Articles | Volume 22, issue 23
https://doi.org/10.5194/acp-22-15153-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-15153-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sources of concentric gravity waves generated by a moving mesoscale convective system in southern Brazil
Prosper K. Nyassor
CORRESPONDING AUTHOR
Space Weather Division, National Institute for Space Research, São José dos Campos, SP, Brazil
Cristiano M. Wrasse
Space Weather Division, National Institute for Space Research, São José dos Campos, SP, Brazil
Igo Paulino
Department of Physics, Federal University of Campina Grande, Campina Grande, PB, Brazil
Eliah F. M. T. São Sabbas
Heliophysics, Planetary Science and Aeronomy Division, National Institute for Space Research, São José dos Campos, SP, Brazil
José V. Bageston
Southern Space Coordination, National Institute for Space Research, Santa Maria, RS, Brazil
Kleber P. Naccarato
Impacts, Adaptation and Vulnerabilities Division, National Institute for Space Research, São José dos Campos, SP, Brazil
Delano Gobbi
Space Weather Division, National Institute for Space Research, São José dos Campos, SP, Brazil
Cosme A. O. B. Figueiredo
Space Weather Division, National Institute for Space Research, São José dos Campos, SP, Brazil
Toyese T. Ayorinde
Space Weather Division, National Institute for Space Research, São José dos Campos, SP, Brazil
Hisao Takahashi
Space Weather Division, National Institute for Space Research, São José dos Campos, SP, Brazil
Diego Barros
Space Weather Division, National Institute for Space Research, São José dos Campos, SP, Brazil
Related authors
Gabriel Augusto Giongo, Cristiano Max Wrasse, Pierre-Dominique Pautet, José Valentin Bageston, Prosper Kwamla Nyassor, Cosme Alexandre Oliveira Barros Figueiredo, Anderson Vestena Bilibio, Tracy Moffat-Griffin, Damian John Murphy, Toyese Tunde Ayorinde, Delano Gobbi, and Hisao Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3114, https://doi.org/10.5194/egusphere-2025-3114, 2025
Short summary
Short summary
This work analyzes the medium-scale atmospheric gravity waves observed by ground-based airglow imaging over the Antarctic continent. Medium-scale gravity waves refer to waves larger than 50 km of horizontal wavelength, and have not been analyzed in that region so far. Wave parameters and horizontal propagation characteristics were obtained by a recently improved methodology and are described thoroughly.
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Erdal Yiğit, Vera Y. Tsali-Brown, Ricardo A. Buriti, Cosme A. O. B. Figueiredo, Gabriel A. Giongo, Fábio Egito, Oluwasegun M. Adebayo, Hisao Takahashi, and Delano Gobbi
Atmos. Chem. Phys., 25, 4053–4082, https://doi.org/10.5194/acp-25-4053-2025, https://doi.org/10.5194/acp-25-4053-2025, 2025
Short summary
Short summary
This work explores the dynamics of the momentum and energy of propagating mesospheric gravity waves (GWs). A photometer was used to observe the vertical component of the GWs, whereas the horizontal component was observed by an all-sky imager. Using the parameters from these two instruments and background wind from meteor radar, the momentum flux and potential energy of the GWs were determined and studied. It is noted that the dynamics of the downward-propagating GWs were controlled by observed ducts.
Gabriel Augusto Giongo, Cristiano Max Wrasse, Pierre-Dominique Pautet, José Valentin Bageston, Prosper Kwamla Nyassor, Cosme Alexandre Oliveira Barros Figueiredo, Anderson Vestena Bilibio, Delano Gobbi, and Hisao Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2024-3344, https://doi.org/10.5194/egusphere-2024-3344, 2024
Short summary
Short summary
A new algorithm for medium-scale gravity waves analysis was developed for studies of gravity waves observed by airglow imaging. With this procedure, observation datasets can be analyzed to extract the gravity waves parameters for climatological purposes. The procedure showed reliable performance and are ready to be used in other observation sites.
Cristiano M. Wrasse, Prosper K. Nyassor, Ligia A. da Silva, Cosme A. O. B. Figueiredo, José V. Bageston, Kleber P. Naccarato, Diego Barros, Hisao Takahashi, and Delano Gobbi
Atmos. Chem. Phys., 24, 5405–5431, https://doi.org/10.5194/acp-24-5405-2024, https://doi.org/10.5194/acp-24-5405-2024, 2024
Short summary
Short summary
This present work investigates the propagation dynamics and the sources–source mechanisms of quasi-monochromatic gravity waves (QMGWs) observed between April 2017 and April 2022 at São Martinho da Serra. The QMGW parameters were estimated using a 2D spectral analysis, and their source locations were identified using a backward ray-tracing model. Furthermore, the propagation conditions, sources, and source mechanisms of the QMGWs were extensively studied.
Qinzeng Li, Jiyao Xu, Yajun Zhu, Cristiano M. Wrasse, José V. Bageston, Wei Yuan, Xiao Liu, Weijun Liu, Ying Wen, Hui Li, and Zhengkuan Liu
Atmos. Chem. Phys., 25, 9719–9736, https://doi.org/10.5194/acp-25-9719-2025, https://doi.org/10.5194/acp-25-9719-2025, 2025
Short summary
Short summary
This study explores intense concentric gravity waves (CGWs) based on ground-based and multi-satellite observations over southern Brazil, revealing significant airglow perturbations and strong momentum release. Triggered by deep convection and enabled by weaker wind fields, these CGWs reached the mesopause and thermosphere. Consistent detection via OI and OH airglow emissions confirms their vertical propagation, while asymmetric thermosphere propagation is linked to Doppler-induced wavelength changes.
Gabriel Augusto Giongo, Cristiano Max Wrasse, Pierre-Dominique Pautet, José Valentin Bageston, Prosper Kwamla Nyassor, Cosme Alexandre Oliveira Barros Figueiredo, Anderson Vestena Bilibio, Tracy Moffat-Griffin, Damian John Murphy, Toyese Tunde Ayorinde, Delano Gobbi, and Hisao Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3114, https://doi.org/10.5194/egusphere-2025-3114, 2025
Short summary
Short summary
This work analyzes the medium-scale atmospheric gravity waves observed by ground-based airglow imaging over the Antarctic continent. Medium-scale gravity waves refer to waves larger than 50 km of horizontal wavelength, and have not been analyzed in that region so far. Wave parameters and horizontal propagation characteristics were obtained by a recently improved methodology and are described thoroughly.
Ana Roberta Paulino, Igo Paulino, and José Augusto Pereira
EGUsphere, https://doi.org/10.5194/egusphere-2025-3085, https://doi.org/10.5194/egusphere-2025-3085, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
In this paper, atmospheric responses to the 23 October 2023 annular solar eclipse is discussed considering almost simultaneous temperature measurements from the TIMED/SABER satellite. Reductions of the temperature in troposphere, mesosphere and mesopause were observed. On the other hand, the temperature increased by about 7 K around 33 km. The temporal and spatial configuration of the measurements is consistent with the observed structures.
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Erdal Yiğit, Vera Y. Tsali-Brown, Ricardo A. Buriti, Cosme A. O. B. Figueiredo, Gabriel A. Giongo, Fábio Egito, Oluwasegun M. Adebayo, Hisao Takahashi, and Delano Gobbi
Atmos. Chem. Phys., 25, 4053–4082, https://doi.org/10.5194/acp-25-4053-2025, https://doi.org/10.5194/acp-25-4053-2025, 2025
Short summary
Short summary
This work explores the dynamics of the momentum and energy of propagating mesospheric gravity waves (GWs). A photometer was used to observe the vertical component of the GWs, whereas the horizontal component was observed by an all-sky imager. Using the parameters from these two instruments and background wind from meteor radar, the momentum flux and potential energy of the GWs were determined and studied. It is noted that the dynamics of the downward-propagating GWs were controlled by observed ducts.
Ana Roberta Paulino, Delis Otildes Rodrigues, Igo Paulino, Lourivaldo Mota Lima, Ricardo Arlen Buriti, Paulo Prado Batista, Aaron Ridley, and Chen Wu
Ann. Geophys., 43, 183–191, https://doi.org/10.5194/angeo-43-183-2025, https://doi.org/10.5194/angeo-43-183-2025, 2025
Short summary
Short summary
Comparisons of wind measurements using two different techniques (ground-based radar and satellite) in Brazil during 2006 were made in order to point out the advantages of each instrument for studies in the mesosphere and upper thermosphere. (i) For short-period variations, the measurements of the satellite were more advantageous. (ii) The monthly climatology using the radar was more appropriate. (iii) For long periods (longer than a few months), both instruments responded satisfactorily.
Josemaria Gomez Socola, Fabiano S. Rodrigues, Isaac G. Wright, Igo Paulino, and Ricardo Buriti
Atmos. Meas. Tech., 18, 909–919, https://doi.org/10.5194/amt-18-909-2025, https://doi.org/10.5194/amt-18-909-2025, 2025
Short summary
Short summary
New low-cost, off-the-shelf Global Navigation Satellite System (GNSS) receivers enable the estimation of zonal ionospheric irregularity drifts using the scintillation spaced-receiver technique, previously tested only with commercial GNSS receivers. Despite their low C/No resolution (1 dB-Hz), we demonstrate that the recorded raw data can be used to estimate irregularity drifts. Further, our observations are consistent with the behavior of an empirical model of the thermospheric winds (HMW14).
Toyese Tunde Ayorinde, Cristiano Max Wrasse, Hisao Takahashi, Luiz Fernando Sapucci, Cosme Alexandre Oliveira Barros Figueiredo, Diego Barros, Ligia Alves da Silva, Patrick Essien, and Anderson Vestena Bilibio
EGUsphere, https://doi.org/10.5194/egusphere-2024-4083, https://doi.org/10.5194/egusphere-2024-4083, 2025
Short summary
Short summary
We studied how the Intertropical Convergence Zone (ITCZ) interacts with atmospheric gravity waves high in the sky and how global climate patterns like El Niño affect them. Using RO, ERA5, and NCEP reanalysis data, we found that the ITCZ shifts with seasons but stays strong year-round, influencing weather and energy flow. Our findings show how climate patterns shape weather systems and help predict changes, improving understanding of the atmosphere and its effects on global climate.
Gabriel Augusto Giongo, Cristiano Max Wrasse, Pierre-Dominique Pautet, José Valentin Bageston, Prosper Kwamla Nyassor, Cosme Alexandre Oliveira Barros Figueiredo, Anderson Vestena Bilibio, Delano Gobbi, and Hisao Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2024-3344, https://doi.org/10.5194/egusphere-2024-3344, 2024
Short summary
Short summary
A new algorithm for medium-scale gravity waves analysis was developed for studies of gravity waves observed by airglow imaging. With this procedure, observation datasets can be analyzed to extract the gravity waves parameters for climatological purposes. The procedure showed reliable performance and are ready to be used in other observation sites.
Gabriela Dornelles Bittencourt, Hassan Bencherif, Damaris Kirsch Pinheiro, Nelson Begue, Lucas Vaz Peres, José Valentin Bageston, Douglas Lima de Bem, Francisco Raimundo da Silva, and Tristan Millet
Atmos. Meas. Tech., 17, 5201–5220, https://doi.org/10.5194/amt-17-5201-2024, https://doi.org/10.5194/amt-17-5201-2024, 2024
Short summary
Short summary
The study examines the behavior of ozone at equatorial and subtropical latitudes in South America, in a multi-instrumental analysis. The methodology applied used ozonesondes (SHADOZ/NASA) and satellite data (TIMED/SABER), as well as analysis with ground-based and satellite instruments, allowing a more in-depth study at both latitudes. The main motivation is to understand how latitudinal differences in the observation of ozone content can interfere with the behavior of this trace gas.
Cristiano M. Wrasse, Prosper K. Nyassor, Ligia A. da Silva, Cosme A. O. B. Figueiredo, José V. Bageston, Kleber P. Naccarato, Diego Barros, Hisao Takahashi, and Delano Gobbi
Atmos. Chem. Phys., 24, 5405–5431, https://doi.org/10.5194/acp-24-5405-2024, https://doi.org/10.5194/acp-24-5405-2024, 2024
Short summary
Short summary
This present work investigates the propagation dynamics and the sources–source mechanisms of quasi-monochromatic gravity waves (QMGWs) observed between April 2017 and April 2022 at São Martinho da Serra. The QMGW parameters were estimated using a 2D spectral analysis, and their source locations were identified using a backward ray-tracing model. Furthermore, the propagation conditions, sources, and source mechanisms of the QMGWs were extensively studied.
Gabriela Dornelles Bittencourt, Damaris Kirsch Pinheiro, Hassan Bencherif, Lucas Vaz Peres, Nelson Begue, José Valentin Bageston, Douglas Lima de Bem, Vagner Anabor, and Luiz Angelo Steffenel
EGUsphere, https://doi.org/10.5194/egusphere-2023-1471, https://doi.org/10.5194/egusphere-2023-1471, 2023
Preprint archived
Short summary
Short summary
The study examines ozone depletions at mid-latitudes in Brazil during austral spring Antarctic Ozone Hole influence events. The methodology applied used data from the total column ozone, vertical profile of the atmosphere, and reanalysis data to analyze the atmospheric dynamics. The main motivation of this work is to show how this important trace gas dynamically behaves in the atmosphere in the active period of the Antarctic Ozone Hole in regions of medium latitudes.
Hisao Takahashi, Cosme A. O. B. Figueiredo, Patrick Essien, Cristiano M. Wrasse, Diego Barros, Prosper K. Nyassor, Igo Paulino, Fabio Egito, Geangelo M. Rosa, and Antonio H. R. Sampaio
Ann. Geophys., 40, 665–672, https://doi.org/10.5194/angeo-40-665-2022, https://doi.org/10.5194/angeo-40-665-2022, 2022
Short summary
Short summary
We observed two different wave propagations in the earth’s upper atmosphere: a gravity wave in the mesosphere and the ionospheric disturbances. We investigated the wave propagations by using airglow imaging techniques. It is found that there was a gravity wave generation from the tropospheric convection spot, and it propagated upward in the ionosphere. This reports observational evidence of gravity wave propagation from the troposphere to ionosphere.
Laysa C. A. Resende, Yajun Zhu, Clezio M. Denardini, Sony S. Chen, Ronan A. J. Chagas, Lígia A. Da Silva, Carolina S. Carmo, Juliano Moro, Diego Barros, Paulo A. B. Nogueira, José P. Marchezi, Giorgio A. S. Picanço, Paulo Jauer, Régia P. Silva, Douglas Silva, José A. Carrasco, Chi Wang, and Zhengkuan Liu
Ann. Geophys., 40, 191–203, https://doi.org/10.5194/angeo-40-191-2022, https://doi.org/10.5194/angeo-40-191-2022, 2022
Short summary
Short summary
This study showed the ionospheric response over low-latitude regions in Brazil predicted by Martínez-Ledesma et al. (2020) for the solar eclipse event on 14 December 2020. We used a multi-instrumental and modeling analysis to observe the modifications in the E and F regions and the Es layers over Campo Grande and Cachoeira Paulista. The results showed that solar eclipses can cause significant ionosphere modifications even though they only partially reach the Brazilian low-latitude regions.
Igo Paulino, Ana Roberta Paulino, Amauri F. Medeiros, Cristiano M. Wrasse, Ricardo Arlen Buriti, and Hisao Takahashi
Ann. Geophys., 39, 1005–1012, https://doi.org/10.5194/angeo-39-1005-2021, https://doi.org/10.5194/angeo-39-1005-2021, 2021
Short summary
Short summary
In the present work, the lunar semidiurnal tide (M2) was investigated in the equatorial plasma bubble (EPB) zonal drifts over Brazil from 2000 to 2007. On average, the M2 contributes 5.6 % to the variability of the EPB zonal drifts. A strong seasonal and solar cycle dependency was also observed, the amplitudes of the M2 being stronger during the summer and high solar activity periods.
Lucí Hidalgo Nunes, Gerhard Held, Ana Maria Gomes, Kleber Pinheiro Naccarato, and Raul Reis Amorim
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-35, https://doi.org/10.5194/wcd-2021-35, 2021
Preprint withdrawn
Short summary
Short summary
During the night of 04/05 June 2016 Campinas, Brazil, was hit by a tornado and by intense lightning activity. The day (Sunday) and time of the tornado occurrence probably contributed to the fact that only a small number of persons suffered injuries, without any fatalities. The phenomenon was evaluated by means of radar observations, lightning activity and damages. The occurrence of the phenomenon has shown that the municipal government and citizens are unprepared to face this kind of event.
Ana Roberta Paulino, Fabiano da Silva Araújo, Igo Paulino, Cristiano Max Wrasse, Lourivaldo Mota Lima, Paulo Prado Batista, and Inez Staciarini Batista
Ann. Geophys., 39, 151–164, https://doi.org/10.5194/angeo-39-151-2021, https://doi.org/10.5194/angeo-39-151-2021, 2021
Short summary
Short summary
Long- and short-period oscillations in the lunar semidiurnal tidal amplitudes in the ionosphere derived from the total electron content were investigated over Brazil from 2011 to 2014. The results showed annual, semiannual and triannual oscillations as the dominant components. Additionally, the most pronounced short-period oscillations were observed between 7 and 11 d, which suggest a possible coupling of the lunar tide and planetary waves.
Ricardo A. Buriti, Wayne Hocking, Paulo P. Batista, Igo Paulino, Ana R. Paulino, Marcial Garbanzo-Salas, Barclay Clemesha, and Amauri F. Medeiros
Ann. Geophys., 38, 1247–1256, https://doi.org/10.5194/angeo-38-1247-2020, https://doi.org/10.5194/angeo-38-1247-2020, 2020
Short summary
Short summary
Solar atmospheric tides are natural oscillations of 24, 12, 8... hours that contribute to the circulation of the atmosphere from low to high altitudes. The Sun heats the atmosphere periodically because, mainly, water vapor and ozone absorb solar radiation between the ground and 50 km height during the day. Tides propagate upward and they can be observed in, for example, the wind field. This work presents diurnal tides observed by meteor radars which measure wind between 80 and 100 km height.
Cited articles
Adler, R. F. and Fenn, D. D.: Thunderstorm intensity as determined from
satellite data, J. Appl. Meteorol. Clim., 18, 502–517,
https://doi.org/10.1175/1520-0450(1979)018<0502:TIADFS>2.0.CO;2, 1979. a
Azeem, I., Yue, J., Hoffmann, L., Miller, S. D., Straka, W. C., and Crowley,
G.: Multisensor profiling of a concentric gravity wave event propagating from
the troposphere to the ionosphere, Geophys. Res. Lett., 42, 7874–7880, https://doi.org/10.1002/2015GL065903, 2015. a
Bedka, K., Brunner, J., Dworak, R., Feltz, W., Otkin, J., and Greenwald, T.:
Objective satellite-based detection of overshooting tops using infrared
window channel brightness temperature gradients, J. Appl. Meteorol. Clim., 49, 181–202, https://doi.org/10.1175/2009JAMC2286.1, 2010. a, b, c
Bevington, P. R. and Robinson, D. K.: Data reduction and error analysis for
the physical sciences, in: 3rd Edn., McGraw-Hill, New York, NY,
https://cds.cern.ch/record/1305448 (last access: 16 November 2022), 2003. a
Choi, H.-J., Chun, H.-Y., and Song, I.-S.: Gravity wave temperature variance
calculated using the ray-based spectral parameterization of convective
gravity waves and its comparison with Microwave Limb Sounder observations,
J. Geophys. Res.-Atmos., 114, D08111, https://doi.org/10.1029/2008JD011330, 2009. a, b
Cooney, J. W., Bowman, K. P., Homeyer, C. R., and Fenske, T. M.: Ten year
analysis of tropopause-overshooting convection using GridRad data, J.
Geophys. Res.-Atmos., 123, 329–343, https://doi.org/10.1002/2017JD027718, 2018. a
CPTEC: Center for Weather Forecasting and Climate Studies (CPTEC/INPE),
http://satelite.cptec.inpe.br/ (last access: 10 June 2021), 2019. a
Drob, D. P., Emmert, J. T., Meriwether, J. W., Makela, J. J., Doornbos, E.,
Conde, M., Hernandez, G., Noto, J., Zawdie, K. A., McDonald, S. E., Huba, J. D., and Klenzing, J. H.: An update to the Horizontal Wind Model (HWM): The quiet time thermosphere, Earth Space Sci., 2, 301–319, https://doi.org/10.1002/2014EA000089, 2015. a
EMBRACE: Estudo e Monitoramento Brasileiro do Clima Espacial – EMBRACE/INPE,
http://www.inpe.br/climaespacial/portal/en (last access: 10 November 2020), 2019. a
Figueiredo, C., Takahashi, H., Wrasse, C., Otsuka, Y., Shiokawa, K., and
Barros, D.: Investigation of nighttime MSTIDS observed by optical
thermosphere imagers at low latitudes: Morphology, propagation direction, and
wind filtering, J. Geophys. Res.-Space, 123, 7843–7857, https://doi.org/10.1029/2018JA025438, 2018. a
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the
middle atmosphere, Rev. Geophys., 41, 1–64, https://doi.org/10.1029/2001RG000106, 2003. a, b
Garcia, F., Taylor, M. J., and Kelley, M.: Two-dimensional spectral analysis of mesospheric airglow image data, Appl. Optics, 36, 7374–7385,
https://doi.org/10.1364/AO.36.007374, 1997. a, b
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a
Giongo, G. A., Bageston, J. V., Figueiredo, C. A., Wrasse, C. M., Kam, H., Kim, Y. H., and Schuch, N. J.: Gravity Wave Investigations over Comandante Ferraz Antarctic Station in 2017: General Characteristics, Wind Filtering and Case Study, Atmosphere, 11, 880, https://doi.org/10.3390/atmos11080880, 2020. a
Globo News: RS registra granizo e rajadas de vento de mais de 100 km/h,
https://g1.globo.com/rs/rio-grande-do-sul/noticia/2019/10/02/rs-registra-granizo-e-rajadas-de-vento-de-mais-de-100-kmh.ghtml
(last access: 10 November 2020), 2019. a
GMAO – Global Modeling and Assimilation Office: MERRA-2 inst3_3d_asm_Np: 3d, 3-hourly, instantaneous, pressure-level, assimilation, assimilated meteorological fields V5.12.4, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/WWQSXQ8IVFW8, 2015. a
Gossard, E. E. and Hooke, W. H.: Waves in the atmosphere: atmospheric
infrasound and gravity waves-their generation and propagation, Elsevier scientific, Amsterdam, ISBN 13:9780444411969, ISBN 10:0444411968, 1975. a
Griffin, S. M., Bedka, K. M., and Velden, C. S.: A method for calculating the
height of overshooting convective cloud tops using satellite-based IR imager
and CloudSat cloud profiling radar observations, J. Appl. Meteorol. Clim., 55, 479–491, https://doi.org/10.1175/JAMC-D-15-0170.1, 2016. a, b, c, d, e, f, g, h, i
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut J.-N.: ERA5 Hourly Data on Pressure Levels from 1979 to Present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://cds.climate.copernicus.eu/ (last access: 5 January 2022), 2018. a
Heymsfield, G. M. and Blackmer Jr., R. H.: Satellite-observed characteristics of Midwest severe thunderstorm anvils, Mon. Weather Rev., 116, 2200–2224,
https://doi.org/10.1175/1520-0493(1988)116<2200:SOCOMS>2.0.CO;2, 1988. a
Holton, J. R. and Hakim, G. J.: An introduction to dynamic meteorology,
in: vol. 88, Academic Press, ISBN 10:0123848660, ISBN 13:978-0123848666, 2012. a
Jiang, J. H., Wang, B., Goya, K., Hocke, K., Eckermann, S. D., Ma, J., Wu,
D. L., and Read, W. G.: Geographical distribution and interseasonal
variability of tropical deep convection: UARS MLS observations and analyses,
J. Geophys. Res.-Atmos., 109, D03111, https://doi.org/10.1029/2003JD003756, 2004. a
Jurković, P. M., Mahović, N. S., and Počakal, D.: Lightning,
overshooting top and hail characteristics for strong convective storms in
Central Europe, Atmos. Res., 161, 153–168, https://doi.org/10.1016/j.atmosres.2015.03.020, 2015. a
Kim, J. and Son, S.-W.: Tropical cold-point tropopause: Climatology, seasonal
cycle, and intraseasonal variability derived from COSMIC GPS radio occultation measurements, J. Climate, 25, 5343–5360, https://doi.org/10.1175/JCLI-D-11-00554.1, 2012. a
Kim, J., Randel, W. J., and Birner, T.: Convectively driven tropopause-level
cooling and its influences on stratospheric moisture, J. Geophys. Res.-Atmos., 123, 590–606, https://doi.org/10.1002/2017JD027080, 2018. a, b
Kim, S.-Y., Chun, H.-Y., and Wu, D. L.: A study on stratospheric gravity waves generated by Typhoon Ewiniar: Numerical simulations and satellite
observations, J. Geophys. Res.-Atmos., 114, D22104, https://doi.org/10.1029/2009JD011971, 2009. a
Lane, T. P., Reeder, M. J., and Clark, T. L.: Numerical modeling of gravity
wave generation by deep tropical convection, J. Atmos. Sci., 58, 1249–1274,
https://doi.org/10.1175/1520-0469(2001)058<1249:NMOGWG>2.0.CO;2, 2001. a
Lane, T. P., Reeder, M. J., and Guest, F. M.: Convectively generated gravity
waves observed from radiosonde data taken during MCTEX, Q. J. Roy. Meteorol. Soc., 129, 1731–1740, https://doi.org/10.1256/qj.02.196, 2003. a
McLandress, C., Alexander, M. J., and Wu, D. L.: Microwave Limb Sounder
observations of gravity waves in the stratosphere: A climatology and
interpretation, J. Geophys. Res.-Atmos., 105, 11947–11967, https://doi.org/10.1029/2000JD900097, 2000. a
Medeiros, A., Taylor, M. J., Takahashi, H., Batista, P., and Gobbi, D.: An
investigation of gravity wave activity in the low-latitude upper mesosphere:
Propagation direction and wind filtering, J. Geophys. Res.-Atmos., 108, 4411, https://doi.org/10.1029/2002JD002593, 2003. a, b
Naccarato, K. P. and Pinto, J. O.: Improvements in the detection efficiency
model for the Brazilian lightning detection network (BrasilDAT), Atmos. Res., 91, 546–563, https://doi.org/10.1016/j.atmosres.2008.06.019, 2009. a
Naccarato, K. P. and Pinto, J. O.: Lightning detection in Southeastern Brazil
from the new Brazilian Total lightning network (BrasilDAT), in: IEEE 2012 International Conference on Lightning Protection (ICLP), 2–7 September 2012, Vienna, Austria, 1–9, https://doi.org/10.1109/ICLP.2012.6344294, 2012. a
Nappo, C. J.: An introduction to atmospheric gravity waves, Academic Press,
ISBN 9780123852236, ISBN 9780123852243, 2013. a
Nyassor, P. K. and Wrasse, C. M.: Mesoscale Convective System on October 1–2, 2019, TIB AV-PORTAL [video], https://doi.org/10.5446/56980, 2022. a
Nyassor, P. K., Wrasse, C. M., Gobbi, D., Paulino, I., Vadas, S. L., Naccarato, K. P., Takahashi, H., Bageston, J. V., Figueiredo, C. A. O. B., and Barros, D.: Case Studies on Concentric Gravity Waves Source Using Lightning Flash Rate, Brightness Temperature and Backward Ray Tracing at São Martinho da Serra (29.44∘ S, 53.82∘ W), J. Geophys. Res.-Atmos., 126, e2020JD034527, https://doi.org/10.1029/2020JD034527, 2021. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, aa
Nyassor, P. K., Wrasse, C. M., Paulino, I., Gobbi, D., Yiğit, E., Takahashi, H., Batista, P. P., Naccarato, K. P., Buriti, R. A., Paulino, A. R., Barros, D., and Figueiredo, C. A. O. B.: Investigations on Concentric Gravity Wave Sources Over the Brazilian Equatorial Region, J. Geophys.
Res.-Atmos., 127, e2021JD035149, https://doi.org/10.1029/2021JD035149, 2022. a, b, c, d, e
Pedoe, D.: Circles: a mathematical view, Cambridge University Press, ISBN 0883855186, 1995. a
Picone, J., Hedin, A., Drob, D. P., and Aikin, A.: NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J.
Geophys. Res.-Space, 107, 1468, https://doi.org/10.1029/2002JA009430, 2002. a
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.:
Numerical recipes, in: 3rd Edn., The art of scientific computing, Cambridge
University Press, ISBN 9780521880688, 2007. a
Preusse, P., Eidmann, G., Eckermann, S., Schaeler, B., Spang, R., and
Offermann, D.: Indications of convectively generated gravity waves in CRISTA
temperatures, Adv. Space Res., 27, 1653–1658, https://doi.org/10.1016/S0273-1177(01)00231-9, 2001. a
São Sabbas, F., Taylor, M. J., Pautet, P.-D., Bailey, M., Cummer, S.,
Azambuja, R., Santiago, J., Thomas, J., Pinto, O., Solorzano, N. N., Schuch, N. J., Freitas, S. R., Ferreira, N. J., and Conforte, J. C.: Observations of prolific transient luminous event production above a mesoscale convective system in Argentina during the Sprite2006 Campaign in Brazil, J. Geophys. Res.-Space, 115, A00E58, https://doi.org/10.1029/2009JA014857, 2010. a, b, c, d, e, f, g, h, i
São Sabbas, F., Souza, J., Guerra, E., Naccarato, K., Lambas, D., Rolim,
J., Van Meer, H., Massini, J., Secanell, E., Villalobos, C., et al.: TLEs
Detected with LEONA Network during RELAMPAGO Campaign: Preliminary Results,
in: vol. 2019, AGU Fall Meeting Abstracts, 9–13 December 2019, San Francisco, USA, AE31B-3099, https://doi.org/10.1109/ICLP.2012.6344294, 2019. a
São Sabbas, F. T., Rampinelli, V. T., Santiago, J., Stamus, P., Vadas, S. L., Fritts, D. C., Taylor, M. J., Pautet, P. D., Dolif Neto, G., and Pinto, O.: Characteristics of sprite and gravity wave convective sources present in satellite IR images during the SpreadFEx 2005 in Brazil, Ann. Geophys., 27, 1279–1293, https://doi.org/10.5194/angeo-27-1279-2009, 2009. a, b, c, d
Sentman, D., Wescott, E., Picard, R., Winick, J., Stenbaek-Nielsen, H., Dewan, E., Moudry, D., Sao Sabbas, F., Heavner, M., and Morrill, J.: Simultaneous observations of mesospheric gravity waves and sprites generated by a midwestern thunderstorm, J. Atmos. Sol.-Terr. Phy., 65, 537–550, https://doi.org/10.1016/S1364-6826(02)00328-0, 2003. a, b, c, d, e
Sherwood, S. C., Horinouchi, T., and Zeleznik, H. A.: Convective impact on
temperatures observed near the tropical tropopause, J. Atmos. Sci, 60, 1847–1856, https://doi.org/10.1175/1520-0469(2003)060<1847:CIOTON>2.0.CO;2, 2003. a
Takahashi, H., Wrasse, C. M., Figueiredo, C. A. O. B., Barros, D., Abdu, M. A., Otsuka, Y., and Shiokawa, K.: Equatorial plasma bubble seeding by MSTIDs in the ionosphere, Progr. Earth Planet. Sci., 5, 1–13,
https://doi.org/10.1186/s40645-018-0189-2, 2018. a
Taylor, M. J. and Hapgood, M.: Identification of a thunderstorm as a source of short period gravity waves in the upper atmospheric nightglow emissions,
Planet. Space Sci., 36, 975–985, https://doi.org/10.1016/0032-0633(88)90035-9, 1988. a
Taylor, M. J., Ryan, E., Tuan, T., and Edwards, R.: Evidence of preferential
directions for gravity wave propagation due to wind filtering in the middle
atmosphere, J. Geophys. Res.-Space, 98, 6047–6057, https://doi.org/10.1029/92JA02604, 1993. a
UWYO: Department of Atmospheric Science – University of Wyoming,
http://weather.uwyo.edu/upperair/sounding.html, last access: 19 June 2021. a
Vadas, S. L.: Horizontal and vertical propagation and dissipation of gravity
waves in the thermosphere from lower atmospheric and thermospheric sources,
J. Geophys. Res.-Space, 112, A06305, https://doi.org/10.1029/2006JA011845, 2007. a, b, c, d
Vadas, S. L. and Fritts, D. C.: Influence of solar variability on gravity wave structure and dissipation in the thermosphere from tropospheric convection, J. Geophys. Res.-Space, 111, A10S12, https://doi.org/10.1029/2005JA011510, 2006. a
Vadas, S. L., Taylor, M. J., Pautet, P.-D., Stamus, P. A., Fritts, D. C., Liu, H.-L., São Sabbas, F. T., Rampinelli, V. T., Batista, P., and Takahashi, H.: Convection: the likely source of the medium-scale gravity waves observed in the OH airglow layer near Brasilia, Brazil, during the SpreadFEx campaign, Ann. Geophys., 27, 231–259, https://doi.org/10.5194/angeo-27-231-2009, 2009a. a, b, c, d
Wen, Y., Zhang, Q., Gao, H., Xu, J., and Li, Q.: A case study of the
stratospheric and mesospheric concentric gravity waves excited by thunderstorm in Northern China, Atmosphere, 9, 489, https://doi.org/10.3390/atmos9120489, 2018. a
Wrasse, C. M., Nakamura, T., Tsuda, T., Takahashi, H., Gobbi, D., Medeiros,
A. F., and Taylor, M. J.: Atmospheric wind effects on the gravity wave
propagation observed at 22.7∘ S-Brazil, Adv. Space Res., 32,
819–824, https://doi.org/10.1016/S0273-1177(03)00413-7, 2003. a
Wrasse, C. M., Takahashi, H., Medeiros, A. F., Lima, L. M., Taylor, M. J.,
Gobbi, D., and Fechine, J.: Determinaçao dos parâmetros de ondas de
gravidade através da análise espectral de imagens de aeroluminescência, Revista Brasileira de Geofísica, 25, 257–265,
https://doi.org/10.1590/S0102-261X2007000300003, 2007. a, b
Xian, T. and Homeyer, C. R.: Global tropopause altitudes in radiosondes and
reanalyses, Atmos. Chem. Phys., 19, 5661–5678, https://doi.org/10.5194/acp-19-5661-2019, 2019. a, b
Xu, J., Li, Q., Yue, J., Hoffmann, L., Straka, W. C., Wang, C., Liu, M., Yuan, W., Han, S., Miller, S. D., Sun, L., Liu, X., Liu, W., Yang, J., and
Ning, B.: Concentric gravity waves over northern China observed by an airglow imager network and satellites, J. Geophys. Res.-Atmos., 120, 11058–11078, https://doi.org/10.1002/2015JD023786, 2015. a, b, c
Yiğit, E. and Medvedev, A. S.: Heating and cooling of the thermosphere by
internal gravity waves, Geophys. Res. Lett., 36, L14807, https://doi.org/10.1029/2009GL038507, 2009. a
Yiğit, E., Medvedev, A. S., and Ern, M.: Effects of latitude-dependent
gravity wave source variations on the middle and upper atmosphere, Front.
Astron. Space Sci., 117, 614018, https://doi.org/10.3389/fspas.2020.614018, 2021.
a
Yue, J., Vadas, S. L., She, C.-Y., Nakamura, T., Reising, S. C., Liu, H.-L.,
Stamus, P., Krueger, D. A., Lyons, W., and Li, T.: Concentric gravity waves
in the mesosphere generated by deep convective plumes in the lower atmosphere
near Fort Collins, Colorado, J. Geophys. Res.-Atmos., 114, D06104, https://doi.org/10.1029/2008JD011244, 2009. a, b, c, d, e, f, g, h
Yue, J., Hoffmann, L., and Joan Alexander, M. J.: Simultaneous observations of convective gravity waves from a ground-based airglow imager and the AIRS
satellite experiment, J. Geophys. Res.-Atmos., 118, 3178–3191, https://doi.org/10.1002/jgrd.50341, 2013. a, b
Yue, J., Miller, S. D., Hoffmann, L., and Straka, W. C.: Stratospheric and
mesospheric concentric gravity waves over tropical cyclone Mahasen: Joint
AIRS and VIIRS satellite observations, J. Atmos. Sol.-Terr. Phy., 119, 83–90, https://doi.org/10.1016/j.jastp.2014.07.003, 2014. a, b
Short summary
This work investigates the sources of concentric gravity waves (CGWs) excited by a moving system of clouds with several overshooting regions on 1–2 October 2019 at São Martinho da Serra. The parameters of these waves were estimated using 2D spectral analysis and their source locations identified using backward ray tracing. Furthermore, the sources of these waves were properly identified by tracking the individual overshooting regions in space and time since the system of clouds was moving.
This work investigates the sources of concentric gravity waves (CGWs) excited by a moving system...
Altmetrics
Final-revised paper
Preprint