Articles | Volume 22, issue 22
https://doi.org/10.5194/acp-22-14455-2022
https://doi.org/10.5194/acp-22-14455-2022
Research article
 | 
14 Nov 2022
Research article |  | 14 Nov 2022

What caused ozone pollution during the 2022 Shanghai lockdown? Insights from ground and satellite observations

Yue Tan and Tao Wang

Related authors

Observation and modeling of atmospheric OH and HO2 radicals at a subtropical rural site and implications for secondary pollutants
Zhouxing Zou, Tianshu Chen, Qianjie Chen, Weihang Sun, Shichun Han, Zhuoyue Ren, Xinyi Li, Wei Song, Aoqi Ge, Qi Wang, Xiao Tian, Chenglei Pei, Xinming Wang, Yanli Zhang, and Tao Wang
Atmos. Chem. Phys., 25, 8147–8161, https://doi.org/10.5194/acp-25-8147-2025,https://doi.org/10.5194/acp-25-8147-2025, 2025
Short summary
Mechanistic insights into chloroacetic acid production from atmospheric multiphase volatile organic compound–chlorine chemistry
Mingxue Li, Men Xia, Chunshui Lin, Yifan Jiang, Weihang Sun, Yurun Wang, Yingnan Zhang, Maoxia He, and Tao Wang
Atmos. Chem. Phys., 25, 3753–3764, https://doi.org/10.5194/acp-25-3753-2025,https://doi.org/10.5194/acp-25-3753-2025, 2025
Short summary
The atmospheric oxidizing capacity in China – Part 2: Sensitivity to emissions of primary pollutants
Jianing Dai, Guy P. Brasseur, Mihalis Vrekoussis, Maria Kanakidou, Kun Qu, Yijuan Zhang, Hongliang Zhang, and Tao Wang
Atmos. Chem. Phys., 24, 12943–12962, https://doi.org/10.5194/acp-24-12943-2024,https://doi.org/10.5194/acp-24-12943-2024, 2024
Short summary
Photochemical ageing of aerosols contributes significantly to the production of atmospheric formic acid
Yifan Jiang, Men Xia, Zhe Wang, Penggang Zheng, Yi Chen, and Tao Wang
Atmos. Chem. Phys., 23, 14813–14828, https://doi.org/10.5194/acp-23-14813-2023,https://doi.org/10.5194/acp-23-14813-2023, 2023
Short summary
The atmospheric oxidizing capacity in China – Part 1: Roles of different photochemical processes
Jianing Dai, Guy P. Brasseur, Mihalis Vrekoussis, Maria Kanakidou, Kun Qu, Yijuan Zhang, Hongliang Zhang, and Tao Wang
Atmos. Chem. Phys., 23, 14127–14158, https://doi.org/10.5194/acp-23-14127-2023,https://doi.org/10.5194/acp-23-14127-2023, 2023
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Observation and modeling of atmospheric OH and HO2 radicals at a subtropical rural site and implications for secondary pollutants
Zhouxing Zou, Tianshu Chen, Qianjie Chen, Weihang Sun, Shichun Han, Zhuoyue Ren, Xinyi Li, Wei Song, Aoqi Ge, Qi Wang, Xiao Tian, Chenglei Pei, Xinming Wang, Yanli Zhang, and Tao Wang
Atmos. Chem. Phys., 25, 8147–8161, https://doi.org/10.5194/acp-25-8147-2025,https://doi.org/10.5194/acp-25-8147-2025, 2025
Short summary
Tracing elevated abundance of CH2Cl2 in the subarctic upper troposphere to the Asian Summer Monsoon
Markus Jesswein, Valentin Lauther, Nicolas Emig, Peter Hoor, Timo Keber, Hans-Christoph Lachnitt, Linda Ort, Tanja Schuck, Johannes Strobel, Ronja Van Luijt, C. Michael Volk, Franziska Weyland, and Andreas Engel
Atmos. Chem. Phys., 25, 8107–8126, https://doi.org/10.5194/acp-25-8107-2025,https://doi.org/10.5194/acp-25-8107-2025, 2025
Short summary
Carbonyl compounds from typical combustion sources: emission characteristics, influencing factors, and their contribution to ozone formation
Yanjie Lu, Xinxin Feng, Yanli Feng, Minjun Jiang, Yu Peng, Tian Chen, and Yingjun Chen
Atmos. Chem. Phys., 25, 8043–8059, https://doi.org/10.5194/acp-25-8043-2025,https://doi.org/10.5194/acp-25-8043-2025, 2025
Short summary
Formation drivers and photochemical effects of ClNO2 in a coastal city of Southeast China
Gaojie Chen, Xiaolong Fan, Haichao Wang, Yee Jun Tham, Ziyi Lin, Xiaoting Ji, Lingling Xu, Baoye Hu, and Jinsheng Chen
Atmos. Chem. Phys., 25, 7815–7828, https://doi.org/10.5194/acp-25-7815-2025,https://doi.org/10.5194/acp-25-7815-2025, 2025
Short summary
Significant influence of oxygenated volatile organic compounds on atmospheric chemistry: a case study in a typical industrial city in China
Jingwen Dai, Kun Zhang, Yanli Feng, Xin Yi, Rui Li, Jin Xue, Qing Li, Lishu Shi, Jiaqiang Liao, Yanan Yi, Fangting Wang, Liumei Yang, Hui Chen, Ling Huang, Jiani Tan, Yangjun Wang, and Li Li
Atmos. Chem. Phys., 25, 7467–7484, https://doi.org/10.5194/acp-25-7467-2025,https://doi.org/10.5194/acp-25-7467-2025, 2025
Short summary

Cited articles

Cao, A., Zhang, S., and Na, E.: Shanghai, home to Tesla, SMIC and GM and Volkswagen's Chinese partner, is the most important city for China's economy. Here's why, South China Morning Post, 17 May 2022. 
Derwent, R. G. and Parrish, D. D.: Analysis and assessment of the observed long-term changes over three decades in ground-level ozone across north-west Europe from 1989–2018, Atmos. Environ., 286, 119222, https://doi.org/10.1016/j.atmosenv.2022.119222, 2022. 
Doumbia, T., Granier, C., Elguindi, N., Bouarar, I., Darras, S., Brasseur, G., Gaubert, B., Liu, Y., Shi, X., Stavrakou, T., Tilmes, S., Lacey, F., Deroubaix, A., and Wang, T.: Changes in global air pollutant emissions during the COVID-19 pandemic: a dataset for atmospheric modeling, Earth Syst. Sci. Data, 13, 4191–4206, https://doi.org/10.5194/essd-13-4191-2021, 2021. 
Duncan, B. N., Yoshida, Y., Olson, J. R., Sillman, S., Martin, R. V., Lamsal, L., Hu, Y., Pickering, K. E., Retscher, C., Allen, D. J., and Crawford, J. H.: Application of OMI observations to a space-based indicator of NOx and VOC controls on surface ozone formation, Atmos. Environ., 44, 2213–2223, https://doi.org/10.1016/j.atmosenv.2010.03.010, 2010. 
Ghasempour, F., Sekertekin, A., and Kutoglu, S. H.: Google Earth Engine based spatio-temporal analysis of air pollutants before and during the first wave COVID-19 outbreak over Turkey via remote sensing, J. Clean. Prod., 319, 128599, https://doi.org/10.1016/j.jclepro.2021.128599, 2021. 
Download
Short summary
We present a timely analysis of the effects of the recent lockdown in Shanghai on ground-level ozone (O3). Despite a huge reduction in human activity, O3 concentrations frequently exceeded the O3 air quality standard during the 2-month lockdown, implying that future emission reductions similar to those that occurred during the lockdown will not be sufficient to eliminate O3 pollution in many urban areas without the imposition of additional VOC controls or substantial decreases in NOx emissions.
Share
Altmetrics
Final-revised paper
Preprint