ivan Bogoev
Atmos. Meas. Tech., 17, 4109–4120, https://doi.org/10.5194/amt-17-4109-2024, https://doi.org/10.5194/amt-17-4109-2024, 2024
Short summary
Short summary
Using data collected from three levels of a 62 m tower, we found that both the temperature variances and sensible heat flux obtained from sonic anemometers are consistently lower, by a few percent, compared to those from fine-wire thermocouples.
Luis F. Millán, Peter Hoor, Michaela I. Hegglin, Gloria L. Manney, Harald Boenisch, Paul Jeffery, Daniel Kunkel, Irina Petropavlovskikh, Hao Ye, Thierry Leblanc, and Kaley Walker
Atmos. Chem. Phys., 24, 7927–7959, https://doi.org/10.5194/acp-24-7927-2024, https://doi.org/10.5194/acp-24-7927-2024, 2024
Short summary
Short summary
In the Observed Composition Trends And Variability in the UTLS (OCTAV-UTLS) Stratosphere-troposphere Processes And their Role in Climate (SPARC) activity, we have mapped multiplatform ozone datasets into coordinate systems to systematically evaluate the influence of these coordinates on binned climatological variability. This effort unifies the work of studies that focused on individual coordinate system variability. Our goal was to create the most comprehensive assessment of this topic.
Irina Petropavlovskikh, Jeannette D. Wild, Kari Abromitis, Peter Effertz, Koji Miyagawa, Lawrence E. Flynn, Eliane Maillard-Barra, Robert Damadeo, Glen McConville, Bryan Johnson, Patrick Cullis, Sophie Godin-Beekmann, Gerald Ancellet, Richard Querel, Roeland Van Malderen, and Daniel Zawada
EGUsphere, https://doi.org/10.5194/egusphere-2024-1821, https://doi.org/10.5194/egusphere-2024-1821, 2024
Short summary
Short summary
Observational records show that stratospheric ozone is recovering in accordance with the implementation of the Montreal protocol and its amendments. The natural ozone variability complicates detection of small trends. This study optimizes statistical model fit in the observational records by adding parameters that interpret seasonal and long-term changes in atmospheric circulation and airmass mixing which reduces uncertainties in detection of the stratospheric ozone recovery.
Chaim I. Garfinkel, Zachary D. Lawrence, Amy H. Butler, Etienne Dunn-Sigouin, Irene Erner, Alexey Yu. Karpechko, Gerbrand Koren, Marta Abalos, Blanca Ayarzaguena, David Barriopedro, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Judah Cohen, Daniela I. V. Domeisen, Javier García-Serrano, Neil P. Hindley, Martin Jucker, Hera Kim, Robert W. Lee, Simon H. Lee, Marisol Osman, Froila M. Palmeiro, Inna Polichtchouk, Jian Rao, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1762, https://doi.org/10.5194/egusphere-2024-1762, 2024
Short summary
Short summary
Variability in the extratropical stratosphere and troposphere are coupled, and because of the longer timescales characteristic of the stratosphere, this allows for a window of opportunity for surface prediction. This paper assesses whether models used for operational prediction capture these coupling processes accurately. We find that most processes are too-weak, however downward coupling from the lower stratosphere to the near surface is too strong.
Kai-Lan Chang, Owen R. Cooper, Audrey Gaudel, Irina Petropavlovskikh, Peter Effertz, Gary Morris, and Brian C. McDonald
Atmos. Chem. Phys., 24, 6197–6218, https://doi.org/10.5194/acp-24-6197-2024, https://doi.org/10.5194/acp-24-6197-2024, 2024
Short summary
Short summary
A great majority of observational trend studies of free tropospheric ozone use sparsely sampled ozonesonde and aircraft measurements as reference data sets. A ubiquitous assumption is that trends are accurate and reliable so long as long-term records are available. We show that sampling bias due to sparse samples can persistently reduce the trend accuracy, and we highlight the importance of maintaining adequate frequency and continuity of observations.
Jean-François Müller, Trissevgeni Stavrakou, Glenn-Michael Oomen, Beata Opacka, Isabelle De Smedt, Alex Guenther, Corinne Vigouroux, Bavo Langerock, Carlos Augusto Bauer Aquino, Michel Grutter, James Hannigan, Frank Hase, Rigel Kivi, Erik Lutsch, Emmanuel Mahieu, Maria Makarova, Jean-Marc Metzger, Isamu Morino, Isao Murata, Tomoo Nagahama, Justus Notholt, Ivan Ortega, Mathias Palm, Amelie Röhling, Wolfgang Stremme, Kimberly Strong, Ralf Sussmann, Yao Té, and Alan Fried
Atmos. Chem. Phys., 24, 2207–2237, https://doi.org/10.5194/acp-24-2207-2024, https://doi.org/10.5194/acp-24-2207-2024, 2024
Short summary
Short summary
Formaldehyde observations from satellites can be used to constrain the emissions of volatile organic compounds, but those observations have biases. Using an atmospheric model, aircraft and ground-based remote sensing data, we quantify these biases, propose a correction to the data, and assess the consequence of this correction for the evaluation of emissions.
Victoria A. Flood, Kimberly Strong, Cynthia H. Whaley, Kaley A. Walker, Thomas Blumenstock, James W. Hannigan, Johan Mellqvist, Justus Notholt, Mathias Palm, Amelie N. Röhling, Stephen Arnold, Stephen Beagley, Rong-You Chien, Jesper Christensen, Makoto Deushi, Srdjan Dobricic, Xinyi Dong, Joshua S. Fu, Michael Gauss, Wanmin Gong, Joakim Langner, Kathy S. Law, Louis Marelle, Tatsuo Onishi, Naga Oshima, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Manu A. Thomas, Svetlana Tsyro, and Steven Turnock
Atmos. Chem. Phys., 24, 1079–1118, https://doi.org/10.5194/acp-24-1079-2024, https://doi.org/10.5194/acp-24-1079-2024, 2024
Short summary
Short summary
It is important to understand the composition of the Arctic atmosphere and how it is changing. Atmospheric models provide simulations that can inform policy. This study examines simulations of CH4, CO, and O3 by 11 models. Model performance is assessed by comparing results matched in space and time to measurements from five high-latitude ground-based infrared spectrometers. This work finds that models generally underpredict the concentrations of these gases in the Arctic troposphere.
Davide Putero, Paolo Cristofanelli, Kai-Lan Chang, Gaëlle Dufour, Gregory Beachley, Cédric Couret, Peter Effertz, Daniel A. Jaffe, Dagmar Kubistin, Jason Lynch, Irina Petropavlovskikh, Melissa Puchalski, Timothy Sharac, Barkley C. Sive, Martin Steinbacher, Carlos Torres, and Owen R. Cooper
Atmos. Chem. Phys., 23, 15693–15709, https://doi.org/10.5194/acp-23-15693-2023, https://doi.org/10.5194/acp-23-15693-2023, 2023
Short summary
Short summary
We investigated the impact of societal restriction measures during the COVID-19 pandemic on surface ozone at 41 high-elevation sites worldwide. Negative ozone anomalies were observed for spring and summer 2020 for all of the regions considered. In 2021, negative anomalies continued for Europe and partially for the eastern US, while western US sites showed positive anomalies due to wildfires. IASI satellite data and the Carbon Monitor supported emission reductions as a cause of the anomalies.
Ewa M. Bednarz, Amy H. Butler, Daniele Visioni, Yan Zhang, Ben Kravitz, and Douglas G. MacMartin
Atmos. Chem. Phys., 23, 13665–13684, https://doi.org/10.5194/acp-23-13665-2023, https://doi.org/10.5194/acp-23-13665-2023, 2023
Short summary
Short summary
We use a state-of-the-art Earth system model and a set of stratospheric aerosol injection (SAI) strategies to achieve the same level of global mean surface cooling through different combinations of location and/or timing of the injection. We demonstrate that the choice of SAI strategy can lead to contrasting impacts on stratospheric and tropospheric temperatures, circulation, and chemistry (including stratospheric ozone), thereby leading to different impacts on regional surface climate.
Yunqian Zhu, Robert W. Portmann, Douglas Kinnison, Owen Brian Toon, Luis Millán, Jun Zhang, Holger Vömel, Simone Tilmes, Charles G. Bardeen, Xinyue Wang, Stephanie Evan, William J. Randel, and Karen H. Rosenlof
Atmos. Chem. Phys., 23, 13355–13367, https://doi.org/10.5194/acp-23-13355-2023, https://doi.org/10.5194/acp-23-13355-2023, 2023
Short summary
Short summary
The 2022 Hunga Tonga eruption injected a large amount of water into the stratosphere. Ozone depletion was observed inside the volcanic plume. Chlorine and water vapor injected by this eruption exceeded the normal range, which made the ozone chemistry during this event occur at a higher temperature than polar ozone depletion. Unlike polar ozone chemistry where chlorine nitrate is more important, hypochlorous acid plays a large role in the in-plume chlorine balance and heterogeneous processes.
Kimberlee Dubé, Susann Tegtmeier, Adam Bourassa, Daniel Zawada, Douglas Degenstein, Patrick E. Sheese, Kaley A. Walker, and William Randel
Atmos. Chem. Phys., 23, 13283–13300, https://doi.org/10.5194/acp-23-13283-2023, https://doi.org/10.5194/acp-23-13283-2023, 2023
Short summary
Short summary
This paper presents a technique for understanding the causes of long-term changes in stratospheric composition. By using N2O as a proxy for stratospheric circulation in the model used to calculated trends, it is possible to separate the effects of dynamics and chemistry on observed trace gas trends. We find that observed HCl increases are due to changes in the stratospheric circulation, as are O3 decreases above 30 hPa in the Northern Hemisphere.
Vitali Fioletov, Xiaoyi Zhao, Ihab Abboud, Michael Brohart, Akira Ogyu, Reno Sit, Sum Chi Lee, Irina Petropavlovskikh, Koji Miyagawa, Bryan J. Johnson, Patrick Cullis, John Booth, Glen McConville, and C. Thomas McElroy
Atmos. Chem. Phys., 23, 12731–12751, https://doi.org/10.5194/acp-23-12731-2023, https://doi.org/10.5194/acp-23-12731-2023, 2023
Short summary
Short summary
Stratospheric ozone within the Southern Hemisphere springtime polar vortex has been a subject of intense research since the discovery of the Antarctic ozone hole. The wintertime ozone in the vortex is less studied. We show that the recent wintertime ozone values over the South Pole were about 12 % below the pre-1980s level; i.e., the decline there was nearly twice as large as that over southern midlatitudes. Thus, wintertime ozone there can be used as an indicator of the ozone layer state.
Luis F. Millán, Gloria L. Manney, Harald Boenisch, Michaela I. Hegglin, Peter Hoor, Daniel Kunkel, Thierry Leblanc, Irina Petropavlovskikh, Kaley Walker, Krzysztof Wargan, and Andreas Zahn
Atmos. Meas. Tech., 16, 2957–2988, https://doi.org/10.5194/amt-16-2957-2023, https://doi.org/10.5194/amt-16-2957-2023, 2023
Short summary
Short summary
The determination of atmospheric composition trends in the upper troposphere and lower stratosphere (UTLS) is still highly uncertain. We present the creation of dynamical diagnostics to map several ozone datasets (ozonesondes, lidars, aircraft, and satellite measurements) in geophysically based coordinate systems. The diagnostics can also be used to analyze other greenhouse gases relevant to surface climate and UTLS chemistry.
Dillon Elsbury, Amy H. Butler, John R. Albers, Melissa L. Breeden, and Andrew O'Neil Langford
Atmos. Chem. Phys., 23, 5101–5117, https://doi.org/10.5194/acp-23-5101-2023, https://doi.org/10.5194/acp-23-5101-2023, 2023
Short summary
Short summary
One of the global hotspots where stratosphere-to-troposphere transport (STT) of ozone takes place is over Pacific North America (PNA). However, we do not know how or if STT over PNA will change in response to climate change. Using climate model experiments forced with
worst-casescenario Representative Concentration Pathway 8.5 climate change, we find that changes in net chemical production and transport of ozone in the lower stratosphere increase STT of ozone over PNA in the future.
Bryan J. Johnson, Patrick Cullis, John Booth, Irina Petropavlovskikh, Glen McConville, Birgit Hassler, Gary A. Morris, Chance Sterling, and Samuel Oltmans
Atmos. Chem. Phys., 23, 3133–3146, https://doi.org/10.5194/acp-23-3133-2023, https://doi.org/10.5194/acp-23-3133-2023, 2023
Short summary
Short summary
In 1986, soon after the discovery of the Antarctic ozone hole, NOAA began year-round ozonesonde observations at South Pole Station to measure vertical profiles of ozone and temperature from the surface to 35 km. Balloon-borne ozonesondes launched at this unique site allow for tracking all phases of the yearly springtime ozone hole beginning in late winter and after sunrise, when rapid ozone depletion begins over the South Pole throughout the month of September.
Cynthia H. Whaley, Kathy S. Law, Jens Liengaard Hjorth, Henrik Skov, Stephen R. Arnold, Joakim Langner, Jakob Boyd Pernov, Garance Bergeron, Ilann Bourgeois, Jesper H. Christensen, Rong-You Chien, Makoto Deushi, Xinyi Dong, Peter Effertz, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Greg Huey, Ulas Im, Rigel Kivi, Louis Marelle, Tatsuo Onishi, Naga Oshima, Irina Petropavlovskikh, Jeff Peischl, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Tom Ryerson, Ragnhild Skeie, Sverre Solberg, Manu A. Thomas, Chelsea Thompson, Kostas Tsigaridis, Svetlana Tsyro, Steven T. Turnock, Knut von Salzen, and David W. Tarasick
Atmos. Chem. Phys., 23, 637–661, https://doi.org/10.5194/acp-23-637-2023, https://doi.org/10.5194/acp-23-637-2023, 2023
Short summary
Short summary
This study summarizes recent research on ozone in the Arctic, a sensitive and rapidly warming region. We find that the seasonal cycles of near-surface atmospheric ozone are variable depending on whether they are near the coast, inland, or at high altitude. Several global model simulations were evaluated, and we found that because models lack some of the ozone chemistry that is important for the coastal Arctic locations, they do not accurately simulate ozone there.
Eliane Maillard Barras, Alexander Haefele, René Stübi, Achille Jouberton, Herbert Schill, Irina Petropavlovskikh, Koji Miyagawa, Martin Stanek, and Lucien Froidevaux
Atmos. Chem. Phys., 22, 14283–14302, https://doi.org/10.5194/acp-22-14283-2022, https://doi.org/10.5194/acp-22-14283-2022, 2022
Short summary
Short summary
Intercomparisons of three Dobson and three Brewer spectrophotometers at Arosa/Davos, Switzerland, are used for the homogenization of the longest Umkehr ozone profiles time series worldwide. Dynamic linear modeling (DLM) reveals a significant positive trend after 2004 in the upper stratosphere, a persistent negative trend between 25 and 30 km in the middle stratosphere, and a negative trend at 20 km in the lower stratosphere, with different levels of significance depending on the dataset.
Kimberlee Dubé, Daniel Zawada, Adam Bourassa, Doug Degenstein, William Randel, David Flittner, Patrick Sheese, and Kaley Walker
Atmos. Meas. Tech., 15, 6163–6180, https://doi.org/10.5194/amt-15-6163-2022, https://doi.org/10.5194/amt-15-6163-2022, 2022
Short summary
Short summary
Satellite observations are important for monitoring changes in atmospheric composition. Here we describe an improved version of the NO2 retrieval for the Optical Spectrograph and InfraRed Imager System. The resulting NO2 profiles are compared to those from the Atmospheric Chemistry Experiment – Fourier Transform Spectrometer and the Stratospheric Aerosol and Gas Experiment III on the International Space Station. All datasets agree within 20 % throughout the stratosphere.
John R. Albers, Amy H. Butler, Andrew O. Langford, Dillon Elsbury, and Melissa L. Breeden
Atmos. Chem. Phys., 22, 13035–13048, https://doi.org/10.5194/acp-22-13035-2022, https://doi.org/10.5194/acp-22-13035-2022, 2022
Short summary
Short summary
Ozone transported from the stratosphere contributes to background ozone concentrations in the free troposphere and to surface ozone exceedance events that affect human health. The physical processes whereby the El Niño–Southern Oscillation (ENSO) modulates North American stratosphere-to-troposphere ozone transport during spring are documented, and the usefulness of ENSO for predicting ozone events that may cause exceedances in surface air quality standards are assessed.
Kostas Eleftheratos, John Kapsomenakis, Ilias Fountoulakis, Christos S. Zerefos, Patrick Jöckel, Martin Dameris, Alkiviadis F. Bais, Germar Bernhard, Dimitra Kouklaki, Kleareti Tourpali, Scott Stierle, J. Ben Liley, Colette Brogniez, Frédérique Auriol, Henri Diémoz, Stana Simic, Irina Petropavlovskikh, Kaisa Lakkala, and Kostas Douvis
Atmos. Chem. Phys., 22, 12827–12855, https://doi.org/10.5194/acp-22-12827-2022, https://doi.org/10.5194/acp-22-12827-2022, 2022
Short summary
Short summary
We present the future evolution of DNA-active ultraviolet (UV) radiation in view of increasing greenhouse gases (GHGs) and decreasing ozone depleting substances (ODSs). It is shown that DNA-active UV radiation might increase after 2050 between 50° N–50° S due to GHG-induced reductions in clouds and ozone, something that is likely not to happen at high latitudes, where DNA-active UV radiation will continue its downward trend mainly due to stratospheric ozone recovery from the reduction in ODSs.
Sophie Godin-Beekmann, Niramson Azouz, Viktoria F. Sofieva, Daan Hubert, Irina Petropavlovskikh, Peter Effertz, Gérard Ancellet, Doug A. Degenstein, Daniel Zawada, Lucien Froidevaux, Stacey Frith, Jeannette Wild, Sean Davis, Wolfgang Steinbrecht, Thierry Leblanc, Richard Querel, Kleareti Tourpali, Robert Damadeo, Eliane Maillard Barras, René Stübi, Corinne Vigouroux, Carlo Arosio, Gerald Nedoluha, Ian Boyd, Roeland Van Malderen, Emmanuel Mahieu, Dan Smale, and Ralf Sussmann
Atmos. Chem. Phys., 22, 11657–11673, https://doi.org/10.5194/acp-22-11657-2022, https://doi.org/10.5194/acp-22-11657-2022, 2022
Short summary
Short summary
An updated evaluation up to 2020 of stratospheric ozone profile long-term trends at extrapolar latitudes based on satellite and ground-based records is presented. Ozone increase in the upper stratosphere is confirmed, with significant trends at most latitudes. In this altitude region, a very good agreement is found with trends derived from chemistry–climate model simulations. Observed and modelled trends diverge in the lower stratosphere, but the differences are non-significant.
Heather Guy, David D. Turner, Von P. Walden, Ian M. Brooks, and Ryan R. Neely
Atmos. Meas. Tech., 15, 5095–5115, https://doi.org/10.5194/amt-15-5095-2022, https://doi.org/10.5194/amt-15-5095-2022, 2022
Short summary
Short summary
Fog formation is highly sensitive to near-surface temperatures and humidity profiles. Passive remote sensing instruments can provide continuous measurements of the vertical temperature and humidity profiles and liquid water content, which can improve fog forecasts. Here we compare the performance of collocated infrared and microwave remote sensing instruments and demonstrate that the infrared instrument is especially sensitive to the onset of thin radiation fog.
Zachary D. Lawrence, Marta Abalos, Blanca Ayarzagüena, David Barriopedro, Amy H. Butler, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Daniela I. V. Domeisen, Etienne Dunn-Sigouin, Javier García-Serrano, Chaim I. Garfinkel, Neil P. Hindley, Liwei Jia, Martin Jucker, Alexey Y. Karpechko, Hera Kim, Andrea L. Lang, Simon H. Lee, Pu Lin, Marisol Osman, Froila M. Palmeiro, Judith Perlwitz, Inna Polichtchouk, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Irene Erner, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
Weather Clim. Dynam., 3, 977–1001, https://doi.org/10.5194/wcd-3-977-2022, https://doi.org/10.5194/wcd-3-977-2022, 2022
Short summary
Short summary
Forecast models that are used to predict weather often struggle to represent the Earth’s stratosphere. This may impact their ability to predict surface weather weeks in advance, on subseasonal-to-seasonal (S2S) timescales. We use data from many S2S forecast systems to characterize and compare the stratospheric biases present in such forecast models. These models have many similar stratospheric biases, but they tend to be worse in systems with low model tops located within the stratosphere.
Peter Hitchcock, Amy Butler, Andrew Charlton-Perez, Chaim I. Garfinkel, Tim Stockdale, James Anstey, Dann Mitchell, Daniela I. V. Domeisen, Tongwen Wu, Yixiong Lu, Daniele Mastrangelo, Piero Malguzzi, Hai Lin, Ryan Muncaster, Bill Merryfield, Michael Sigmond, Baoqiang Xiang, Liwei Jia, Yu-Kyung Hyun, Jiyoung Oh, Damien Specq, Isla R. Simpson, Jadwiga H. Richter, Cory Barton, Jeff Knight, Eun-Pa Lim, and Harry Hendon
Geosci. Model Dev., 15, 5073–5092, https://doi.org/10.5194/gmd-15-5073-2022, https://doi.org/10.5194/gmd-15-5073-2022, 2022
Short summary
Short summary
This paper describes an experimental protocol focused on sudden stratospheric warmings to be carried out by subseasonal forecast modeling centers. These will allow for inter-model comparisons of these major disruptions to the stratospheric polar vortex and their impacts on the near-surface flow. The protocol will lead to new insights into the contribution of the stratosphere to subseasonal forecast skill and new approaches to the dynamical attribution of extreme events.
Noah Bernays, Daniel A. Jaffe, Irina Petropavlovskikh, and Peter Effertz
Atmos. Meas. Tech., 15, 3189–3192, https://doi.org/10.5194/amt-15-3189-2022, https://doi.org/10.5194/amt-15-3189-2022, 2022
Short summary
Short summary
Ozone is an important pollutant that impacts millions of people worldwide. It is therefore important to ensure accurate measurements. A recent surge in wildfire activity in the USA has resulted in significant enhancements in ozone concentration. However given the nature of wildfire smoke, there are questions about our ability to accurately measure ozone. In this comment, we discuss possible biases in the UV measurements of ozone in the presence of smoke.
Irina Petropavlovskikh, Koji Miyagawa, Audra McClure-Beegle, Bryan Johnson, Jeannette Wild, Susan Strahan, Krzysztof Wargan, Richard Querel, Lawrence Flynn, Eric Beach, Gerard Ancellet, and Sophie Godin-Beekmann
Atmos. Meas. Tech., 15, 1849–1870, https://doi.org/10.5194/amt-15-1849-2022, https://doi.org/10.5194/amt-15-1849-2022, 2022
Short summary
Short summary
The Montreal Protocol and its amendments assure the recovery of the stratospheric ozone layer that protects the Earth from harmful ultraviolet radiation. To monitor ozone recovery, multiple satellites and ground-based observational platforms collect ozone data. The changes in instruments can influence the continuation of the ozone data. We discuss a method to remove instrumental artifacts from ozone records to improve the internal consistency among multiple observational records.
Adam A. Scaife, Mark P. Baldwin, Amy H. Butler, Andrew J. Charlton-Perez, Daniela I. V. Domeisen, Chaim I. Garfinkel, Steven C. Hardiman, Peter Haynes, Alexey Yu Karpechko, Eun-Pa Lim, Shunsuke Noguchi, Judith Perlwitz, Lorenzo Polvani, Jadwiga H. Richter, John Scinocca, Michael Sigmond, Theodore G. Shepherd, Seok-Woo Son, and David W. J. Thompson
Atmos. Chem. Phys., 22, 2601–2623, https://doi.org/10.5194/acp-22-2601-2022, https://doi.org/10.5194/acp-22-2601-2022, 2022
Short summary
Short summary
Great progress has been made in computer modelling and simulation of the whole climate system, including the stratosphere. Since the late 20th century we also gained a much clearer understanding of how the stratosphere interacts with the lower atmosphere. The latest generation of numerical prediction systems now explicitly represents the stratosphere and its interaction with surface climate, and here we review its role in long-range predictions and projections from weeks to decades ahead.
Andrew O. Langford, Christoph J. Senff, Raul J. Alvarez II, Ken C. Aikin, Sunil Baidar, Timothy A. Bonin, W. Alan Brewer, Jerome Brioude, Steven S. Brown, Joel D. Burley, Dani J. Caputi, Stephen A. Conley, Patrick D. Cullis, Zachary C. J. Decker, Stéphanie Evan, Guillaume Kirgis, Meiyun Lin, Mariusz Pagowski, Jeff Peischl, Irina Petropavlovskikh, R. Bradley Pierce, Thomas B. Ryerson, Scott P. Sandberg, Chance W. Sterling, Ann M. Weickmann, and Li Zhang
Atmos. Chem. Phys., 22, 1707–1737, https://doi.org/10.5194/acp-22-1707-2022, https://doi.org/10.5194/acp-22-1707-2022, 2022
Short summary
Short summary
The Fires, Asian, and Stratospheric Transport–Las Vegas Ozone Study (FAST-LVOS) combined lidar, aircraft, and in situ measurements with global models to investigate the contributions of stratospheric intrusions, regional and Asian pollution, and wildfires to background ozone in the southwestern US during May and June 2017 and demonstrated that these processes contributed to background ozone levels that exceeded 70 % of the US National Ambient Air Quality Standard during the 6-week campaign.
William J. Randel, Fei Wu, Alison Ming, and Peter Hitchcock
Atmos. Chem. Phys., 21, 18531–18542, https://doi.org/10.5194/acp-21-18531-2021, https://doi.org/10.5194/acp-21-18531-2021, 2021
Short summary
Short summary
Balloon and satellite observations show strong coupling between large-scale ozone and temperature fields in the tropical lower stratosphere, spanning timescales of days to years. We present a simple interpretation of this behavior based on an idealized model of transport by the tropical stratospheric circulation, and good quantitative agreement with observations demonstrates that this is a useful simplification. The results provide simple understanding of observed atmospheric behavior.
Heather Guy, Ian M. Brooks, Ken S. Carslaw, Benjamin J. Murray, Von P. Walden, Matthew D. Shupe, Claire Pettersen, David D. Turner, Christopher J. Cox, William D. Neff, Ralf Bennartz, and Ryan R. Neely III
Atmos. Chem. Phys., 21, 15351–15374, https://doi.org/10.5194/acp-21-15351-2021, https://doi.org/10.5194/acp-21-15351-2021, 2021
Short summary
Short summary
We present the first full year of surface aerosol number concentration measurements from the central Greenland Ice Sheet. Aerosol concentrations here have a distinct seasonal cycle from those at lower-altitude Arctic sites, which is driven by large-scale atmospheric circulation. Our results can be used to help understand the role aerosols might play in Greenland surface melt through the modification of cloud properties. This is crucial in a rapidly changing region where observations are sparse.
Mahesh Kumar Sha, Bavo Langerock, Jean-François L. Blavier, Thomas Blumenstock, Tobias Borsdorff, Matthias Buschmann, Angelika Dehn, Martine De Mazière, Nicholas M. Deutscher, Dietrich G. Feist, Omaira E. García, David W. T. Griffith, Michel Grutter, James W. Hannigan, Frank Hase, Pauli Heikkinen, Christian Hermans, Laura T. Iraci, Pascal Jeseck, Nicholas Jones, Rigel Kivi, Nicolas Kumps, Jochen Landgraf, Alba Lorente, Emmanuel Mahieu, Maria V. Makarova, Johan Mellqvist, Jean-Marc Metzger, Isamu Morino, Tomoo Nagahama, Justus Notholt, Hirofumi Ohyama, Ivan Ortega, Mathias Palm, Christof Petri, David F. Pollard, Markus Rettinger, John Robinson, Sébastien Roche, Coleen M. Roehl, Amelie N. Röhling, Constantina Rousogenous, Matthias Schneider, Kei Shiomi, Dan Smale, Wolfgang Stremme, Kimberly Strong, Ralf Sussmann, Yao Té, Osamu Uchino, Voltaire A. Velazco, Corinne Vigouroux, Mihalis Vrekoussis, Pucai Wang, Thorsten Warneke, Tyler Wizenberg, Debra Wunch, Shoma Yamanouchi, Yang Yang, and Minqiang Zhou
Atmos. Meas. Tech., 14, 6249–6304, https://doi.org/10.5194/amt-14-6249-2021, https://doi.org/10.5194/amt-14-6249-2021, 2021
Short summary
Short summary
This paper presents, for the first time, Sentinel-5 Precursor methane and carbon monoxide validation results covering a period from November 2017 to September 2020. For this study, we used global TCCON and NDACC-IRWG network data covering a wide range of atmospheric and surface conditions across different terrains. We also show the influence of a priori alignment, smoothing uncertainties and the sensitivity of the validation results towards the application of advanced co-location criteria.
Amy H. Butler and Daniela I. V. Domeisen
Weather Clim. Dynam., 2, 453–474, https://doi.org/10.5194/wcd-2-453-2021, https://doi.org/10.5194/wcd-2-453-2021, 2021
Short summary
Short summary
We classify by wave geometry the stratospheric polar vortex during the final warming that occurs every spring in both hemispheres due to a combination of radiative and dynamical processes. We show that the shape of the vortex, as well as the timing of the seasonal transition, is linked to total column ozone prior to and surface weather following the final warming. These results have implications for prediction and our understanding of stratosphere–troposphere coupling processes in springtime.
John R. Albers, Amy H. Butler, Melissa L. Breeden, Andrew O. Langford, and George N. Kiladis
Weather Clim. Dynam., 2, 433–452, https://doi.org/10.5194/wcd-2-433-2021, https://doi.org/10.5194/wcd-2-433-2021, 2021
Short summary
Short summary
Weather variability controls the transport of ozone from the stratosphere to the Earth’s surface and water vapor from oceanic source regions to continental land masses. Forecasting these types of transport has high societal value because of the negative impacts of ozone on human health and the role of water vapor in governing precipitation variability. We use upper-level wind forecasts to assess the potential for predicting ozone and water vapor transport 3–6 weeks ahead of time.
Antara Banerjee, Amy H. Butler, Lorenzo M. Polvani, Alan Robock, Isla R. Simpson, and Lantao Sun
Atmos. Chem. Phys., 21, 6985–6997, https://doi.org/10.5194/acp-21-6985-2021, https://doi.org/10.5194/acp-21-6985-2021, 2021
Short summary
Short summary
We find that simulated stratospheric sulfate geoengineering could lead to warmer Eurasian winters alongside a drier Mediterranean and wetting to the north. These effects occur due to the strengthening of the Northern Hemisphere stratospheric polar vortex, which shifts the North Atlantic Oscillation to a more positive phase. We find the effects in our simulations to be much more significant than the wintertime effects of large tropical volcanic eruptions which inject much less sulfate aerosol.
Melissa L. Breeden, Amy H. Butler, John R. Albers, Michael Sprenger, and Andrew O'Neil Langford
Atmos. Chem. Phys., 21, 2781–2794, https://doi.org/10.5194/acp-21-2781-2021, https://doi.org/10.5194/acp-21-2781-2021, 2021
Short summary
Short summary
Prior research has found a maximum in deep stratosphere-to-troposphere mass/ozone transport over the western United States in boreal spring, which can enhance surface ozone concentrations, reducing air quality. We find that the winter-to-summer evolution of the north Pacific jet increases the frequency of stratospheric intrusions that drive transport, helping explain the observed maximum. The El Niño–Southern Oscillation affects the timing of the spring jet transition and therefore transport.
Thomas Blumenstock, Frank Hase, Axel Keens, Denis Czurlok, Orfeo Colebatch, Omaira Garcia, David W. T. Griffith, Michel Grutter, James W. Hannigan, Pauli Heikkinen, Pascal Jeseck, Nicholas Jones, Rigel Kivi, Erik Lutsch, Maria Makarova, Hamud K. Imhasin, Johan Mellqvist, Isamu Morino, Tomoo Nagahama, Justus Notholt, Ivan Ortega, Mathias Palm, Uwe Raffalski, Markus Rettinger, John Robinson, Matthias Schneider, Christian Servais, Dan Smale, Wolfgang Stremme, Kimberly Strong, Ralf Sussmann, Yao Té, and Voltaire A. Velazco
Atmos. Meas. Tech., 14, 1239–1252, https://doi.org/10.5194/amt-14-1239-2021, https://doi.org/10.5194/amt-14-1239-2021, 2021
Short summary
Short summary
This study investigates the level of channeling (optical resonances) of each FTIR spectrometer within the Network for the Detection of Atmospheric Composition Change (NDACC). Since the air gap of the beam splitter is a significant source of channeling, we propose new beam splitters with an increased wedge of the air gap. This study shows the potential for reducing channeling in the FTIR spectrometers operated by the NDACC, thereby increasing the quality of recorded spectra across the network.
Kimberlee Dubé, Adam Bourassa, Daniel Zawada, Douglas Degenstein, Robert Damadeo, David Flittner, and William Randel
Atmos. Meas. Tech., 14, 557–566, https://doi.org/10.5194/amt-14-557-2021, https://doi.org/10.5194/amt-14-557-2021, 2021
Short summary
Short summary
SAGE III/ISS measures profiles of NO2; however the algorithm to convert raw measurements to NO2 concentration neglects variations caused by changes in chemistry over the course of a day. We devised a procedure to account for these diurnal variations and assess their impact on NO2 measurements from SAGE III/ISS. We find that the new NO2 concentration is more than 10 % lower than NO2 from the standard algorithm below 30 km, showing that this effect is important to consider at lower altitudes.
Xin Yang, Anne-M. Blechschmidt, Kristof Bognar, Audra McClure-Begley, Sara Morris, Irina Petropavlovskikh, Andreas Richter, Henrik Skov, Kimberly Strong, David W. Tarasick, Taneil Uttal, Mika Vestenius, and Xiaoyi Zhao
Atmos. Chem. Phys., 20, 15937–15967, https://doi.org/10.5194/acp-20-15937-2020, https://doi.org/10.5194/acp-20-15937-2020, 2020
Short summary
Short summary
This is a modelling-based study on Arctic surface ozone, with a particular focus on spring ozone depletion events (i.e. with concentrations < 10 ppbv). Model experiments show that model runs with blowing-snow-sourced sea salt aerosols implemented as a source of reactive bromine can reproduce well large-scale ozone depletion events observed in the Arctic. This study supplies modelling evidence of the proposed mechanism of reactive-bromine release from blowing snow on sea ice (Yang et al., 2008).
Erik Lutsch, Kimberly Strong, Dylan B. A. Jones, Thomas Blumenstock, Stephanie Conway, Jenny A. Fisher, James W. Hannigan, Frank Hase, Yasuko Kasai, Emmanuel Mahieu, Maria Makarova, Isamu Morino, Tomoo Nagahama, Justus Notholt, Ivan Ortega, Mathias Palm, Anatoly V. Poberovskii, Ralf Sussmann, and Thorsten Warneke
Atmos. Chem. Phys., 20, 12813–12851, https://doi.org/10.5194/acp-20-12813-2020, https://doi.org/10.5194/acp-20-12813-2020, 2020
Short summary
Short summary
This paper describes the use of a network of 10 Arctic and midlatitude ground-based FTIR measurement sites to detect enhancements of the wildfire tracers carbon monoxide, hydrogen cyanide, and ethane from 2003 to 2018. A tagged CO GEOS-Chem simulation is used for source attribution and to evaluate the relative contribution of CO sources to the FTIR measurements. The use of FTIR measurements allowed for the emission ratios of hydrogen cyanide and ethane to be quantified.
Li Zhang, Meiyun Lin, Andrew O. Langford, Larry W. Horowitz, Christoph J. Senff, Elizabeth Klovenski, Yuxuan Wang, Raul J. Alvarez II, Irina Petropavlovskikh, Patrick Cullis, Chance W. Sterling, Jeff Peischl, Thomas B. Ryerson, Steven S. Brown, Zachary C. J. Decker, Guillaume Kirgis, and Stephen Conley
Atmos. Chem. Phys., 20, 10379–10400, https://doi.org/10.5194/acp-20-10379-2020, https://doi.org/10.5194/acp-20-10379-2020, 2020
Short summary
Short summary
Measuring and quantifying the sources of elevated springtime ozone in the southwestern US is challenging but relevant to the implications for control policy. Here we use intensive field measurements and two global models to study ozone sources in the region. We find that ozone from the stratosphere, wildfires, and Asia is an important source of high-ozone events in the region. Our analysis also helps understand the uncertainties in ozone simulations with individual models.
Kai-Lan Chang, Owen R. Cooper, Audrey Gaudel, Irina Petropavlovskikh, and Valérie Thouret
Atmos. Chem. Phys., 20, 9915–9938, https://doi.org/10.5194/acp-20-9915-2020, https://doi.org/10.5194/acp-20-9915-2020, 2020
Short summary
Short summary
We provide a statistical framework for detecting trends of multiple autocorrelated time series from sparsely sampled profile data. The result is a better and more consistent quantification of trend estimates of vertical profile data. The focus was placed on the long-term ozone time series from commercial aircraft and balloon-borne ozonesonde measurements. This framework can be applied to other trace gases in the atmosphere.
Corinne Vigouroux, Bavo Langerock, Carlos Augusto Bauer Aquino, Thomas Blumenstock, Zhibin Cheng, Martine De Mazière, Isabelle De Smedt, Michel Grutter, James W. Hannigan, Nicholas Jones, Rigel Kivi, Diego Loyola, Erik Lutsch, Emmanuel Mahieu, Maria Makarova, Jean-Marc Metzger, Isamu Morino, Isao Murata, Tomoo Nagahama, Justus Notholt, Ivan Ortega, Mathias Palm, Gaia Pinardi, Amelie Röhling, Dan Smale, Wolfgang Stremme, Kim Strong, Ralf Sussmann, Yao Té, Michel van Roozendael, Pucai Wang, and Holger Winkler
Atmos. Meas. Tech., 13, 3751–3767, https://doi.org/10.5194/amt-13-3751-2020, https://doi.org/10.5194/amt-13-3751-2020, 2020
Short summary
Short summary
We validate the TROPOMI HCHO product with ground-based FTIR (Fourier-transform infrared) measurements from 25 stations. We find that TROPOMI overestimates HCHO under clean conditions, while it underestimates it at high HCHO levels. Both TROPOMI precision and accuracy reach the pre-launch requirements, and its precision can even be 2 times better. The observed TROPOMI seasonal variability is in agreement with the FTIR data. The TROPOMI random uncertainty and data filtering should be refined.
Penny M. Rowe, Christopher J. Cox, Steven Neshyba, and Von P. Walden
Atmos. Meas. Tech., 12, 5071–5086, https://doi.org/10.5194/amt-12-5071-2019, https://doi.org/10.5194/amt-12-5071-2019, 2019
Short summary
Short summary
A better understanding of polar clouds is needed for predicting climate change, including cloud thickness and the sizes and amounts of liquid droplets and ice crystals. These properties can be estimated from an instrument (an infrared spectrometer) that sits on the surface and measures how much infrared radiation is emitted by the cloud. In this work we use model data to investigate how well such an instrument could retrieve cloud properties for different instrument and error characteristics.
Shima Bahramvash Shams, Von P. Walden, Irina Petropavlovskikh, David Tarasick, Rigel Kivi, Samuel Oltmans, Bryan Johnson, Patrick Cullis, Chance W. Sterling, Laura Thölix, and Quentin Errera
Atmos. Chem. Phys., 19, 9733–9751, https://doi.org/10.5194/acp-19-9733-2019, https://doi.org/10.5194/acp-19-9733-2019, 2019
Short summary
Short summary
The Arctic plays a very important role in the global ozone cycle. We use balloon-borne sampling and satellite data to create a high-quality dataset of the vertical profile of ozone from 2005 to 2017 to analyze ozone variations over four high-latitude Arctic locations. No significant annual trend is found at any of the studied locations. We develop a mathematical model to understand how deseasonalized ozone fluctuations can be influenced by various parameters.
Christopher J. Cox, David C. Noone, Max Berkelhammer, Matthew D. Shupe, William D. Neff, Nathaniel B. Miller, Von P. Walden, and Konrad Steffen
Atmos. Chem. Phys., 19, 7467–7485, https://doi.org/10.5194/acp-19-7467-2019, https://doi.org/10.5194/acp-19-7467-2019, 2019
Short summary
Short summary
Fogs are frequently reported by observers on the Greenland Ice Sheet. Fogs play a role in the hydrological and energetic balances of the ice sheet surface, but as yet the properties of Greenland fogs are not well known. We observed fogs in all months from Summit Station for 2 years and report their properties. Annually, fogs impart a slight warming to the surface and a case study suggests that they are particularly influential by providing insulation during the coldest part of the day in summer.
Kenneth Minschwaner, Anthony T. Giljum, Gloria L. Manney, Irina Petropavlovskikh, Bryan J. Johnson, and Allen F. Jordan
Atmos. Chem. Phys., 19, 1853–1865, https://doi.org/10.5194/acp-19-1853-2019, https://doi.org/10.5194/acp-19-1853-2019, 2019
Short summary
Short summary
We analyzed balloon measurements of ozone between the surface and 25 km altitude above Boulder, Colorado, and developed an algorithm to detect and classify layers of either unusually high or unusually low ozone. These layers range in vertical thickness from a few hundred meters to a few kilometers. We found that these laminae are an important contributor to the overall variability in ozone, especially in the transition region between the troposphere and stratosphere.
Ivan Ortega, Rebecca R. Buchholz, Emrys G. Hall, Dale F. Hurst, Allen F. Jordan, and James W. Hannigan
Atmos. Meas. Tech., 12, 873–890, https://doi.org/10.5194/amt-12-873-2019, https://doi.org/10.5194/amt-12-873-2019, 2019
Short summary
Short summary
In this work we evaluate the accuracy of water vapor ground-based FTIR retrievals in the lower and upper troposphere using coincident high-quality vertically resolved balloon-borne NOAA FPH measurements. Our results suggest that highly structured water vapor vertical gradients are captured with the FTIR and found a negligible bias in the immediate layer above the instrument altitude accounting for a water vapor time variability of less than 2 %.
Omid Moeini, Zahra Vaziri Zanjani, C. Thomas McElroy, David W. Tarasick, Robert D. Evans, Irina Petropavlovskikh, and Keh-Harng Feng
Atmos. Meas. Tech., 12, 327–343, https://doi.org/10.5194/amt-12-327-2019, https://doi.org/10.5194/amt-12-327-2019, 2019
Short summary
Short summary
This study documents the error caused by the effect of stray light in the Brewer and Dobson total ozone measurements using a mathematical model for each instrument. The errors caused by stray light are particularly significant at high latitudes in the late winter and early spring when measurements are made at large solar zenith angles and large total ozone column. Such errors are of considerable importance if those data are to be used for trend analysis or satellite data validation.
Alvaro de la Cámara, Marta Abalos, Peter Hitchcock, Natalia Calvo, and Rolando R. Garcia
Atmos. Chem. Phys., 18, 16499–16513, https://doi.org/10.5194/acp-18-16499-2018, https://doi.org/10.5194/acp-18-16499-2018, 2018
Short summary
Short summary
Long chemistry–climate runs are used to investigate the changes that sudden stratospheric warmings (extreme and fast disruptions of the wintertime stratospheric polar vortex) induce on Arctic ozone. Ozone increases rapidly during the onset of the events, driven by deep changes in the stratospheric transport circulation. These anomalies decay slowly, particularly in the lower stratosphere where they can last up to 2 months. Irreversible mixing makes an important contribution to this behavior.
Marina Astitha, Ioannis Kioutsioukis, Ghezae Araya Fisseha, Roberto Bianconi, Johannes Bieser, Jesper H. Christensen, Owen R. Cooper, Stefano Galmarini, Christian Hogrefe, Ulas Im, Bryan Johnson, Peng Liu, Uarporn Nopmongcol, Irina Petropavlovskikh, Efisio Solazzo, David W. Tarasick, and Greg Yarwood
Atmos. Chem. Phys., 18, 13925–13945, https://doi.org/10.5194/acp-18-13925-2018, https://doi.org/10.5194/acp-18-13925-2018, 2018
Short summary
Short summary
This work is unique in the detailed analyses of modeled ozone vertical profiles from sites in North America through the collaboration of four research groups from the US and EU. We assess the air quality models' performance and model inter-comparison for ozone vertical profiles and stratospheric ozone intrusions. Lastly, we designate the important role of lateral boundary conditions in the ozone vertical profiles using chemically inert tracers.
Corinne Vigouroux, Carlos Augusto Bauer Aquino, Maite Bauwens, Cornelis Becker, Thomas Blumenstock, Martine De Mazière, Omaira García, Michel Grutter, César Guarin, James Hannigan, Frank Hase, Nicholas Jones, Rigel Kivi, Dmitry Koshelev, Bavo Langerock, Erik Lutsch, Maria Makarova, Jean-Marc Metzger, Jean-François Müller, Justus Notholt, Ivan Ortega, Mathias Palm, Clare Paton-Walsh, Anatoly Poberovskii, Markus Rettinger, John Robinson, Dan Smale, Trissevgeni Stavrakou, Wolfgang Stremme, Kim Strong, Ralf Sussmann, Yao Té, and Geoffrey Toon
Atmos. Meas. Tech., 11, 5049–5073, https://doi.org/10.5194/amt-11-5049-2018, https://doi.org/10.5194/amt-11-5049-2018, 2018
Short summary
Short summary
A few ground-based stations have provided time series of HCHO columns until now, which was not optimal for providing good diagnostics for satellite or model validation. In this work, HCHO time series have been determined in a harmonized way at 21 stations ensuring, in addition to a better spatial and level of abundances coverage, that internal biases within the network have been minimized. This data set shows consistent good agreement with model data and is ready for future satellite validation.
Jiali Luo, Laura L. Pan, Shawn B. Honomichl, John W. Bergman, William J. Randel, Gene Francis, Cathy Clerbaux, Maya George, Xiong Liu, and Wenshou Tian
Atmos. Chem. Phys., 18, 12511–12530, https://doi.org/10.5194/acp-18-12511-2018, https://doi.org/10.5194/acp-18-12511-2018, 2018
Short summary
Short summary
We analyze upper tropospheric CO and O3 using satellite data from limb-viewing (MLS) and nadir-viewing (IASI and OMI) sensors, together with dynamical variables, to examine how the two types of data complement each other in representing the chemical variability associated with the day-to-day dynamical variability in the Asian summer monsoon anticyclone. The results provide new observational evidence of eddy shedding in upper tropospheric CO distribution.
Therese Rieckh, Richard Anthes, William Randel, Shu-Peng Ho, and Ulrich Foelsche
Atmos. Meas. Tech., 11, 3091–3109, https://doi.org/10.5194/amt-11-3091-2018, https://doi.org/10.5194/amt-11-3091-2018, 2018
Short summary
Short summary
Water vapor is the most important tropospheric greenhouse gas and is also highly variable in space and time. We study the vertical structure and variability of tropospheric humidity using various observing techniques (GPS radio occultation, radiosondes, Atmospheric Infrared Sounder) and models. Time–height cross sections reveal seasonal biases for different pressure layers. We find that radio occultation humidity has high accuracy and can contribute valuable information in data assimilation.
Patrick Martineau, Seok-Woo Son, Masakazu Taguchi, and Amy H. Butler
Atmos. Chem. Phys., 18, 7169–7187, https://doi.org/10.5194/acp-18-7169-2018, https://doi.org/10.5194/acp-18-7169-2018, 2018
Short summary
Short summary
This study evaluates the agreement between eight reanalysis datasets by comparing zonal-mean zonal winds and the forcing terms of the zonal-mean momentum equation during sudden stratospheric warming events. Results show that the spread between datasets increases exponentially with height and is largest during the most intense sudden stratospheric warming events. The largest uncertainties arise from differences in the mean meridional circulation and horizontal fluxes of momentum by eddies.
Christos Zerefos, John Kapsomenakis, Kostas Eleftheratos, Kleareti Tourpali, Irina Petropavlovskikh, Daan Hubert, Sophie Godin-Beekmann, Wolfgang Steinbrecht, Stacey Frith, Viktoria Sofieva, and Birgit Hassler
Atmos. Chem. Phys., 18, 6427–6440, https://doi.org/10.5194/acp-18-6427-2018, https://doi.org/10.5194/acp-18-6427-2018, 2018
Short summary
Short summary
We point out the representativeness of single lidar stations for zonally averaged ozone profile variations in the middle/upper stratosphere. We examine the contribution of chemistry and natural proxies to ozone profile trends. Above 10 hPa an “inflection point” between 1997–99 marks the end of significant negative ozone trends, followed by a recent period of positive ozone change in 1998–2015. Below 15 hPa the pre-1998 negative ozone trends tend to become insignificant as we move to 2015.
Martine De Mazière, Anne M. Thompson, Michael J. Kurylo, Jeannette D. Wild, Germar Bernhard, Thomas Blumenstock, Geir O. Braathen, James W. Hannigan, Jean-Christopher Lambert, Thierry Leblanc, Thomas J. McGee, Gerald Nedoluha, Irina Petropavlovskikh, Gunther Seckmeyer, Paul C. Simon, Wolfgang Steinbrecht, and Susan E. Strahan
Atmos. Chem. Phys., 18, 4935–4964, https://doi.org/10.5194/acp-18-4935-2018, https://doi.org/10.5194/acp-18-4935-2018, 2018
Short summary
Short summary
This paper serves as an introduction to the special issue "Twenty-five years of operations of the Network for the Detection of Atmospheric Composition Change (NDACC)". It describes the origins of the network, its actual status, and some perspectives for its future evolution in the context of atmospheric sciences.
Claire Pettersen, Ralf Bennartz, Aronne J. Merrelli, Matthew D. Shupe, David D. Turner, and Von P. Walden
Atmos. Chem. Phys., 18, 4715–4735, https://doi.org/10.5194/acp-18-4715-2018, https://doi.org/10.5194/acp-18-4715-2018, 2018
Short summary
Short summary
A novel method for classifying Arctic precipitation using ground based remote sensors is presented. The classification reveals two distinct, primary regimes of precipitation over the central Greenland Ice Sheet: snowfall coupled to deep, fully glaciated ice clouds or to shallow, mixed-phase clouds. The ice clouds are associated with low-pressure storm systems from the southeast, while the mixed-phase clouds slowly propagate from the southwest along a quiescent flow.
Hugh C. Pumphrey, Norbert Glatthor, Peter F. Bernath, Christopher D. Boone, James W. Hannigan, Ivan Ortega, Nathaniel J. Livesey, and William G. Read
Atmos. Chem. Phys., 18, 691–703, https://doi.org/10.5194/acp-18-691-2018, https://doi.org/10.5194/acp-18-691-2018, 2018
Short summary
Short summary
The Microwave Limb Sounder (MLS) is a satellite instrument that has been measuring the amount of various gases in the atmosphere since 2004. In late 2015 and 2016 it observed unusual amounts of hydrogen cyanide (HCN), a gas produced when vegetation is burned. We compare the MLS observations to similar observations from other instruments. The excess HCN is shown to come from fires in Indonesia. There are more fires than usual in 2015–16 due to a drought caused by an El Niño event.
Germar Bernhard, Irina Petropavlovskikh, and Bernhard Mayer
Atmos. Meas. Tech., 10, 4979–4994, https://doi.org/10.5194/amt-10-4979-2017, https://doi.org/10.5194/amt-10-4979-2017, 2017
Short summary
Short summary
The vertical distribution of atmospheric ozone has historically been measured from the ground by analysing the wavelength dependence of zenith radiation. Our method retrieves the same information from global irradiance, which is defined as radiant flux received from the entire upper hemisphere, including the Sun. The new method makes existing long-term data sets of global irradiance available for studying ozone profiles. The accuracy of the new method is similar to that of the legacy method.
Robert D. Evans, Irina Petropavlovskikh, Audra McClure-Begley, Glen McConville, Dorothy Quincy, and Koji Miyagawa
Atmos. Chem. Phys., 17, 12051–12070, https://doi.org/10.5194/acp-17-12051-2017, https://doi.org/10.5194/acp-17-12051-2017, 2017
Short summary
Short summary
The record of the total ozone column (TOC) from stations using the Dobson ozone spectrophotometer is one of the longest geophysical records in existence. Recent adoption of a new data processing scheme, with improved results prompted a complete reprocessing of the historical record from these NOAA/NDACC sites. As the original record of TOC from these stations are used for trend analysis and satellite verification, the scientific community should be aware of the changes in the new data set.
Kevin S. Olsen, Kimberly Strong, Kaley A. Walker, Chris D. Boone, Piera Raspollini, Johannes Plieninger, Whitney Bader, Stephanie Conway, Michel Grutter, James W. Hannigan, Frank Hase, Nicholas Jones, Martine de Mazière, Justus Notholt, Matthias Schneider, Dan Smale, Ralf Sussmann, and Naoko Saitoh
Atmos. Meas. Tech., 10, 3697–3718, https://doi.org/10.5194/amt-10-3697-2017, https://doi.org/10.5194/amt-10-3697-2017, 2017
Short summary
Short summary
The primary instrument on the Greenhouse gases Observing SATellite (GOSAT) is the Thermal And Near infrared Sensor for carbon Observations (TANSO) Fourier transform spectrometer (FTS). TANSO-FTS has a thermal infrared channel to retrieve vertical profiles of CO2 and CH4 volume mixing ratios in the troposphere. We compare the retrieved vertical profiles of CH4 from TANSO-FTS with those from two other spaceborne FTSs and with ground-based FTS observatories to assess their quality.
Jay Herman, Robert Evans, Alexander Cede, Nader Abuhassan, Irina Petropavlovskikh, Glenn McConville, Koji Miyagawa, and Brandon Noirot
Atmos. Meas. Tech., 10, 3539–3545, https://doi.org/10.5194/amt-10-3539-2017, https://doi.org/10.5194/amt-10-3539-2017, 2017
Short summary
Short summary
A co-located Pandora Spectrometer Instrument (Pan #034) has been compared to a well-calibrated Dobson spectroradiometer (Dobson #061) in Boulder, Colorado, and with two satellite instruments over a 3-year period. The results show good agreement between Pa n#034 and Dobson #061 and with the satellite data within their statistical uncertainties.
Wolfgang Steinbrecht, Lucien Froidevaux, Ryan Fuller, Ray Wang, John Anderson, Chris Roth, Adam Bourassa, Doug Degenstein, Robert Damadeo, Joe Zawodny, Stacey Frith, Richard McPeters, Pawan Bhartia, Jeannette Wild, Craig Long, Sean Davis, Karen Rosenlof, Viktoria Sofieva, Kaley Walker, Nabiz Rahpoe, Alexei Rozanov, Mark Weber, Alexandra Laeng, Thomas von Clarmann, Gabriele Stiller, Natalya Kramarova, Sophie Godin-Beekmann, Thierry Leblanc, Richard Querel, Daan Swart, Ian Boyd, Klemens Hocke, Niklaus Kämpfer, Eliane Maillard Barras, Lorena Moreira, Gerald Nedoluha, Corinne Vigouroux, Thomas Blumenstock, Matthias Schneider, Omaira García, Nicholas Jones, Emmanuel Mahieu, Dan Smale, Michael Kotkamp, John Robinson, Irina Petropavlovskikh, Neil Harris, Birgit Hassler, Daan Hubert, and Fiona Tummon
Atmos. Chem. Phys., 17, 10675–10690, https://doi.org/10.5194/acp-17-10675-2017, https://doi.org/10.5194/acp-17-10675-2017, 2017
Short summary
Short summary
Thanks to the 1987 Montreal Protocol and its amendments, ozone-depleting chlorine (and bromine) in the stratosphere has declined slowly since the late 1990s. Improved and extended long-term ozone profile observations from satellites and ground-based stations confirm that ozone is responding as expected and has increased by about 2 % per decade since 2000 in the upper stratosphere, around 40 km altitude. At lower altitudes, however, ozone has not changed significantly since 2000.
Enrico Dammers, Mark W. Shephard, Mathias Palm, Karen Cady-Pereira, Shannon Capps, Erik Lutsch, Kim Strong, James W. Hannigan, Ivan Ortega, Geoffrey C. Toon, Wolfgang Stremme, Michel Grutter, Nicholas Jones, Dan Smale, Jacob Siemons, Kevin Hrpcek, Denis Tremblay, Martijn Schaap, Justus Notholt, and Jan Willem Erisman
Atmos. Meas. Tech., 10, 2645–2667, https://doi.org/10.5194/amt-10-2645-2017, https://doi.org/10.5194/amt-10-2645-2017, 2017
Short summary
Short summary
Presented here is the validation of the CrIS fast physical retrieval (CFPR) NH3 column and profile measurements using ground-based Fourier transform infrared (FTIR) observations. The overall FTIR and CrIS total columns have a positive correlation of r = 0.77 (N = 218) with very little bias (a slope of 1.02). Furthermore, we find that CrIS and FTIR profile comparison differences are mostly within the range of the estimated retrieval uncertainties, with differences in the range of ~ 20 to 40 %.
Olga V. Tweedy, Natalya A. Kramarova, Susan E. Strahan, Paul A. Newman, Lawrence Coy, William J. Randel, Mijeong Park, Darryn W. Waugh, and Stacey M. Frith
Atmos. Chem. Phys., 17, 6813–6823, https://doi.org/10.5194/acp-17-6813-2017, https://doi.org/10.5194/acp-17-6813-2017, 2017
Short summary
Short summary
In this study we examined the impact of unprecedented disruption in the wind pattern (the quasi-biennial oscillation, or QBO) in the tropical stratosphere (16–48 km above the ground) on chemicals very important to the stratospheric climate such as ozone (O3). During the 2016 boreal summer, total O3 is lower in the extratropics than during previous QBO cycles due to lifting forced from the disruption. This decrease in O3 led to the increase in surface UV index by 8.5 % compared to the 36 yr mean.
Rebecca R. Buchholz, Merritt N. Deeter, Helen M. Worden, John Gille, David P. Edwards, James W. Hannigan, Nicholas B. Jones, Clare Paton-Walsh, David W. T. Griffith, Dan Smale, John Robinson, Kimberly Strong, Stephanie Conway, Ralf Sussmann, Frank Hase, Thomas Blumenstock, Emmanuel Mahieu, and Bavo Langerock
Atmos. Meas. Tech., 10, 1927–1956, https://doi.org/10.5194/amt-10-1927-2017, https://doi.org/10.5194/amt-10-1927-2017, 2017
Short summary
Short summary
The study presents the first systematic use of ground-based remote-sensing data from the Network for the Detection of Atmospheric Composition Change (NDACC) to validate satellite-based Measurements of Pollution in the Troposphere (MOPITT) total column carbon monoxide (CO). MOPITT generally shows low bias with respect to the ground-based instruments. The geographic and temporal dependence of validation results are determined. Our findings inform some recommendations for using MOPITT measurements.
Therese Rieckh, Richard Anthes, William Randel, Shu-Peng Ho, and Ulrich Foelsche
Atmos. Meas. Tech., 10, 1093–1110, https://doi.org/10.5194/amt-10-1093-2017, https://doi.org/10.5194/amt-10-1093-2017, 2017
Short summary
Short summary
We use GPS radio occultation (RO) data to investigate the structure and temporal behavior of extremely dry, high-ozone tropospheric air in the tropical western Pacific and compare them to various data sets (research aircraft, radiosonde, infrared sounder, and model reanalyses). All these data sets have limitations. We show that the RO data contribute significant information on the water vapor content. Our results also verify the quality of the reanalyses.
Amy H. Butler, Jeremiah P. Sjoberg, Dian J. Seidel, and Karen H. Rosenlof
Earth Syst. Sci. Data, 9, 63–76, https://doi.org/10.5194/essd-9-63-2017, https://doi.org/10.5194/essd-9-63-2017, 2017
Short summary
Short summary
From six different reanalysis products, we created a new comprehensive database of major sudden stratospheric warming events, which are large and rapid temperature increases in the stratosphere associated with a reversal of the stratospheric winter circulation. This new database can facilitate analysis of the evolution and surface impacts of these events as well as intercomparison of reanalysis products.
Natalie Kille, Sunil Baidar, Philip Handley, Ivan Ortega, Roman Sinreich, Owen R. Cooper, Frank Hase, James W. Hannigan, Gabriele Pfister, and Rainer Volkamer
Atmos. Meas. Tech., 10, 373–392, https://doi.org/10.5194/amt-10-373-2017, https://doi.org/10.5194/amt-10-373-2017, 2017
Short summary
Short summary
This article describes a new instrument for measuring and quantifying emission fluxes. It introduces the instrument using the solar occultation flux method. Results are presented from the FRAPPE field campaign near Denver, Colorado, from 2014. Calculations of emissions of sources are presented from FRAPPE and compared to emission inventories. Finally, structure functions are calculated to facilitate the future comparison of high-resolution measurements with low resolution satellite measurements.
Barbara Scherllin-Pirscher, William J. Randel, and Joowan Kim
Atmos. Chem. Phys., 17, 793–806, https://doi.org/10.5194/acp-17-793-2017, https://doi.org/10.5194/acp-17-793-2017, 2017
Short summary
Short summary
Tropical temperature variability and associated Kelvin-wave activity are investigated from 10 km to 30 km using 13 years of high-resolution observational data. Strongest temperature variability is found in the tropical tropopause region between about 16 km and 20 km, where peaks of Kelvin-wave activity are irregularly distributed in time. Detailed knowledge of dynamical processes in the tropical tropopause region is an essential part of better understanding climate variability and change.
Christos S. Zerefos, Kostas Eleftheratos, John Kapsomenakis, Stavros Solomos, Antje Inness, Dimitris Balis, Alberto Redondas, Henk Eskes, Marc Allaart, Vassilis Amiridis, Arne Dahlback, Veerle De Bock, Henri Diémoz, Ronny Engelmann, Paul Eriksen, Vitali Fioletov, Julian Gröbner, Anu Heikkilä, Irina Petropavlovskikh, Janusz Jarosławski, Weine Josefsson, Tomi Karppinen, Ulf Köhler, Charoula Meleti, Christos Repapis, John Rimmer, Vladimir Savinykh, Vadim Shirotov, Anna Maria Siani, Andrew R. D. Smedley, Martin Stanek, and René Stübi
Atmos. Chem. Phys., 17, 551–574, https://doi.org/10.5194/acp-17-551-2017, https://doi.org/10.5194/acp-17-551-2017, 2017
Short summary
Short summary
The paper makes a convincing case that the Brewer network is capable of detecting enhanced SO2 columns, as observed, e.g., after volcanic eruptions. For this reason, large volcanic eruptions of the past decade have been used to detect and forecast SO2 plumes of volcanic origin using the Brewer and other ground-based networks, aided by satellite, trajectory analysis calculations and modelling.
Gaétane Ronsmans, Bavo Langerock, Catherine Wespes, James W. Hannigan, Frank Hase, Tobias Kerzenmacher, Emmanuel Mahieu, Matthias Schneider, Dan Smale, Daniel Hurtmans, Martine De Mazière, Cathy Clerbaux, and Pierre-François Coheur
Atmos. Meas. Tech., 9, 4783–4801, https://doi.org/10.5194/amt-9-4783-2016, https://doi.org/10.5194/amt-9-4783-2016, 2016
Short summary
Short summary
HNO3 concentrations are obtained from the IASI instrument and the data set is characterized for the first time in terms of vertical profiles, averaging kernels and error profiles. A validation is also conducted through a comparison with ground-based FTIR measurements, with good results. The data set is then used to analyse HNO3 spatial and temporal variability for the year 2011. The latitudinal gradient and the large seasonal variability in polar regions are well represented with IASI data.
Penny M. Rowe, Christopher J. Cox, and Von P. Walden
Atmos. Meas. Tech., 9, 3641–3659, https://doi.org/10.5194/amt-9-3641-2016, https://doi.org/10.5194/amt-9-3641-2016, 2016
Short summary
Short summary
Clouds play an important role in the rapid climate change occurring in polar regions, yet cloud measurements are challenging in such harsh, remote environments. Here we explore how well a proposed low-power infrared spectrometer, which would be highly portable, could be used to determine cloud height. Using simulated data, we estimate retrieval accuracy, finding that such an instrument would be able to constrain cloud height, particular for low, thick clouds, which are common in polar region.
Christopher J. Cox, Penny M. Rowe, Steven P. Neshyba, and Von P. Walden
Earth Syst. Sci. Data, 8, 199–211, https://doi.org/10.5194/essd-8-199-2016, https://doi.org/10.5194/essd-8-199-2016, 2016
Short summary
Short summary
Observations of cloud properties are necessary to understand and model clouds. Observations are frequently retrieved using remotely sensed measurements of infrared cloud emission. To support development and validation of the retrieval algorithms, this work produced a synthetic high-spectral-resolution infrared data set based on atmospheric conditions typical of the Arctic. Advantages of the data set include a priori knowledge of cloud properties and control over measurement uncertainties.
Hella Garny and William J. Randel
Atmos. Chem. Phys., 16, 2703–2718, https://doi.org/10.5194/acp-16-2703-2016, https://doi.org/10.5194/acp-16-2703-2016, 2016
Short summary
Short summary
We investigate the fate of air that originates in the monsoon region in the upper troposphere, where it was transported to by convection. We find that almost half of the air parcels released in the monsoon region in the upper troposphere reach the stratosphere within 60 days, and most ascend to the tropical lower stratosphere. This suggests that trace gases, including pollutants, that are transported into the stratosphere via the Asian monsoon are in a position to enter the deep stratosphere.
N. R. P. Harris, B. Hassler, F. Tummon, G. E. Bodeker, D. Hubert, I. Petropavlovskikh, W. Steinbrecht, J. Anderson, P. K. Bhartia, C. D. Boone, A. Bourassa, S. M. Davis, D. Degenstein, A. Delcloo, S. M. Frith, L. Froidevaux, S. Godin-Beekmann, N. Jones, M. J. Kurylo, E. Kyrölä, M. Laine, S. T. Leblanc, J.-C. Lambert, B. Liley, E. Mahieu, A. Maycock, M. de Mazière, A. Parrish, R. Querel, K. H. Rosenlof, C. Roth, C. Sioris, J. Staehelin, R. S. Stolarski, R. Stübi, J. Tamminen, C. Vigouroux, K. A. Walker, H. J. Wang, J. Wild, and J. M. Zawodny
Atmos. Chem. Phys., 15, 9965–9982, https://doi.org/10.5194/acp-15-9965-2015, https://doi.org/10.5194/acp-15-9965-2015, 2015
Short summary
Short summary
Trends in the vertical distribution of ozone are reported for new and recently revised data sets. The amount of ozone-depleting compounds in the stratosphere peaked in the second half of the 1990s. We examine the trends before and after that peak to see if any change in trend is discernible. The previously reported decreases are confirmed. Furthermore, the downward trend in upper stratospheric ozone has not continued. The possible significance of any increase is discussed in detail.
J. Herman, R. Evans, A. Cede, N. Abuhassan, I. Petropavlovskikh, and G. McConville
Atmos. Meas. Tech., 8, 3407–3418, https://doi.org/10.5194/amt-8-3407-2015, https://doi.org/10.5194/amt-8-3407-2015, 2015
Short summary
Short summary
Measurements of total column ozone have been obtained by the Dobson #061 spectrophotometer and the Pandora spectrometer system from the roof of the NOAA building in Boulder, Colorado. A comparison of 1 year (17 Dec 2013 to 18 Dec 2014) of ozone data shows that the two instruments are in close agreement after a separate correction was applied to the retrieved ozone data from each instrument. Good agreement was also obtained between Pandora and two satellite data sets, AURA OMI and SUOMI OMPS.
T. Wang, A. E. Dessler, M. R. Schoeberl, W. J. Randel, and J.-E. Kim
Atmos. Chem. Phys., 15, 3517–3526, https://doi.org/10.5194/acp-15-3517-2015, https://doi.org/10.5194/acp-15-3517-2015, 2015
Short summary
Short summary
We investigated the impacts of vertical temperature structures on trajectory simulations of stratospheric dehydration and water vapor by using 1) MERRA temperatures on model levels; 2) GPS temperatures at finer vertical resolutions; and 3) adjusted MERRA temperatures with finer vertical structures induced by waves. We show that despite the fact that temperatures at finer vertical structures tend to dry air by 0.1-0.3ppmv, the interannual variability in different runs is essentially the same.
I. Petropavlovskikh, R. Evans, G. McConville, G. L. Manney, and H. E. Rieder
Atmos. Chem. Phys., 15, 1585–1598, https://doi.org/10.5194/acp-15-1585-2015, https://doi.org/10.5194/acp-15-1585-2015, 2015
S. Fueglistaler, M. Abalos, T. J. Flannaghan, P. Lin, and W. J. Randel
Atmos. Chem. Phys., 14, 13439–13453, https://doi.org/10.5194/acp-14-13439-2014, https://doi.org/10.5194/acp-14-13439-2014, 2014
A. Laeng, U. Grabowski, T. von Clarmann, G. Stiller, N. Glatthor, M. Höpfner, S. Kellmann, M. Kiefer, A. Linden, S. Lossow, V. Sofieva, I. Petropavlovskikh, D. Hubert, T. Bathgate, P. Bernath, C. D. Boone, C. Clerbaux, P. Coheur, R. Damadeo, D. Degenstein, S. Frith, L. Froidevaux, J. Gille, K. Hoppel, M. McHugh, Y. Kasai, J. Lumpe, N. Rahpoe, G. Toon, T. Sano, M. Suzuki, J. Tamminen, J. Urban, K. Walker, M. Weber, and J. Zawodny
Atmos. Meas. Tech., 7, 3971–3987, https://doi.org/10.5194/amt-7-3971-2014, https://doi.org/10.5194/amt-7-3971-2014, 2014
T. Wang, W. J. Randel, A. E. Dessler, M. R. Schoeberl, and D. E. Kinnison
Atmos. Chem. Phys., 14, 7135–7147, https://doi.org/10.5194/acp-14-7135-2014, https://doi.org/10.5194/acp-14-7135-2014, 2014
A. E. Bourassa, D. A. Degenstein, W. J. Randel, J. M. Zawodny, E. Kyrölä, C. A. McLinden, C. E. Sioris, and C. Z. Roth
Atmos. Chem. Phys., 14, 6983–6994, https://doi.org/10.5194/acp-14-6983-2014, https://doi.org/10.5194/acp-14-6983-2014, 2014
B. Hassler, I. Petropavlovskikh, J. Staehelin, T. August, P. K. Bhartia, C. Clerbaux, D. Degenstein, M. De Mazière, B. M. Dinelli, A. Dudhia, G. Dufour, S. M. Frith, L. Froidevaux, S. Godin-Beekmann, J. Granville, N. R. P. Harris, K. Hoppel, D. Hubert, Y. Kasai, M. J. Kurylo, E. Kyrölä, J.-C. Lambert, P. F. Levelt, C. T. McElroy, R. D. McPeters, R. Munro, H. Nakajima, A. Parrish, P. Raspollini, E. E. Remsberg, K. H. Rosenlof, A. Rozanov, T. Sano, Y. Sasano, M. Shiotani, H. G. J. Smit, G. Stiller, J. Tamminen, D. W. Tarasick, J. Urban, R. J. van der A, J. P. Veefkind, C. Vigouroux, T. von Clarmann, C. von Savigny, K. A. Walker, M. Weber, J. Wild, and J. M. Zawodny
Atmos. Meas. Tech., 7, 1395–1427, https://doi.org/10.5194/amt-7-1395-2014, https://doi.org/10.5194/amt-7-1395-2014, 2014
K. Miyagawa, I. Petropavlovskikh, R. D. Evans, C. Long, J. Wild, G. L. Manney, and W. H. Daffer
Atmos. Chem. Phys., 14, 3945–3968, https://doi.org/10.5194/acp-14-3945-2014, https://doi.org/10.5194/acp-14-3945-2014, 2014
P. M. Rowe, S. Neshyba, and V. P. Walden
Atmos. Chem. Phys., 13, 11925–11933, https://doi.org/10.5194/acp-13-11925-2013, https://doi.org/10.5194/acp-13-11925-2013, 2013
A. Park, S. Guillas, and I. Petropavlovskikh
Atmos. Chem. Phys., 13, 11473–11501, https://doi.org/10.5194/acp-13-11473-2013, https://doi.org/10.5194/acp-13-11473-2013, 2013
M. Abalos, F. Ploeger, P. Konopka, W. J. Randel, and E. Serrano
Atmos. Chem. Phys., 13, 10787–10794, https://doi.org/10.5194/acp-13-10787-2013, https://doi.org/10.5194/acp-13-10787-2013, 2013
M. Abalos, W. J. Randel, D. E. Kinnison, and E. Serrano
Atmos. Chem. Phys., 13, 10591–10607, https://doi.org/10.5194/acp-13-10591-2013, https://doi.org/10.5194/acp-13-10591-2013, 2013
K. A. Tereszchuk, D. P. Moore, J. J. Harrison, C. D. Boone, M. Park, J. J. Remedios, W. J. Randel, and P. F. Bernath
Atmos. Chem. Phys., 13, 5601–5613, https://doi.org/10.5194/acp-13-5601-2013, https://doi.org/10.5194/acp-13-5601-2013, 2013
M. Abalos, W. J. Randel, and E. Serrano
Atmos. Chem. Phys., 12, 11505–11517, https://doi.org/10.5194/acp-12-11505-2012, https://doi.org/10.5194/acp-12-11505-2012, 2012
Related subject area
Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Total ozone trends at three northern high-latitude stations
Case study on the influence of synoptic-scale processes on the paired H2O–O3 distribution in the UTLS across a North Atlantic jet stream
Dynamical linear modeling estimates of long-term ozone trends from homogenized Dobson Umkehr profiles at Arosa/Davos, Switzerland
Zonally asymmetric influences of the quasi-biennial oscillation on stratospheric ozone
Stratospheric ozone trends for 1984–2021 in the SAGE II–OSIRIS–SAGE III/ISS composite dataset
Impacts of tropical cyclones on the thermodynamic conditions in the tropical tropopause layer observed by A-Train satellites
Investigation and amelioration of long-term instrumental drifts in water vapor and nitrous oxide measurements from the Aura Microwave Limb Sounder (MLS) and their implications for studies of variability and trends
3-D tomographic observations of Rossby wave breaking over the North Atlantic during the WISE aircraft campaign in 2017
Is there a direct solar proton impact on lower-stratospheric ozone?
Small-scale variability of stratospheric ozone during the sudden stratospheric warming 2018/2019 observed at Ny-Ålesund, Svalbard
Seasonal stratospheric ozone trends over 2000–2018 derived from several merged data sets
Evidence for energetic particle precipitation and quasi-biennial oscillation modulations of the Antarctic NO2 springtime stratospheric column from OMI observations
Stratospheric ozone trends for 1985–2018: sensitivity to recent large variability
Interannual variations of water vapor in the tropical upper troposphere and the lower and middle stratosphere and their connections to ENSO and QBO
Ground-based ozone profiles over central Europe: incorporating anomalous observations into the analysis of stratospheric ozone trends
Response of stratospheric water vapor and ozone to the unusual timing of El Niño and the QBO disruption in 2015–2016
Assessing stratospheric transport in the CMAM30 simulations using ACE-FTS measurements
Water vapour and methane coupling in the stratosphere observed using SCIAMACHY solar occultation measurements
Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery
MLS measurements of stratospheric hydrogen cyanide during the 2015–2016 El Niño event
What controls the seasonal cycle of columnar methane observed by GOSAT over different regions in India?
An “island” in the stratosphere – on the enhanced annual variation of water vapour in the middle and upper stratosphere in the southern tropics and subtropics
CCl4 distribution derived from MIPAS ESA v7 data: intercomparisons, trend, and lifetime estimation
Results from the validation campaign of the ozone radiometer GROMOS-C at the NDACC station of Réunion island
Trend analysis of the 20-year time series of stratospheric ozone profiles observed by the GROMOS microwave radiometer at Bern
Is there a solar signal in lower stratospheric water vapour?
Trajectory mapping of middle atmospheric water vapor by a mini network of NDACC instruments
Sunset–sunrise difference in solar occultation ozone measurements (SAGE II, HALOE, and ACE–FTS) and its relationship to tidal vertical winds
Tracing the second stage of ozone recovery in the Antarctic ozone-hole with a "big data" approach to multivariate regressions
Total ozone trends and variability during 1979–2012 from merged data sets of various satellites
Trends in stratospheric ozone derived from merged SAGE II and Odin-OSIRIS satellite observations
Evaluation of the use of five laboratory-determined ozone absorption cross sections in Brewer and Dobson retrieval algorithms
Decadal-scale responses in middle and upper stratospheric ozone from SAGE II version 7 data
Validation of ozone monthly zonal mean profiles obtained from the version 8.6 Solar Backscatter Ultraviolet algorithm
Stratospheric lifetimes of CFC-12, CCl4, CH4, CH3Cl and N2O from measurements made by the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS)
Volcanic SO2 fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS
Stratospheric ozone interannual variability (1995–2011) as observed by lidar and satellite at Mauna Loa Observatory, HI and Table Mountain Facility, CA
Chemical ozone losses in Arctic and Antarctic polar winter/spring season derived from SCIAMACHY limb measurements 2002–2009
Development of a climate record of tropospheric and stratospheric column ozone from satellite remote sensing: evidence of an early recovery of global stratospheric ozone
A-train CALIOP and MLS observations of early winter Antarctic polar stratospheric clouds and nitric acid in 2008
Ozone zonal asymmetry and planetary wave characterization during Antarctic spring
A global climatology of tropospheric and stratospheric ozone derived from Aura OMI and MLS measurements
Sulphur dioxide as a volcanic ash proxy during the April–May 2010 eruption of Eyjafjallajökull Volcano, Iceland
Analysis of HCl and ClO time series in the upper stratosphere using satellite data sets
Retrieval of atmospheric parameters from GOMOS data
Multi sensor reanalysis of total ozone
GOMOS data characterisation and error estimation
Technical Note: Time-dependent limb-darkening calibration for solar occultation instruments
Simultaneous measurements of OClO, NO2 and O3 in the Arctic polar vortex by the GOMOS instrument
Leonie Bernet, Tove Svendby, Georg Hansen, Yvan Orsolini, Arne Dahlback, Florence Goutail, Andrea Pazmiño, Boyan Petkov, and Arve Kylling
Atmos. Chem. Phys., 23, 4165–4184, https://doi.org/10.5194/acp-23-4165-2023, https://doi.org/10.5194/acp-23-4165-2023, 2023
Short summary
Short summary
After the severe destruction of the ozone layer, the amount of ozone in the stratosphere is expected to increase again. At northern high latitudes, however, such a recovery has not been detected yet. To assess ozone changes in that region, we analyse the amount of ozone above specific locations (total ozone) measured at three stations in Norway. We found that total ozone increases significantly at two Arctic stations, which may be an indication of ozone recovery at northern high latitudes.
Andreas Schäfler, Michael Sprenger, Heini Wernli, Andreas Fix, and Martin Wirth
Atmos. Chem. Phys., 23, 999–1018, https://doi.org/10.5194/acp-23-999-2023, https://doi.org/10.5194/acp-23-999-2023, 2023
Short summary
Short summary
In this study, airborne lidar profile measurements of H2O and O3 across a midlatitude jet stream are combined with analyses in tracer–trace space and backward trajectories. We highlight that transport and mixing processes in the history of the observed air masses are governed by interacting tropospheric weather systems on synoptic timescales. We show that these weather systems play a key role in the high variability of the paired H2O and O3 distributions near the tropopause.
Eliane Maillard Barras, Alexander Haefele, René Stübi, Achille Jouberton, Herbert Schill, Irina Petropavlovskikh, Koji Miyagawa, Martin Stanek, and Lucien Froidevaux
Atmos. Chem. Phys., 22, 14283–14302, https://doi.org/10.5194/acp-22-14283-2022, https://doi.org/10.5194/acp-22-14283-2022, 2022
Short summary
Short summary
Intercomparisons of three Dobson and three Brewer spectrophotometers at Arosa/Davos, Switzerland, are used for the homogenization of the longest Umkehr ozone profiles time series worldwide. Dynamic linear modeling (DLM) reveals a significant positive trend after 2004 in the upper stratosphere, a persistent negative trend between 25 and 30 km in the middle stratosphere, and a negative trend at 20 km in the lower stratosphere, with different levels of significance depending on the dataset.
Wuke Wang, Jin Hong, Ming Shangguan, Hongyue Wang, Wei Jiang, and Shuyun Zhao
Atmos. Chem. Phys., 22, 13695–13711, https://doi.org/10.5194/acp-22-13695-2022, https://doi.org/10.5194/acp-22-13695-2022, 2022
Short summary
Short summary
The ozone layer protects the life on the Earth by absorbing the ultraviolet (UV) radiation. Beside the long-term trend, there are strong interannual fluctuations in stratospheric ozone. The quasi-biennial oscillation (QBO) is an important interannual mode in the stratosphere. We show some new zonally asymmetric features of its impacts on stratospheric ozone using satellite data, ERA5 reanalysis, and model simulations, which is helpful for predicting the regional UV radiation at the surface.
Kristof Bognar, Susann Tegtmeier, Adam Bourassa, Chris Roth, Taran Warnock, Daniel Zawada, and Doug Degenstein
Atmos. Chem. Phys., 22, 9553–9569, https://doi.org/10.5194/acp-22-9553-2022, https://doi.org/10.5194/acp-22-9553-2022, 2022
Short summary
Short summary
We quantify recent changes in stratospheric ozone (outside the polar regions) using a combination of three satellite datasets. We find that upper stratospheric ozone have increased significantly since 2000, although the recovery shows an unexpected pause in the Northern Hemisphere. Combined with the likely decrease in ozone in the lower stratosphere, this presents an interesting challenge for predicting the future of the ozone layer.
Jing Feng and Yi Huang
Atmos. Chem. Phys., 21, 15493–15518, https://doi.org/10.5194/acp-21-15493-2021, https://doi.org/10.5194/acp-21-15493-2021, 2021
Short summary
Short summary
This study conducts a comprehensive analysis of thermodynamic fields above tropical cyclones. Using a synergistic retrieval method, we develop the first infrared hyperspectra-based dataset of collocated temperature and water vapor profiles above deep convective clouds. It discloses the unique impacts of convective overshoots on the tropical tropopause layer (TTL). Challenging conventional views, our study suggests that convective hydration may be limited by the radiative balance above cyclones.
Nathaniel J. Livesey, William G. Read, Lucien Froidevaux, Alyn Lambert, Michelle L. Santee, Michael J. Schwartz, Luis F. Millán, Robert F. Jarnot, Paul A. Wagner, Dale F. Hurst, Kaley A. Walker, Patrick E. Sheese, and Gerald E. Nedoluha
Atmos. Chem. Phys., 21, 15409–15430, https://doi.org/10.5194/acp-21-15409-2021, https://doi.org/10.5194/acp-21-15409-2021, 2021
Short summary
Short summary
The Microwave Limb Sounder (MLS), an instrument on NASA's Aura mission launched in 2004, measures vertical profiles of the temperature and composition of Earth's "middle atmosphere" (the region from ~12 to ~100 km altitude). We describe how, among the 16 trace gases measured by MLS, the measurements of water vapor (H2O) and nitrous oxide (N2O) have started to drift since ~2010. The paper also discusses the origins of this drift and work to ameliorate it in a new version of the MLS dataset.
Lukas Krasauskas, Jörn Ungermann, Peter Preusse, Felix Friedl-Vallon, Andreas Zahn, Helmut Ziereis, Christian Rolf, Felix Plöger, Paul Konopka, Bärbel Vogel, and Martin Riese
Atmos. Chem. Phys., 21, 10249–10272, https://doi.org/10.5194/acp-21-10249-2021, https://doi.org/10.5194/acp-21-10249-2021, 2021
Short summary
Short summary
A Rossby wave (RW) breaking event was observed over the North Atlantic during the WISE measurement campaign in October 2017. Infrared limb sounding measurements of trace gases in the lower stratosphere, including high-resolution 3-D tomographic reconstruction, revealed complex spatial structures in stratospheric tracers near the polar jet related to previous RW breaking events. Backward-trajectory analysis and tracer correlations were used to study mixing and stratosphere–troposphere exchange.
Jia Jia, Antti Kero, Niilo Kalakoski, Monika E. Szeląg, and Pekka T. Verronen
Atmos. Chem. Phys., 20, 14969–14982, https://doi.org/10.5194/acp-20-14969-2020, https://doi.org/10.5194/acp-20-14969-2020, 2020
Short summary
Short summary
Recent studies have reported up to a 10 % average decrease of lower stratospheric ozone at 20 km altitude following solar proton events (SPEs). Our study uses 49 events that occurred after the launch of Aura MLS (July 2004–now) and 177 events that occurred in the WACCM-D simulation period (Jan 1989–Dec 2012) to evaluate ozone changes following SPEs. The statistical and case-by-case studies show no solid evidence of SPE's direct impact on the lower stratospheric ozone.
Franziska Schranz, Jonas Hagen, Gunter Stober, Klemens Hocke, Axel Murk, and Niklaus Kämpfer
Atmos. Chem. Phys., 20, 10791–10806, https://doi.org/10.5194/acp-20-10791-2020, https://doi.org/10.5194/acp-20-10791-2020, 2020
Short summary
Short summary
We measured middle-atmospheric ozone, water vapour and zonal and meridional wind with two ground-based microwave radiometers which are located at Ny-Alesund, Svalbard, in the Arctic. In this article we present measurements of the small-scale horizontal ozone gradients during winter 2018/2019. We found a distinct seasonal variation of the ozone gradients which is linked to the planetary wave activity. We further present the signatures of the SSW in the ozone, water vapour and wind measurements.
Monika E. Szeląg, Viktoria F. Sofieva, Doug Degenstein, Chris Roth, Sean Davis, and Lucien Froidevaux
Atmos. Chem. Phys., 20, 7035–7047, https://doi.org/10.5194/acp-20-7035-2020, https://doi.org/10.5194/acp-20-7035-2020, 2020
Short summary
Short summary
We analyze seasonal dependence of stratospheric ozone trends over 2000–2018. We demonstrate that the mid-latitude upper stratospheric ozone recovery maximizes during local winters and equinoxes. In the tropics, a very strong seasonal dependence of ozone trends is observed at all altitudes. We found hemispheric asymmetry of summertime ozone trend patterns below 35 km. The seasonal dependence of ozone trends and stratospheric temperature trends shows a clear inter-relation of the trend patterns.
Emily M. Gordon, Annika Seppälä, and Johanna Tamminen
Atmos. Chem. Phys., 20, 6259–6271, https://doi.org/10.5194/acp-20-6259-2020, https://doi.org/10.5194/acp-20-6259-2020, 2020
Short summary
Short summary
The Sun constantly emits high-energy charged particles that produce the ozone destroying chemical NOx in the polar atmosphere. NOx is transported to the stratosphere, where the ozone layer is. Satellite observations show that the NOx gases remain in the atmosphere longer than previously reported. This is influenced by the strength of atmospheric large-scale dynamics, suggesting that there are specific times when this type of solar influence on the Antarctic atmosphere becomes more pronounced.
William T. Ball, Justin Alsing, Johannes Staehelin, Sean M. Davis, Lucien Froidevaux, and Thomas Peter
Atmos. Chem. Phys., 19, 12731–12748, https://doi.org/10.5194/acp-19-12731-2019, https://doi.org/10.5194/acp-19-12731-2019, 2019
Short summary
Short summary
We analyse long-term stratospheric ozone (60° S–60° N) trends over the 1985–2018 period. Previous work has suggested that lower stratosphere ozone declined over 1998–2016. We demonstrate that a large ozone upsurge in 2017 is likely related to QBO variability, but that lower stratospheric ozone trends likely remain lower in 2018 than in 1998. Tropical stratospheric ozone (30° S–30° N) shows highly probable decreases in both the lower stratosphere and in the integrated stratospheric ozone layer.
Edward W. Tian, Hui Su, Baijun Tian, and Jonathan H. Jiang
Atmos. Chem. Phys., 19, 9913–9926, https://doi.org/10.5194/acp-19-9913-2019, https://doi.org/10.5194/acp-19-9913-2019, 2019
Short summary
Short summary
We study the interannual (2–7-year) water vapor variations in the tropical upper troposphere and the lower and middle stratosphere and their connections to El Nino–Southern Oscillation (ENSO) and quasi-biennial oscillation (QBO) using the Aura Microwave Limb Sounder (MLS) data and time-lag regression analysis and composite analysis. We found that ENSO is more important in the upper troposphere and near the tropopause, while QBO is more important in the lower and middle stratosphere.
Leonie Bernet, Thomas von Clarmann, Sophie Godin-Beekmann, Gérard Ancellet, Eliane Maillard Barras, René Stübi, Wolfgang Steinbrecht, Niklaus Kämpfer, and Klemens Hocke
Atmos. Chem. Phys., 19, 4289–4309, https://doi.org/10.5194/acp-19-4289-2019, https://doi.org/10.5194/acp-19-4289-2019, 2019
Short summary
Short summary
After severe ozone depletion, upper stratospheric ozone has started to recover in recent years. However, stratospheric ozone trends from various data sets still show differences. To partly explain such differences, we investigate how the trends are affected by different factors, for example, anomalies in the data. We show how trend estimates can be improved by considering such anomalies and present updated stratospheric ozone trends from ground data measured in central Europe.
Mohamadou Diallo, Martin Riese, Thomas Birner, Paul Konopka, Rolf Müller, Michaela I. Hegglin, Michelle L. Santee, Mark Baldwin, Bernard Legras, and Felix Ploeger
Atmos. Chem. Phys., 18, 13055–13073, https://doi.org/10.5194/acp-18-13055-2018, https://doi.org/10.5194/acp-18-13055-2018, 2018
Short summary
Short summary
The unprecedented timing of an El Niño event aligned with the disrupted QBO in 2015–2016 caused a perturbation to the stratospheric circulation, affecting trace gases. This paper resolves the puzzling response of the lower stratospheric water vapor by showing that the QBO disruption reversed the lower stratosphere moistening triggered by the alignment of the El Niño event with a westerly QBO in early boreal winter.
Felicia Kolonjari, David A. Plummer, Kaley A. Walker, Chris D. Boone, James W. Elkins, Michaela I. Hegglin, Gloria L. Manney, Fred L. Moore, Diane Pendlebury, Eric A. Ray, Karen H. Rosenlof, and Gabriele P. Stiller
Atmos. Chem. Phys., 18, 6801–6828, https://doi.org/10.5194/acp-18-6801-2018, https://doi.org/10.5194/acp-18-6801-2018, 2018
Short summary
Short summary
We used satellite observations and model simulations of CFC-11, CFC-12, and N2O to investigate stratospheric transport, which is important for predicting the recovery of the ozone layer and future climate. We found that sampling can impact results and that the model consistently overestimates concentrations of these gases in the lower stratosphere, consistent with a too rapid Brewer–Dobson circulation. An issue with mixing in the tropical lower stratosphere in June–July–August was also found.
Stefan Noël, Katja Weigel, Klaus Bramstedt, Alexei Rozanov, Mark Weber, Heinrich Bovensmann, and John P. Burrows
Atmos. Chem. Phys., 18, 4463–4476, https://doi.org/10.5194/acp-18-4463-2018, https://doi.org/10.5194/acp-18-4463-2018, 2018
Short summary
Short summary
The combined analysis of stratospheric methane and water vapour data derived from SCIAMACHY solar occultation measurements shows the expected anti-correlation and a clear temporal variation related to waves in equatorial zonal winds. Above about 20 km most of the additional water vapour is attributed to the oxidation of methane. The SCIAMACHY data confirm that at lower altitudes water vapour and methane are transported from the tropics to higher latitudes.
William T. Ball, Justin Alsing, Daniel J. Mortlock, Johannes Staehelin, Joanna D. Haigh, Thomas Peter, Fiona Tummon, Rene Stübi, Andrea Stenke, John Anderson, Adam Bourassa, Sean M. Davis, Doug Degenstein, Stacey Frith, Lucien Froidevaux, Chris Roth, Viktoria Sofieva, Ray Wang, Jeannette Wild, Pengfei Yu, Jerald R. Ziemke, and Eugene V. Rozanov
Atmos. Chem. Phys., 18, 1379–1394, https://doi.org/10.5194/acp-18-1379-2018, https://doi.org/10.5194/acp-18-1379-2018, 2018
Short summary
Short summary
Using a robust analysis, with artefact-corrected ozone data, we confirm upper stratospheric ozone is recovering following the Montreal Protocol, but that lower stratospheric ozone (50° S–50° N) has continued to decrease since 1998, and the ozone layer as a whole (60° S–60° N) may be lower today than in 1998. No change in total column ozone may be due to increasing tropospheric ozone. State-of-the-art models do not reproduce lower stratospheric ozone decreases.
Hugh C. Pumphrey, Norbert Glatthor, Peter F. Bernath, Christopher D. Boone, James W. Hannigan, Ivan Ortega, Nathaniel J. Livesey, and William G. Read
Atmos. Chem. Phys., 18, 691–703, https://doi.org/10.5194/acp-18-691-2018, https://doi.org/10.5194/acp-18-691-2018, 2018
Short summary
Short summary
The Microwave Limb Sounder (MLS) is a satellite instrument that has been measuring the amount of various gases in the atmosphere since 2004. In late 2015 and 2016 it observed unusual amounts of hydrogen cyanide (HCN), a gas produced when vegetation is burned. We compare the MLS observations to similar observations from other instruments. The excess HCN is shown to come from fires in Indonesia. There are more fires than usual in 2015–16 due to a drought caused by an El Niño event.
Naveen Chandra, Sachiko Hayashida, Tazu Saeki, and Prabir K. Patra
Atmos. Chem. Phys., 17, 12633–12643, https://doi.org/10.5194/acp-17-12633-2017, https://doi.org/10.5194/acp-17-12633-2017, 2017
Short summary
Short summary
This study shows difficulties in interpreting columnar dry-air mole fractions of methane (XCH4) for surface emissions of CH4 over the South Asia region, without separating the role of chemistry and transport. Using a chemistry-transport model, we suggest that a link between surface emissions and higher levels of XCH4 is not always valid in this region of complex monsoonal meteorology, although there is often a fair correlation between the seasonal variations in surface emissions and XCH4.
Stefan Lossow, Hella Garny, and Patrick Jöckel
Atmos. Chem. Phys., 17, 11521–11539, https://doi.org/10.5194/acp-17-11521-2017, https://doi.org/10.5194/acp-17-11521-2017, 2017
Massimo Valeri, Flavio Barbara, Chris Boone, Simone Ceccherini, Marco Gai, Guido Maucher, Piera Raspollini, Marco Ridolfi, Luca Sgheri, Gerald Wetzel, and Nicola Zoppetti
Atmos. Chem. Phys., 17, 10143–10162, https://doi.org/10.5194/acp-17-10143-2017, https://doi.org/10.5194/acp-17-10143-2017, 2017
Short summary
Short summary
Atmospheric emissions of CCl4 are regulated by the Montreal Protocol due to its role as a strong ozone-depleting substance. The molecule is the subject of recent increased interest as a consequence of the discrepancy between atmospheric observations and reported production and consumption. We use MIPAS/ENVISAT data (2002–2012) to estimate CCl4 trends and lifetime. At 50 hPa we find a decline of about 30–35 % per decade. In the lower stratosphere our lifetime estimate is 47 (39–61) years.
Susana Fernandez, Rolf Rüfenacht, Niklaus Kämpfer, Thierry Portafaix, Françoise Posny, and Guillaume Payen
Atmos. Chem. Phys., 16, 7531–7543, https://doi.org/10.5194/acp-16-7531-2016, https://doi.org/10.5194/acp-16-7531-2016, 2016
Short summary
Short summary
We present a new ground based microwave radiometer for campaigns, GROMOS-C. It measures the vertical distribution of ozone in the middle atmosphere by observing spectra at 110.836 GHz. The paper presents a validation campaign that took place on La Réunion Island. The ozone retrieved profiles are validated against ozone profiles from the Microwave Limb Sounder, the ozone lidar located in the observatory, ozone profiles from weekly radiosondes and with ECMWF model data.
L. Moreira, K. Hocke, E. Eckert, T. von Clarmann, and N. Kämpfer
Atmos. Chem. Phys., 15, 10999–11009, https://doi.org/10.5194/acp-15-10999-2015, https://doi.org/10.5194/acp-15-10999-2015, 2015
Short summary
Short summary
GROMOS (GROund-based Millimeter-wave Ozone Spectrometer) has provided ozone profiles for the NDACC (Network for the Detection of Atmospheric Composition Change) at Bern since 1994. We performed a trend analysis of our 20-year time series of stratospheric ozone profiles with a multilinear parametric trend estimation method. With our estimated ozone trends we are able to support the stratospheric ozone turnaround, besides a statistically significant negative trend in the lower mesosphere.
T. Schieferdecker, S. Lossow, G. P. Stiller, and T. von Clarmann
Atmos. Chem. Phys., 15, 9851–9863, https://doi.org/10.5194/acp-15-9851-2015, https://doi.org/10.5194/acp-15-9851-2015, 2015
Short summary
Short summary
A merged data set of HALOE and MIPAS lower stratospheric water vapour has been constructed. Multivariate linear regression shows that the merged time series can best be explained if a proxy for the 11-year solar cycle is considered. The amplitude of the solar cycle signal in water vapour is slightly higher than that which can be explained by the known solar cycle variation of cold-point temperatures.
M. Lainer, N. Kämpfer, B. Tschanz, G. E. Nedoluha, S. Ka, and J. J. Oh
Atmos. Chem. Phys., 15, 9711–9730, https://doi.org/10.5194/acp-15-9711-2015, https://doi.org/10.5194/acp-15-9711-2015, 2015
Short summary
Short summary
We use water vapor profiles from ground-based microwave radiometers at five locations distributed over the Northern Hemisphere and operated in the frame of NDACC (Network for the Detection of Atmospheric Composition Change) to generate hemispheric water vapor maps based on the so-called trajectory mapping technique. The novelty is to show that a mini network of instruments is capable of providing information about the hemispheric distribution of water vapor under most conditions.
T. Sakazaki, M. Shiotani, M. Suzuki, D. Kinnison, J. M. Zawodny, M. McHugh, and K. A. Walker
Atmos. Chem. Phys., 15, 829–843, https://doi.org/10.5194/acp-15-829-2015, https://doi.org/10.5194/acp-15-829-2015, 2015
Short summary
Short summary
The solar occultation measurements measure the atmosphere at sunrise (SR) and sunset (SS). It has been reported that there is a significant difference in the observed amount of stratospheric ozone between SR and SS. This study first revealed that this difference can be largely explained by diurnal variations in ozone, particularly those caused by vertical transport by the atmospheric tidal winds. Our results would be helpful for the construction of combined data sets from SR and SS profiles.
A. T. J. de Laat, R. J. van der A, and M. van Weele
Atmos. Chem. Phys., 15, 79–97, https://doi.org/10.5194/acp-15-79-2015, https://doi.org/10.5194/acp-15-79-2015, 2015
Short summary
Short summary
Recent research suggests the Antarctic ozone hole has started to shrink due to decreasing ozone-depleting substances. Because it could be questioned how robust these results are, we provide an assessment of uncertainties in both the underlying ozone observational records and the detection-attribution method. Although Antarctic ozone concentrations are definitely increasing slowly, the formal identification of recovery is not yet justified, although this will likely become possible this decade.
W. Chehade, M. Weber, and J. P. Burrows
Atmos. Chem. Phys., 14, 7059–7074, https://doi.org/10.5194/acp-14-7059-2014, https://doi.org/10.5194/acp-14-7059-2014, 2014
A. E. Bourassa, D. A. Degenstein, W. J. Randel, J. M. Zawodny, E. Kyrölä, C. A. McLinden, C. E. Sioris, and C. Z. Roth
Atmos. Chem. Phys., 14, 6983–6994, https://doi.org/10.5194/acp-14-6983-2014, https://doi.org/10.5194/acp-14-6983-2014, 2014
A. Redondas, R. Evans, R. Stuebi, U. Köhler, and M. Weber
Atmos. Chem. Phys., 14, 1635–1648, https://doi.org/10.5194/acp-14-1635-2014, https://doi.org/10.5194/acp-14-1635-2014, 2014
E. E. Remsberg
Atmos. Chem. Phys., 14, 1039–1053, https://doi.org/10.5194/acp-14-1039-2014, https://doi.org/10.5194/acp-14-1039-2014, 2014
N. A. Kramarova, S. M. Frith, P. K. Bhartia, R. D. McPeters, S. L. Taylor, B. L. Fisher, G. J. Labow, and M. T. DeLand
Atmos. Chem. Phys., 13, 6887–6905, https://doi.org/10.5194/acp-13-6887-2013, https://doi.org/10.5194/acp-13-6887-2013, 2013
A. T. Brown, C. M. Volk, M. R. Schoeberl, C. D. Boone, and P. F. Bernath
Atmos. Chem. Phys., 13, 6921–6950, https://doi.org/10.5194/acp-13-6921-2013, https://doi.org/10.5194/acp-13-6921-2013, 2013
N. Theys, R. Campion, L. Clarisse, H. Brenot, J. van Gent, B. Dils, S. Corradini, L. Merucci, P.-F. Coheur, M. Van Roozendael, D. Hurtmans, C. Clerbaux, S. Tait, and F. Ferrucci
Atmos. Chem. Phys., 13, 5945–5968, https://doi.org/10.5194/acp-13-5945-2013, https://doi.org/10.5194/acp-13-5945-2013, 2013
G. Kirgis, T. Leblanc, I. S. McDermid, and T. D. Walsh
Atmos. Chem. Phys., 13, 5033–5047, https://doi.org/10.5194/acp-13-5033-2013, https://doi.org/10.5194/acp-13-5033-2013, 2013
T. Sonkaew, C. von Savigny, K.-U. Eichmann, M. Weber, A. Rozanov, H. Bovensmann, J. P. Burrows, and J.-U. Grooß
Atmos. Chem. Phys., 13, 1809–1835, https://doi.org/10.5194/acp-13-1809-2013, https://doi.org/10.5194/acp-13-1809-2013, 2013
J. R. Ziemke and S. Chandra
Atmos. Chem. Phys., 12, 5737–5753, https://doi.org/10.5194/acp-12-5737-2012, https://doi.org/10.5194/acp-12-5737-2012, 2012
A. Lambert, M. L. Santee, D. L. Wu, and J. H. Chae
Atmos. Chem. Phys., 12, 2899–2931, https://doi.org/10.5194/acp-12-2899-2012, https://doi.org/10.5194/acp-12-2899-2012, 2012
I. Ialongo, V. Sofieva, N. Kalakoski, J. Tamminen, and E. Kyrölä
Atmos. Chem. Phys., 12, 2603–2614, https://doi.org/10.5194/acp-12-2603-2012, https://doi.org/10.5194/acp-12-2603-2012, 2012
J. R. Ziemke, S. Chandra, G. J. Labow, P. K. Bhartia, L. Froidevaux, and J. C. Witte
Atmos. Chem. Phys., 11, 9237–9251, https://doi.org/10.5194/acp-11-9237-2011, https://doi.org/10.5194/acp-11-9237-2011, 2011
H. E. Thomas and A. J. Prata
Atmos. Chem. Phys., 11, 6871–6880, https://doi.org/10.5194/acp-11-6871-2011, https://doi.org/10.5194/acp-11-6871-2011, 2011
A. Jones, J. Urban, D. P. Murtagh, C. Sanchez, K. A. Walker, N. J. Livesey, L. Froidevaux, and M. L. Santee
Atmos. Chem. Phys., 11, 5321–5333, https://doi.org/10.5194/acp-11-5321-2011, https://doi.org/10.5194/acp-11-5321-2011, 2011
E. Kyrölä, J. Tamminen, V. Sofieva, J. L. Bertaux, A. Hauchecorne, F. Dalaudier, D. Fussen, F. Vanhellemont, O. Fanton d'Andon, G. Barrot, M. Guirlet, A. Mangin, L. Blanot, T. Fehr, L. Saavedra de Miguel, and R. Fraisse
Atmos. Chem. Phys., 10, 11881–11903, https://doi.org/10.5194/acp-10-11881-2010, https://doi.org/10.5194/acp-10-11881-2010, 2010
R. J. van der A, M. A. F. Allaart, and H. J. Eskes
Atmos. Chem. Phys., 10, 11277–11294, https://doi.org/10.5194/acp-10-11277-2010, https://doi.org/10.5194/acp-10-11277-2010, 2010
J. Tamminen, E. Kyrölä, V. F. Sofieva, M. Laine, J.-L. Bertaux, A. Hauchecorne, F. Dalaudier, D. Fussen, F. Vanhellemont, O. Fanton-d'Andon, G. Barrot, A. Mangin, M. Guirlet, L. Blanot, T. Fehr, L. Saavedra de Miguel, and R. Fraisse
Atmos. Chem. Phys., 10, 9505–9519, https://doi.org/10.5194/acp-10-9505-2010, https://doi.org/10.5194/acp-10-9505-2010, 2010
S. P. Burton, L. W. Thomason, and J. M. Zawodny
Atmos. Chem. Phys., 10, 1–8, https://doi.org/10.5194/acp-10-1-2010, https://doi.org/10.5194/acp-10-1-2010, 2010
C. Tétard, D. Fussen, C. Bingen, N. Capouillez, E. Dekemper, N. Loodts, N. Mateshvili, F. Vanhellemont, E. Kyrölä, J. Tamminen, V. Sofieva, A. Hauchecorne, F. Dalaudier, J.-L. Bertaux, O. Fanton d'Andon, G. Barrot, M. Guirlet, T. Fehr, and L. Saavedra
Atmos. Chem. Phys., 9, 7857–7866, https://doi.org/10.5194/acp-9-7857-2009, https://doi.org/10.5194/acp-9-7857-2009, 2009
Cited articles
Albers, J. R., Perlwitz, J., Butler, A. H., Birner, T., Kiladis, G. N.,
Lawrence, Z. D., Manney, G. L., Langford, A. O., and Dias, J.: Mechanisms
Governing Interannual Variability of Stratosphere-to-Troposphere Ozone
Transport, J. Geophys. Res., 123, 234–260,
https://doi.org/10.1002/2017jd026890, 2018.
Ancellet, G., Daskalakis, N., Raut, J. C., Tarasick, D., Hair, J., Quennehen, B., Ravetta, F., Schlager, H., Weinheimer, A. J., Thompson, A. M., Johnson, B., Thomas, J. L., and Law, K. S.: Analysis of the latitudinal variability of tropospheric ozone in the Arctic using the large number of aircraft and ozonesonde observations in early summer 2008, Atmos. Chem. Phys., 16, 13341–13358, https://doi.org/10.5194/acp-16-13341-2016, 2016.
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle atmosphere dynamics,
Academic Press, edited by: Holton, J. R. and Dmowska, R., ISBN 13: 9780120585762, 1987.
Anstey, J. A. and Shepherd, T. G.: High-latitude influence of the
quasi-biennial oscillation, Q. J. Roy. Meteor. Soc., 1, 1–21,
https://doi.org/10.1002/qj.2132, 2014.
Ayarzagüena, B., Polvani, L. M., Langematz, U., Akiyoshi, H., Bekki, S., Butchart, N., Dameris, M., Deushi, M., Hardiman, S. C., Jöckel, P., Klekociuk, A., Marchand, M., Michou, M., Morgenstern, O., O'Connor, F. M., Oman, L. D., Plummer, D. A., Revell, L., Rozanov, E., Saint-Martin, D., Scinocca, J., Stenke, A., Stone, K., Yamashita, Y., Yoshida, K., and Zeng, G.: No robust evidence of future changes in major stratospheric sudden warmings: a multi-model assessment from CCMI, Atmos. Chem. Phys., 18, 11277–11287, https://doi.org/10.5194/acp-18-11277-2018, 2018.
Ayarzagüena, B., Charlton-Perez, A. J., Butler, A. H., Hitchcock, P.,
Simpson, I. R., Polvani, L. M., Butchart, N., Gerber, E. P., Gray, L.,
Hassler, B., Lin, P., Lott, F., Manzini, E., Mizuta, R., Orbe, C., Osprey,
S., Saint-Martin, D., Sigmond, M., Taguchi, M., Volodin, E. M., and
Watanabe, S.: Uncertainty in the Response of Sudden Stratospheric Warmings
and Stratosphere-Troposphere Coupling to Quadrupled CO2 Concentrations in
CMIP6 Models, J Geophys. Res.-Atmos., 125, e2019JD032345, https://doi.org/10.1029/2019jd032345, 2020.
Bahramvash Shams, S., Walden, V. P., Petropavlovskikh, I., Tarasick, D., Kivi, R., Oltmans, S., Johnson, B., Cullis, P., Sterling, C. W., Thölix, L., and Errera, Q.: Variations in the vertical profile of ozone at four high-latitude Arctic sites from 2005 to 2017, Atmos. Chem. Phys., 19, 9733–9751, https://doi.org/10.5194/acp-19-9733-2019, 2019.
Bahramvash Shams, S.: Analyzing Ozone and dynamical transport variables in middle stratosphere using MERRA-2 data (Jupiter notebook), Zenodo [code], https://doi.org/10.5281/zenodo.6466540, 2022.
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric Harbingers of Anomalous
Weather Regimes, Science, 294, 581–584,
https://doi.org/10.1126/science.1063315, 2001.
Baldwin, M. P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A.
H., Charlton-Perez, A. J., Domeisen, D. I. V., Garfinkel, C. I., Garny, H.,
Gerber, E. P., Hegglin, M. I., Langematz, U., and Pedatella, N. M.: Sudden
Stratospheric Warmings, Rev. Geophys., 59, 27.1–37,
https://doi.org/10.1029/2020rg000708, 2021.
Bognar, K., Zhao, X., Strong, K., Boone, C. D., Bourassa, A. E., Degenstein,
D. A., Drummond, J. R., Duff, A., Goutail, F., Griffin, D., Jeffery, P. S.,
Lutsch, E., Manney, G. L., McElroy, C. T., McLinden, C. A., Millán, L.
F., Pazmiño, A., Sioris, C. E., Walker, K. A., and Zou, J.: Updated
validation of ACE and OSIRIS ozone and NO2 measurements in the Arctic using
ground-based instruments at Eureka, Canada, J. Quant. Spectrosc. Ra., 238, 106571, https://doi.org/10.1016/j.jqsrt.2019.07.014, 2019.
Butler, A. H. and Domeisen, D. I. V.: The wave geometry of final stratospheric warming events, Weather Clim. Dynam., 2, 453–474, https://doi.org/10.5194/wcd-2-453-2021, 2021.
Butler, A. H., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner, T., and
Match, A.: Defining Sudden Stratospheric Warmings, B. Am. Meteor. Soc.,
96, 1913–1928, https://doi.org/10.1175/bams-d-13-00173.1, 2015.
Butler, A. H., Sjoberg, J. P., Seidel, D. J., and Rosenlof, K. H.: A sudden stratospheric warming compendium, Earth Syst. Sci. Data, 9, 63–76, https://doi.org/10.5194/essd-9-63-2017, 2017.
Butler, A. H., Charlton-Perez, A., Domeisen, D. I. V., Garfinkel, C., Gerber, E. P., Hitchcock, P., Karpechko, A.-Y., Maycock, A. C., Sigmond, M., Simpson, I., and Son, S.-W.: Sub-seasonal Predictability and the Stratosphere, in: Chapter 11, The Gap Between Weather and Climate Forecasting, 223–241, https://doi.org/10.1016/B978-0-12-811714-9.00011-5, 2019.
Butler, A. H., Lawrence, Z. D., Lee, S. H., Lillo, S. P., and Long, C. S.:
Differences between the 2018 and 2019 stratospheric polar vortex split
events, Q. J. Roy. Meteor. Soc., 146, 3503–3521,
https://doi.org/10.1002/qj.3858, 2020.
Cagnazzo, C. and E. Manzini.: Impact of the Stratosphere on the Winter
Tropospheric Teleconnections between ENSO and the North Atlantic and
European Region, J. Climate, 22, 1223–1238, https://doi.org/10.1175/2008JCLI2549.1, 2009.
Calvo, N., Polvani, L. M., and Solomon, S.: On the surface impact of Arctic
stratospheric ozone extremes, Environ. Res. Lett., 10, 094003,
https://doi.org/10.1088/1748-9326/10/9/094003, 2015.
de la Cámara, A., Abalos, M., and Hitchcock, P.: Changes in
Stratospheric Transport and Mixing During Sudden Stratospheric Warmings, J.
Geophys. Res., 123, 3356–3373, https://doi.org/10.1002/2017jd028007, 2018a.
de la Cámara, A., Abalos, M., Hitchcock, P., Calvo, N., and Garcia, R. R.: Response of Arctic ozone to sudden stratospheric warmings, Atmos. Chem. Phys., 18, 16499–16513, https://doi.org/10.5194/acp-18-16499-2018, 2018b.
de la Cámara, A., Birner, T., and Albers, J. R.: Are Sudden
Stratospheric Warmings Preceded by Anomalous Tropospheric Wave Activity?, J.
Climate, 32, 7173–7189, https://doi.org/10.1175/jcli-d-19-0269.1, 2019.
Charlton, A. J. and Polvani, L. M.: A New Look at Stratospheric Sudden
Warmings. Part I: Climatology and Modeling Benchmarks, J. Climate, 20,
449–469, https://doi.org/10.1175/jcli3996.1, 2007.
Charlton-Perez, A. J., Ferranti, L., and Lee, R. W.: The influence of the
stratospheric state on North Atlantic weather regimes, Q. J. Roy. Meteor.
Soc., 144, 1140–1151, https://doi.org/10.1002/qj.3280, 2018.
Coy, L., Wargan, K., Molod, A. M., McCarty, W. R., and Pawson, S.: Structure
and Dynamics of the Quasi-Biennial Oscillation in MERRA-2, J. Climate, 29,
5339–5354, https://doi.org/10.1175/jcli-d-15-0809.1, 2016.
Davis, S. M., Hegglin, M. I., Fujiwara, M., Dragani, R., Harada, Y., Kobayashi, C., Long, C., Manney, G. L., Nash, E. R., Potter, G. L., Tegtmeier, S., Wang, T., Wargan, K., and Wright, J. S.: Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP, Atmos. Chem. Phys., 17, 12743–12778, https://doi.org/10.5194/acp-17-12743-2017, 2017.
Dickinson, R. E.: Method of parameterization for infrared cooling between
altitudes of 30 and 70 kilometers, J. Geophys. Res., 78, 4451–4457,
https://doi.org/10.1029/jc078i021p04451, 1973.
Flury, T., Hocke, K., Haefele, A., Kämpfer, N., and Lehmann, R.: Ozone
depletion, water vapor increase, and PSC generation at midlatitudes by the
2008 major stratospheric warming, J. Geophys. Res., 114, 7903–14,
https://doi.org/10.1029/2009jd011940, 2009.
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the
middle atmosphere, Rev. Geophys., 41, 1003,
https://doi.org/10.1029/2001rg000106, 2003.
Fusco, A. C. and Salby, M. L.: Interannual Variations of Total Ozone and
Their Relationship to Variations of Planetary Wave Activity, J. Climate, 12,
1619–1629, https://doi.org/10.1175/1520-0442(1999)012<1619:ivotoa>2.0.co;2, 1999.
García, O. E., Schneider, M., Redondas, A., González, Y., Hase, F., Blumenstock, T., and Sepúlveda, E.: Investigating the long-term evolution of subtropical ozone profiles applying ground-based FTIR spectrometry, Atmos. Meas. Tech., 5, 2917–2931, https://doi.org/10.5194/amt-5-2917-2012, 2012.
Gaudel, A., Ancellet, G., and Godin-Beekmann, S.: Analysis of 20 Years of
tropospheric ozone vertical profiles by lidar and ecc at observatoire de
Haute Provence (OHP) at 44∘ N, 6.7∘ E, Atmos. Environ., 113, 78–89,
https://doi.org/10.1016/j.atmosenv.2015.04.028, 2015.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
Silva, A. M. da, Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/jcli-d-16-0758.1, 2017.
Global Modeling and Assimilation Office (GMAO), MERRA-2
inst3_3d_asm_Nv:
3d,3-Hourly,Instantaneous,Model-Level,Assimilation,Assimilated
Meteorological Fields V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences
Data and Information Services Center (GES DISC), https://doi.org/10.5067/WWQSXQ8IVFW8, 2015a.
Global Modeling and Assimilation Office (GMAO), MERRA-2 inst3_3d_asm_Np:
3d,3-Hourly,Instantaneous,Pressure-Level,Assimilation,Assimilated
Meteorological Fields V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences
Data and Information Services Center (GES DISC), https://doi.org/10.5067/QBZ6MG944HW0,
2015b.
Goncharenko, L. and Zhang, S.-R.: Ionospheric signatures of sudden
stratospheric warming: Ion temperature at middle latitude, Geophys. Res.
Lett., 35, L15804-4, https://doi.org/10.1029/2008gl035684, 2008.
Greening, K. and Hodgson, A.: Atmospheric analysis of the cold late February
and early March 2018 over the UK, Weather, 74, 79–85,
https://doi.org/10.1002/wea.3467, 2019.
Haigh, J. D.: The role of stratospheric ozone in modulating the solar
radiative forcing of climate, Nature, 370, 544–546,
https://doi.org/10.1038/370544a0, 1994.
Harada, Y., G. Atsushi, H. Hiroshi, and N. Fujikawa: A major stratospheric sudden warming event in January 2009, J. Atmos. Sci., 67, 2052–2069, https://doi.org/10.1175/2009JAS3320.1, 2010.
Hitchcock, P. and Simpson, I. R.: The Downward Influence of Stratospheric
Sudden Warmings, J. Atmos. Sci., 71, 3856–3876,
https://doi.org/10.1175/jas-d-14-0012.1, 2014.
Holton, J. R. and Lindzen, R. S.: An Updated Theory for the Quasi-Biennial
Cycle of the Tropical Stratosphere, J. Atmos. Sci., 29, 1076–1080,
https://doi.org/10.1175/1520-0469(1972)029<1076:autftq>2.0.co;2, 1972.
Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B.,
and Pfister, L.: Stratosphere-troposphere exchange, Rev. Geophys., 33,
403–439, https://doi.org/10.1029/95rg02097, 1995.
Houghton, J. T.: The stratosphere and mesosphere, Q. J. Roy. Meteor. Soc.,
104, 1–29, https://doi.org/10.1002/qj.49710443902, 1978.
Ineson, S., and A. A. Scaife.: The role of the stratosphere in the European
climate response to El Niño, Nat. Geosci., 2, 32–36, https://doi.org/10.1038/ngeo381, 2008.
Jaegleì, L., Wood, R., and Wargan, K.: Multiyear composite view of ozone
enhancements and stratosphere-to-troposphere transport in dry intrusions of
northern hemisphere extratropical cyclones, J. Geophys. Res.-Atmos.,
122, 13436–13457, https://doi.org/10.1002/2017JD027656, 2017.
Johnson, B. J., Oltmans, S. J., Vömel, H., Smit, H. G. J., Deshler, T.,
and Kröger, C.: Electrochemical concentration cell (ECC) ozonesonde pump
efficiency measurements and tests on the sensitivity to ozone of buffered
and unbuffered ECC sensor cathode solutions, J. Geophys. Res., 107, 7881,
https://doi.org/10.1029/2001jd000557, 2002.
Johnson, B. J., Cullis, P. D., and NOAA ESRL: Earth System Research Laboratory Ozone Water Vapor Group Ozonesonde Measurements, Version 1, NOAA National Centers for Environmental Information, https://doi.org/10.7289/V5CC0XZ1, 2018.
Karpechko, A. Y., Perlwitz, J., and Manzini, E.: A model study of
tropospheric impacts of the Arctic ozone depletion 2011, J. Geophys. Res.,
119, 7999–8014, https://doi.org/10.1002/2013jd021350, 2014.
Karpechko, A. Y., Perez, A. C., Balmaseda, M., Tyrrell, N., and Vitart, F.:
Predicting Sudden Stratospheric Warming 2018 and Its Climate Impacts With a
Multimodel Ensemble, Geophys. Res. Lett., 45, 13538–12546,
https://doi.org/10.1029/2018gl081091, 2018.
Kidston, J., Scaife, A. A., Hardiman, S. C., Mitchell, D. M., Butchart, N.,
Baldwin, M. P., and Gray, L. J.: Stratospheric influence on tropospheric jet
streams, storm tracks and surface weather, Nat. Geosci., 8, 1–8,
https://doi.org/10.1038/ngeo2424, 2015.
Knowland, K. E., Ott, L. E., Duncan, B. N., and Wargan, K.: Stratospheric
Intrusion-Influenced Ozone Air Quality Exceedances Investigated in the NASA
MERRA-2 Reanalysis, Geophys. Res. Lett., 44, 10691–10701,
https://doi.org/10.1002/2017gl074532, 2017.
Komhyr, W. D.: Operations handbook-ozone measurements to 40-km altitude with
Model 4A Electrochemical Concentration Cell (ECC) ozonesonaes (used with
1680-MHz radiosondes), U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Air Resources Laboratory, 1986.
Korenkov, Y. N., Klimenko, V. V., Klimenko, M. V., Bessarab, F. S.,
Korenkova, N. A., Ratovsky, K. G., Chernigovskaya, M. A., Shcherbakov, A.
A., Sahai, Y., Fagundes, P. R., Jesus, R. de, Abreu, A. J. de, and Condor,
P.: The global thermospheric and ionospheric response to the 2008 minor
sudden stratospheric warming event, J. Geophys. Res., 117, A10309, https://doi.org/10.1029/2012ja018018, 2012.
Lawrence, Z. D. and Manney, G. L.: Does the Arctic Stratospheric Polar
Vortex Exhibit Signs of Preconditioning Prior to Sudden Stratospheric
Warmings?, J. Atmos. Sci., 77, 611–632,
https://doi.org/10.1175/jas-d-19-0168.1, 2020.
Lee, S. H. and Butler, A. H.: The 2018–2019 Arctic stratospheric polar vortex, Weather, 75, 52–57, 2020.
Limpasuvan, V., Richter, J. H., Orsolini, Y. J., Stordal, F., and Kvissel,
O.-K.: The roles of planetary and gravity waves during a major stratospheric
sudden warming as characterized in WACCM, J. Atmos. Sol.-Terr. Phys.,
78–79, 84–98, https://doi.org/10.1016/j.jastp.2011.03.004, 2012.
Lindzen, R. S. and Holton, J. R.: A Theory of the Quasi-Biennial
Oscillation, J. Atmos. Sci., 25, 1095–1107,
https://doi.org/10.1175/1520-0469(1968)025<1095:atotqb>2.0.co;2, 1968.
Logan, J. A.: Trends in the vertical distribution of ozone: An analysis of
ozonesonde data, J. Geophys. Res., 99, 25,
https://doi.org/10.1029/94jd02333, 1994.
Logan, J. A., Megretskaia, I. A., Miller, A. J., Tiao, G. C., Choi, D.,
Zhang, L., Stolarski, R. S., Labow, G. J., Hollandsworth, S. M., Bodeker, G.
E., Claude, H., Muer, D. de, Kerr, J. B., Tarasick, D. W., Oltmans, S. J.,
Johnson, B., Schmidlin, F., Staehelin, J., Viatte, P., and Uchino, O.:
Trends in the vertical distribution of ozone: A comparison of two analyses
of ozonesonde data, J. Geophys. Res., 104, 26,
https://doi.org/10.1029/1999jd900300, 1999.
Manney, G. L., Krüger, K., Pawson, S., Minschwaner, K., Schwartz, M. J.,
Daffer, W. H., Livesey, N. J., Mlynczak, M. G., Remsberg, E. E., Russel III, J. M., and Waters, J. W.: The evolution of the stratopause during the 2006
major warming: Satellite data and assimilated meteorological analyses, J.
Geophys. Res., 113, D11115, https://doi.org/10.1029/2007jd009097, 2008a.
Manney, G. L., Daffer, W. H., Strawbridge, K. B., Walker, K. A., Boone, C. D., Bernath, P. F., Kerzenmacher, T., Schwartz, M. J., Strong, K., Sica, R. J., Krüger, K., Pumphrey, H. C., Lambert, A., Santee, M. L., Livesey, N. J., Remsberg, E. E., Mlynczak, M. G., and Russell III, J. R.: The high Arctic in extreme winters: vortex, temperature, and MLS and ACE-FTS trace gas evolution, Atmos. Chem. Phys., 8, 505–522, https://doi.org/10.5194/acp-8-505-2008, 2008b.
Manney, G. L., Schwartz, M. J., Krüger, K., Santee, M. L., Pawson, S.,
Lee, J. N., Daffer, W. H., Fuller, R. A., and Livesey, N. J.: Aura Microwave
Limb Sounder observations of dynamics and transport during the
record-breaking 2009 Arctic stratospheric major warming, Geophys. Res.
Lett., 36, L12815, https://doi.org/10.1029/2009gl038586, 2009a.
Manney, G. L., Harwood, R. S., MacKenzie, I. A., Minschwaner, K., Allen, D. R., Santee, M. L., Walker, K. A., Hegglin, M. I., Lambert, A., Pumphrey, H. C., Bernath, P. F., Boone, C. D., Schwartz, M. J., Livesey, N. J., Daffer, W. H., and Fuller, R. A.: Satellite observations and modeling of transport in the upper troposphere through the lower mesosphere during the 2006 major stratospheric sudden warming, Atmos. Chem. Phys., 9, 4775–4795, https://doi.org/10.5194/acp-9-4775-2009, 2009b.
Manney, G. L., Lawrence, Z. D., Santee, M. L., Livesey, N. J., Lambert, A., and Pitts, M. C.: Polar processing in a split vortex: Arctic ozone loss in early winter 2012/2013, Atmos. Chem. Phys., 15, 5381–5403, https://doi.org/10.5194/acp-15-5381-2015, 2015.
Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J.-F., Calvo, N., and
Polvani, L. M.: Climate Change from 1850 to 2005 Simulated in CESM1(WACCM),
J. Climate, 26, 7372–7391, https://doi.org/10.1175/jcli-d-12-00558.1, 2013.
Martineau, P., Wright, J. S., Zhu, N., and Fujiwara, M.: Zonal-mean data set of global atmospheric reanalyses on pressure levels, Earth Syst. Sci. Data, 10, 1925–1941, https://doi.org/10.5194/essd-10-1925-2018, 2018.
Matsuno, T.: A dynamical model of the stratospheric sudden warming, J.
Atmos. Sci., 28, 1479–1494, https://doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2, 1971.
McDonald, M. K., Turnbull, D. N., and Donovan, D. P.: Steller Brewer,
ozonesonde, and DIAL measurements of Arctic O3 column over Eureka, N.W.T.
during 1996 winter/spring, Geophys. Res. Lett., 26, 2383–2386,
https://doi.org/10.1029/1999gl900506, 1999.
Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2, Geosci. Model Dev., 8, 1339–1356, https://doi.org/10.5194/gmd-8-1339-2015, 2015.
Nakamura, N.: Two-Dimensional Mixing, Edge Formation, and Permeability
Diagnosed in an Area Coordinate, J. Atmos. Sci., 53, 1524–1537, https://doi.org/10.1175/1520-0469(1996)053<1524:TDMEFA>2.0.CO;2, 1996.
Network for the Detection of Atmospheric Composition Change (NDACC): FTIR ozone retrievals, http://www.ndaccdemo.org/, last access: 18 April 2022.
Nowack, P. J., Abraham, N. L., Maycock, A. C., Braesicke, P., Gregory, J.
M., Joshi, M. M., Osprey, A., and Pyle, J. A.: A large ozone-circulation
feedback and its implications for global warming assessments, Nat. Clim.
Chang., 5, 41–45, https://doi.org/10.1038/nclimate2451, 2015.
Palmeiro, F. M., Barriopedro, D., García-Herrera, R., and Calvo, N.:
Comparing Sudden Stratospheric Warming Definitions in Reanalysis Data, J.
Climate, 28, 6823–6840, https://doi.org/10.1175/jcli-d-15-0004.1, 2015.
Polvani, L. M. and Waugh, D. W.: Upward Wave Activity Flux as a Precursor to
Extreme Stratospheric Events and Subsequent Anomalous Surface Weather
Regimes., J. Climate, 17, 3548–3554,
https://doi.org/10.1175/1520-0442(2004)017<3548:uwafaa>2.0.co;2, 2004.
Ramaswamy, V., Schwarzkopf, M. D., and Randel, W. J.: Fingerprint of ozone
depletion in the spatial and temporal pattern of recent lower-stratospheric
cooling, Nature, 382, 616–618, https://doi.org/10.1038/382616a0, 1996.
Randel, W. J.: Global variations of zonal mean ozone during strarospheric
warming events, J. Atmos. Sci., 50, 3308–3321, 1993.
Randel, W. J., Wu, F., and Stolarski, R.: Changes in Column Ozone Correlated
with the Stratospheric EP Flux, J. Meteorol. Soc. Jpn. Ser. II, 80,
849–862, https://doi.org/10.2151/jmsj.80.849, 2002.
Rao, J., Ren, R., Chen, H., Yu, Y., and Zhou, Y.: The Stratospheric Sudden
Warming Event in February 2018 and its Prediction by a Climate System Model,
J. Geophys. Res., 123, 13332–13345, https://doi.org/10.1029/2018jd028908, 2018.
Rao, J., Garfinkel, C. I., Chen, H., and White, I. P.: The 2019 New Year
Stratospheric Sudden Warming and Its Real-Time Predictions in Multiple S2S
Models, J. Geophys. Res., 124, 11155–11174,
https://doi.org/10.1029/2019jd030826, 2019.
Rao, T. N.: Climatology of UTLS ozone and the ratio of ozone and potential
vorticity over northern Europe, J. Geophys. Res., 108, 4703,
https://doi.org/10.1029/2003jd003860, 2003.
Rao, T. N., Arvelius, J., Kirkwood, S., and Gathen, P. von der: Climatology
of ozone in the troposphere and lower stratosphere over the European Arctic,
Adv. Space Res., 34, 754–758, https://doi.org/10.1016/j.asr.2003.05.055,
2004.
Rienecker, M. M., Suárez, M. J., Gelaro, R., Todling, R., Bacmeister,
J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K.,
Bloom, S., Chen, J., Collins, D., Conaty, A., Silva, A. da, Gu, W., Joiner,
J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion,
P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G.,
Sienkiewicz, M., and Woollen, J.: MERRA: NASA's Modern-Era Retrospective
Analysis for Research and Applications, J. Climate, 24, 3624–3648,
https://doi.org/10.1175/jcli-d-11-00015.1, 2011.
Rodgers, C. D.: Inverse Methods for Atmospheric Sounding – Theory and
Practice, Oxford, Series on Atmospheric Oceanic and Planetary Physics,
https://doi.org/10.1142/9789812813718, 2000.
Rodgers, C. D. and Connor, B. J.: Intercomparison of remote sounding
instruments, J. Geophys. Res., 108, 4116,
https://doi.org/10.1029/2002jd002299, 2003.
Romanowsky, E., Handorf, D., Jaiser, R., Wohltmann, I., Dorn,
W., Ukita, J., Cohen, J., Dethloff, K., and Rex, M.: The role of
stratospheric ozone for Arctic-midlatitude linkages, Sci. Rep., 9,
1–7, https://doi.org/10.1038/s41598-019-43823-1, 2019.
Rothman, L. S., Gordon, I. E., Barbe, A., Benner, D. C., Bernath, P. F.,
Birk, M., Boudon, V., Brown, L. R., Campargue, A., Champion, J. P., Chance,
K., Coudert, L. H., Dana, V., Devi, V. M., Fally, S., Flaud, J. M., Gamache,
R. R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W.
J., Mandin, J. Y., Massie, S. T., Mikhailenko, S. N., Miller, C. E.,
Moazzen-Ahmadi, N., Naumenko, O. V., Nikitin, A. V., Orphal, J., Perevalov,
V. I., Perrin, A., Predoi-Cross, A., Rinsland, C. P., Rotger, M.,
Šimečková, M., Smith, M. A. H., Sung, K., Tashkun, S. A.,
Tennyson, J., Toth, R. A., Vandaele, A. C., and Auwera, J. V.: The HITRAN
2008 molecular spectroscopic database, J. Quant. Spectrosc. Ra., 110, 533–572, https://doi.org/10.1016/j.jqsrt.2009.02.013, 2009.
Scheiben, D., Straub, C., Hocke, K., Forkman, P., and Kämpfer, N.: Observations of middle atmospheric H2O and O3 during the 2010 major sudden stratospheric warming by a network of microwave radiometers, Atmos. Chem. Phys., 12, 7753–7765, https://doi.org/10.5194/acp-12-7753-2012, 2012.
Scherhag, R.: Die explosionsartige Stratosphärenerwärmung des Spätwinters,
Ber. Det. Wetterdienstes, 38, 51–63, 1952.
Schoeberl, M. R.: Stratospheric Warmings: Observations and Theory, 16, 521,
https://doi.org/10.1029/rg016i004p00521, 1978.
Schranz, F., Hagen, J., Stober, G., Hocke, K., Murk, A., and Kämpfer, N.: Small-scale variability of stratospheric ozone during the sudden stratospheric warming 2018/2019 observed at Ny-Ålesund, Svalbard, Atmos. Chem. Phys., 20, 10791–10806, https://doi.org/10.5194/acp-20-10791-2020, 2020.
Scott, R. K. and Polvani, L. M.: Stratospheric control of upward wave flux
near the tropopause, Geophys. Res. Lett., 31, L02115,
https://doi.org/10.1029/2003gl017965, 2004.
Shangguan, M., Wang, W., and Jin, S.: Variability of temperature and ozone in the upper troposphere and lower stratosphere from multi-satellite observations and reanalysis data, Atmos. Chem. Phys., 19, 6659–6679, https://doi.org/10.5194/acp-19-6659-2019, 2019.
Siskind, D. E., Eckermann, S. D., Coy, L., McCormack, J. P., and Randall, C.
E.: On recent interannual variability of the Arctic winter mesosphere:
Implications for tracer descent, Geophys. Res. Lett., 34, 498–5,
https://doi.org/10.1029/2007gl029293, 2007.
Smit, H. G. J., Straeter, W., Johnson, B. J., Oltmans, S. J., Davies, J.,
Tarasick, D. W., Hoegger, B., Stubi, R., Schmidlin, F. J., Northam, T.,
Thompson, A. M., Witte, J. C., Boyd, I., and Posny, F.: Assessment of the
performance of ECC-ozonesondes under quasi-flight conditions in the
environmental simulation chamber: Insights from the Juelich Ozone Sonde
Intercomparison Experiment (JOSIE), J. Geophys. Res., 112, D19306,
https://doi.org/10.1029/2006jd007308, 2007.
Smith, K. L. and Polvani, L. M.: The surface impacts of Arctic stratospheric
ozone anomalies, Environ. Res. Lett., 9, 074015,
https://doi.org/10.1088/1748-9326/9/7/074015, 2014.
Sterling, C. W., Johnson, B. J., Oltmans, S. J., Smit, H. G. J., Jordan, A. F., Cullis, P. D., Hall, E. G., Thompson, A. M., and Witte, J. C.: Homogenizing and estimating the uncertainty in NOAA's long-term vertical ozone profile records measured with the electrochemical concentration cell ozonesonde, Atmos. Meas. Tech., 11, 3661–3687, https://doi.org/10.5194/amt-11-3661-2018, 2018.
Stolarski, R. S.: History of the Study of Atmospheric Ozone, Ozone Science
Engineering, 23, 421–428, https://doi.org/10.1080/01919510108962025, 2001.
Strahan, S. E., Douglass, A. R., and Steenrod, S. D.: Chemical and dynamical impacts of stratospheric sudden warmings on Arctic ozone variability, J. Geophys. Res.-Atmos, 121, 11836–11851, https://doi.org/10.1002/2016JD025128, 2016.
Tao, M., Konopka, P., Ploeger, F., Grooß, J.-U., Müller, R., Volk, C. M., Walker, K. A., and Riese, M.: Impact of the 2009 major sudden stratospheric warming on the composition of the stratosphere, Atmos. Chem. Phys., 15, 8695–8715, https://doi.org/10.5194/acp-15-8695-2015, 2015.
Tarasick, D. W. and Bottenheim, J. W.: Surface ozone depletion episodes in the Arctic and Antarctic from historical ozonesonde records, Atmos. Chem. Phys., 2, 197–205, https://doi.org/10.5194/acp-2-197-2002, 2002.
Tarasick, D. W., Davies, J., Smit, H. G. J., and Oltmans, S. J.: A re-evaluated Canadian ozonesonde record: measurements of the vertical distribution of ozone over Canada from 1966 to 2013, Atmos. Meas. Tech., 9, 195–214, https://doi.org/10.5194/amt-9-195-2016, 2016.
Thurairajah, B., Collins, R. L., Harvey, V. L., Lieberman, R. S., Gerding,
M., Mizutani, K., and Livingston, J. M.: Gravity wave activity in the Arctic
stratosphere and mesosphere during the 2007–2008 and 2008–2009
stratospheric sudden warming events, J. Geophys. Res., 115, D00N06,
https://doi.org/10.1029/2010jd014125, 2010.
Tiao, G. C., Reinsel, G. C., Pedrick, J. H., Allenby, G. M., Mateer, C. L.,
Miller, A. J., and DeLuisi, J. J.: A statistical trend analysis of
ozonesonde data, J. Geophys. Res., 91, 13121–13136,
https://doi.org/10.1029/jd091id12p13121, 1986.
Tripathi, O. P., Baldwin, M., Perez, A. C., Charron, M., Eckermann, S. D.,
Gerber, E., Harrison, R. G., Jackson, D. R., Kim, B.-M., Kuroda, Y., Lang,
A., Mahmood, S., Mizuta, R., Roff, G., Sigmond, M., and Son, S.-W.: The
predictability of the extratropical stratosphere on monthly time-scales and
its impact on the skill of tropospheric forecasts, Q. J. Roy. Meteor. Soc.,
141, 987–1003, https://doi.org/10.1002/qj.2432, 2015.
Vigouroux, C., De Mazière, M., Demoulin, P., Servais, C., Hase, F., Blumenstock, T., Kramer, I., Schneider, M., Mellqvist, J., Strandberg, A., Velazco, V., Notholt, J., Sussmann, R., Stremme, W., Rockmann, A., Gardiner, T., Coleman, M., and Woods, P.: Evaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations, Atmos. Chem. Phys., 8, 6865–6886, https://doi.org/10.5194/acp-8-6865-2008, 2008.
Vigouroux, C., Blumenstock, T., Coffey, M., Errera, Q., García, O., Jones, N. B., Hannigan, J. W., Hase, F., Liley, B., Mahieu, E., Mellqvist, J., Notholt, J., Palm, M., Persson, G., Schneider, M., Servais, C., Smale, D., Thölix, L., and De Mazière, M.: Trends of ozone total columns and vertical distribution from FTIR observations at eight NDACC stations around the globe, Atmos. Chem. Phys., 15, 2915–2933, https://doi.org/10.5194/acp-15-2915-2015, 2015.
Wallace, J. M.: General circulation of the tropical lower stratosphere, Rev.
Geophys., 11, 191–222, https://doi.org/10.1029/rg011i002p00191, 1973.
Wargan, K., Labow, G., Frith, S., Pawson, S., Livesey, N., and Partyka, G.:
Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis, J. Climate, 30,
2961–2988, https://doi.org/10.1175/jcli-d-16-0699.1, 2017.
Wargan, K., Orbe, C., Pawson, S., Ziemke, J. R., Oman, L. D., Olsen, M. A.,
Coy, L., and Knowland, K. E.: Recent Decline in Extratropical Lower
Stratospheric Ozone Attributed to Circulation Changes, Geophys. Res. Lett.,
45, 5166–5176, https://doi.org/10.1029/2018gl077406, 2018.
WMO/GAW Ozone Monitoring Community: World Meteorological Organization-Global Atmosphere Watch Program (WMO-GAW)/World Ozone and Ultraviolet Radiation Data Centre (WOUDC), [data set], retrieved 24 October 2013, from https://woudc.org, https://doi.org/10.14287/10000001, 2013.
Xie, F., Li, J., Tian, W., Fu, Q., Jin, F.-F., Hu, Y., Zhang, J., Wang, W.,
Sun, C., Feng, J., Yang, Y., and Ding, R.: A connection from Arctic
stratospheric ozone to El Niño-Southern oscillation, Environ. Res.
Lett., 11, 124026–12, https://doi.org/10.1088/1748-9326/11/12/124026, 2016.
Short summary
Large-scale atmospheric circulation has a strong influence on ozone in the Arctic, and certain anomalous dynamical events, such as sudden stratospheric warmings, cause dramatic alterations of the large-scale circulation. A reanalysis model is evaluated and then used to investigate the impact of sudden stratospheric warmings on mid-atmospheric ozone. Results show that the position of the cold jet stream over the Arctic before these events influences the variability of ozone.
Large-scale atmospheric circulation has a strong influence on ozone in the Arctic, and certain...
Altmetrics
Final-revised paper
Preprint