Articles | Volume 22, issue 23
https://doi.org/10.5194/acp-22-15153-2022
https://doi.org/10.5194/acp-22-15153-2022
Research article
 | 
29 Nov 2022
Research article |  | 29 Nov 2022

Sources of concentric gravity waves generated by a moving mesoscale convective system in southern Brazil

Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Eliah F. M. T. São Sabbas, José V. Bageston, Kleber P. Naccarato, Delano Gobbi, Cosme A. O. B. Figueiredo, Toyese T. Ayorinde, Hisao Takahashi, and Diego Barros

Related authors

Medium-scale gravity waves observational methodology for antarctic airglow observations
Gabriel Augusto Giongo, Cristiano Max Wrasse, Pierre-Dominique Pautet, José Valentin Bageston, Prosper Kwamla Nyassor, Cosme Alexandre Oliveira Barros Figueiredo, Anderson Vestena Bilibio, Delano Gobbi, and Hisao Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2024-3344,https://doi.org/10.5194/egusphere-2024-3344, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Momentum flux characteristics of vertical propagating Gravity Waves
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Cosme A. O. B. Figueiredo, Ricardo A. Buriti, Hisao Takahashi, Delano Gobbi, and Gabriel A. Giongo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1982,https://doi.org/10.5194/egusphere-2024-1982, 2024
Short summary
Studies on the propagation dynamics and source mechanism of quasi-monochromatic gravity waves observed over São Martinho da Serra (29° S, 53° W), Brazil
Cristiano M. Wrasse, Prosper K. Nyassor, Ligia A. da Silva, Cosme A. O. B. Figueiredo, José V. Bageston, Kleber P. Naccarato, Diego Barros, Hisao Takahashi, and Delano Gobbi
Atmos. Chem. Phys., 24, 5405–5431, https://doi.org/10.5194/acp-24-5405-2024,https://doi.org/10.5194/acp-24-5405-2024, 2024
Short summary

Related subject area

Subject: Dynamics | Research Activity: Remote Sensing | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Lidar measurements of noctilucent clouds at Río Grande, Tierra del Fuego, Argentina
Natalie Kaifler, Bernd Kaifler, Markus Rapp, Guiping Liu, Diego Janches, Gerd Baumgarten, and Jose-Luis Hormaechea
Atmos. Chem. Phys., 24, 14029–14044, https://doi.org/10.5194/acp-24-14029-2024,https://doi.org/10.5194/acp-24-14029-2024, 2024
Short summary
Has the 2022 Hunga eruption impacted the noctilucent cloud season in 2023/24 and 2024?
Sandra Wallis, Matthew DeLand, and Christian von Savigny
EGUsphere, https://doi.org/10.5194/egusphere-2024-2165,https://doi.org/10.5194/egusphere-2024-2165, 2024
Short summary
Upper-atmosphere responses to the 2022 Hunga Tonga–Hunga Ha′apai volcanic eruption via acoustic gravity waves and air–sea interaction
Qinzeng Li, Jiyao Xu, Aditya Riadi Gusman, Hanli Liu, Wei Yuan, Weijun Liu, Yajun Zhu, and Xiao Liu
Atmos. Chem. Phys., 24, 8343–8361, https://doi.org/10.5194/acp-24-8343-2024,https://doi.org/10.5194/acp-24-8343-2024, 2024
Short summary
Momentum flux characteristics of vertical propagating Gravity Waves
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Cosme A. O. B. Figueiredo, Ricardo A. Buriti, Hisao Takahashi, Delano Gobbi, and Gabriel A. Giongo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1982,https://doi.org/10.5194/egusphere-2024-1982, 2024
Short summary
Influences of sudden stratospheric warmings on the ionosphere above Okinawa
Klemens Hocke, Wenyue Wang, and Guanyi Ma
Atmos. Chem. Phys., 24, 5837–5846, https://doi.org/10.5194/acp-24-5837-2024,https://doi.org/10.5194/acp-24-5837-2024, 2024
Short summary

Cited articles

Adler, R. F. and Fenn, D. D.: Thunderstorm intensity as determined from satellite data, J. Appl. Meteorol. Clim., 18, 502–517, https://doi.org/10.1175/1520-0450(1979)018<0502:TIADFS>2.0.CO;2, 1979. a
Azeem, I., Yue, J., Hoffmann, L., Miller, S. D., Straka, W. C., and Crowley, G.: Multisensor profiling of a concentric gravity wave event propagating from the troposphere to the ionosphere, Geophys. Res. Lett., 42, 7874–7880, https://doi.org/10.1002/2015GL065903, 2015. a
Bedka, K., Brunner, J., Dworak, R., Feltz, W., Otkin, J., and Greenwald, T.: Objective satellite-based detection of overshooting tops using infrared window channel brightness temperature gradients, J. Appl. Meteorol. Clim., 49, 181–202, https://doi.org/10.1175/2009JAMC2286.1, 2010. a, b, c
Bevington, P. R. and Robinson, D. K.: Data reduction and error analysis for the physical sciences, in: 3rd Edn., McGraw-Hill, New York, NY, https://cds.cern.ch/record/1305448 (last access: 16 November 2022), 2003. a
Choi, H.-J., Chun, H.-Y., and Song, I.-S.: Gravity wave temperature variance calculated using the ray-based spectral parameterization of convective gravity waves and its comparison with Microwave Limb Sounder observations, J. Geophys. Res.-Atmos., 114, D08111, https://doi.org/10.1029/2008JD011330, 2009. a, b
Download
Short summary
This work investigates the sources of concentric gravity waves (CGWs) excited by a moving system of clouds with several overshooting regions on 1–2 October 2019 at São Martinho da Serra. The parameters of these waves were estimated using 2D spectral analysis and their source locations identified using backward ray tracing. Furthermore, the sources of these waves were properly identified by tracking the individual overshooting regions in space and time since the system of clouds was moving.
Altmetrics
Final-revised paper
Preprint