Articles | Volume 21, issue 13
https://doi.org/10.5194/acp-21-9955-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-9955-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Secondary aerosol formation from dimethyl sulfide – improved mechanistic understanding based on smog chamber experiments and modelling
Robin Wollesen de Jonge
CORRESPONDING AUTHOR
Division of Nuclear Physics, Lund University, P.O. Box 118, Lund, Sweden
Jonas Elm
Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus, Denmark
Bernadette Rosati
Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus, Denmark
Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
Sigurd Christiansen
Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus, Denmark
Noora Hyttinen
Nano and Molecular Systems Research Unit, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
Dana Lüdemann
Division of Nuclear Physics, Lund University, P.O. Box 118, Lund, Sweden
Merete Bilde
Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus, Denmark
Pontus Roldin
Division of Nuclear Physics, Lund University, P.O. Box 118, Lund, Sweden
Related authors
Bernadette Rosati, Sini Isokääntä, Sigurd Christiansen, Mads Mørk Jensen, Shamjad P. Moosakutty, Robin Wollesen de Jonge, Andreas Massling, Marianne Glasius, Jonas Elm, Annele Virtanen, and Merete Bilde
Atmos. Chem. Phys., 22, 13449–13466, https://doi.org/10.5194/acp-22-13449-2022, https://doi.org/10.5194/acp-22-13449-2022, 2022
Short summary
Short summary
Sulfate aerosols have a strong influence on climate. Due to the reduction in sulfur-based fossil fuels, natural sulfur emissions play an increasingly important role. Studies investigating the climate relevance of natural sulfur aerosols are scarce. We study the water uptake of such particles in the laboratory, demonstrating a high potential to take up water and form cloud droplets. During atmospheric transit, chemical processing affects the particles’ composition and thus their water uptake.
Carlton Xavier, Metin Baykara, Robin Wollesen de Jonge, Barbara Altstädter, Petri Clusius, Ville Vakkari, Roseline Thakur, Lisa Beck, Silvia Becagli, Mirko Severi, Rita Traversi, Radovan Krejci, Peter Tunved, Mauro Mazzola, Birgit Wehner, Mikko Sipilä, Markku Kulmala, Michael Boy, and Pontus Roldin
Atmos. Chem. Phys., 22, 10023–10043, https://doi.org/10.5194/acp-22-10023-2022, https://doi.org/10.5194/acp-22-10023-2022, 2022
Short summary
Short summary
The focus of this work is to study and improve our understanding of processes involved in the formation and growth of new particles in a remote Arctic marine environment. We run the 1D model ADCHEM along air mass trajectories arriving at Ny-Ålesund in May 2018. The model finds that ion-mediated H2SO4–NH3 nucleation can explain the observed new particle formation at Ny-Ålesund. The growth of particles is driven via H2SO4 condensation and formation of methane sulfonic acid in the aqueous phase.
Silvia M. Calderón, Noora Hyttinen, Harri Kokkola, Tomi Raatikainen, R. Paul Lawson, and Sami Romakkaniemi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2730, https://doi.org/10.5194/egusphere-2025-2730, 2025
Short summary
Short summary
Field campaigns suggest that secondary ice production (SIP) via millimeter-sized supercooled droplets is responsible for the rapid glaciation and precipitation development in summer cumulus congestus clouds that lack of ice nucleating particles. We used large-eddy-simulations with sectional representation of aerosol and hydrometeor microphysics that reproduced observed hydrometeor size distributions and explained how SIP boosted rates of aggregation processes that increase surface precipitation.
Arttu Ylisirniö, Noora Hyttinen, Zijun Li, Mitchell Alton, Aki Nissinen, Iida Pullinen, Pasi Miettinen, Taina Yli-Juuti, and Siegfried Schobesberger
EGUsphere, https://doi.org/10.5194/egusphere-2025-2219, https://doi.org/10.5194/egusphere-2025-2219, 2025
Short summary
Short summary
This study aims to increase knowledge of the low volatility organic compouds observed in ambient aerosol particles by providing new volatility information about compounds used for calibrating volatility measurement instruments. Previously, such information has was not available and calibration of the instrument had to be extrapolated to cover the whole measurement range. Results of this study will provide the scientific community better tools for investigating the complexity of ambient aerosols.
Yosef Knattrup, Ivo Neefjes, Jakub Kubečka, and Jonas Elm
Aerosol Research, 3, 237–251, https://doi.org/10.5194/ar-3-237-2025, https://doi.org/10.5194/ar-3-237-2025, 2025
Short summary
Short summary
Aerosols, a large uncertainty in climate modeling, can be formed when gas vapors and particles begin sticking together. Traditionally, these particles are assumed to behave like hard spheres that only stick together upon head-on collisions. In reality, particles can attract each other over distances, leading to more frequent sticking events. We found that traditional models significantly undercount these events, with real sticking rates being up to 2.4 times higher.
Yosef Knattrup and Jonas Elm
Aerosol Research, 3, 125–137, https://doi.org/10.5194/ar-3-125-2025, https://doi.org/10.5194/ar-3-125-2025, 2025
Short summary
Short summary
Using quantum chemical methods, we studied the uptake of first-generation oxidation products onto freshly nucleated particles (FNPs). We find that pinic acid can condense on these small FNPs at realistic atmospheric conditions, thereby contributing to early particle growth. The mechanism involves two pinic acid molecules interacting with each other, showing that direct organic–organic interactions during co-condensation onto the particle contribute to the growth.
Galib Hasan, Haide Wu, Yosef Knattrup, and Jonas Elm
Aerosol Research, 3, 101–111, https://doi.org/10.5194/ar-3-101-2025, https://doi.org/10.5194/ar-3-101-2025, 2025
Short summary
Short summary
Aerosol formation is an important process for our global climate. However, there are high uncertainties associated with the formation of new aerosol particles. We present quantum chemical calculations of large atmospheric molecular clusters composed of sulfuric acid (SA), ammonia (AM), and dimethylamine (DMA). We find that mixed SA–AM–DMA systems cluster more efficiently for freshly nucleated particles compared to pure SA–AM and SA–DMA systems.
Haide Wu, Yosef Knattrup, Andreas Buchgraitz Jensen, and Jonas Elm
Aerosol Research, 2, 303–314, https://doi.org/10.5194/ar-2-303-2024, https://doi.org/10.5194/ar-2-303-2024, 2024
Short summary
Short summary
The exact point at which a given assembly of molecules represents an atmospheric molecular cluster or a particle remains ambiguous. Using quantum chemical methods, here we explore a cluster-to-particle transition point. Based on our results, we deduce a property-based criterion for defining freshly nucleated particles (FNPs) that act as a boundary between discrete cluster configurations and bulk particles.
Zijun Li, Angela Buchholz, and Noora Hyttinen
Atmos. Chem. Phys., 24, 11717–11725, https://doi.org/10.5194/acp-24-11717-2024, https://doi.org/10.5194/acp-24-11717-2024, 2024
Short summary
Short summary
Evaluating organosulfur (OS) hygroscopicity is important for assessing aerosol–cloud climate interactions in the post-fossil-fuel future, when SO2 emissions decrease and OS compounds become increasingly important. Here a state-of-the-art quantum-chemistry-based method was used to predict the hygroscopic growth factors (HGFs) of a group of atmospherically relevant OS compounds and their mixtures with (NH4)2SO4. A good agreement was observed between their model-estimated and experimental HGFs.
Yuanyuan Luo, Ditte Thomsen, Emil Mark Iversen, Pontus Roldin, Jane Tygesen Skønager, Linjie Li, Michael Priestley, Henrik B. Pedersen, Mattias Hallquist, Merete Bilde, Marianne Glasius, and Mikael Ehn
Atmos. Chem. Phys., 24, 9459–9473, https://doi.org/10.5194/acp-24-9459-2024, https://doi.org/10.5194/acp-24-9459-2024, 2024
Short summary
Short summary
∆3-carene is abundantly emitted from vegetation, but its atmospheric oxidation chemistry has received limited attention. We explored highly oxygenated organic molecule (HOM) formation from ∆3-carene ozonolysis in chambers and investigated the impact of temperature and relative humidity on HOM formation. Our findings provide new insights into ∆3-carene oxidation pathways and their potential to impact atmospheric aerosols.
Astrid Nørskov Pedersen, Yosef Knattrup, and Jonas Elm
Aerosol Research, 2, 123–134, https://doi.org/10.5194/ar-2-123-2024, https://doi.org/10.5194/ar-2-123-2024, 2024
Short summary
Short summary
Aerosol formation is an important process for our global climate. While inorganic species have been shown to be important for aerosol formation, there remains a large gap in our knowledge about the exact involvement of organics. We present a new quantum chemical procedure for screening relevant organics that for the first time allows us to obtain direct molecular-level insight into the organics involved in aerosol formation.
Noora Hyttinen
Atmos. Chem. Phys., 23, 13809–13817, https://doi.org/10.5194/acp-23-13809-2023, https://doi.org/10.5194/acp-23-13809-2023, 2023
Short summary
Short summary
Water activity in aerosol particles describes how particles respond to variations in relative humidity. Here, water activities were calculated for a set of 80 salts that may be present in aerosol particles using a state-of-the-art quantum-chemistry-based method. The effect of the dissociated salt on water activity varies with both the cation and anion. Most of the studied salts increase water uptake compared to pure water-soluble organic particles.
Dimitri Castarède, Zoé Brasseur, Yusheng Wu, Zamin A. Kanji, Markus Hartmann, Lauri Ahonen, Merete Bilde, Markku Kulmala, Tuukka Petäjä, Jan B. C. Pettersson, Berko Sierau, Olaf Stetzer, Frank Stratmann, Birgitta Svenningsson, Erik Swietlicki, Quynh Thu Nguyen, Jonathan Duplissy, and Erik S. Thomson
Atmos. Meas. Tech., 16, 3881–3899, https://doi.org/10.5194/amt-16-3881-2023, https://doi.org/10.5194/amt-16-3881-2023, 2023
Short summary
Short summary
Clouds play a key role in Earth’s climate by influencing the surface energy budget. Certain types of atmospheric aerosols, called ice-nucleating particles (INPs), induce the formation of ice in clouds and, thus, often initiate precipitation formation. The Portable Ice Nucleation Chamber 2 (PINCii) is a new instrument developed to study ice formation and to conduct ambient measurements of INPs, allowing us to investigate the sources and properties of the atmospheric aerosols that can act as INPs.
Lukas Pichelstorfer, Pontus Roldin, Matti Rissanen, Noora Hyttinen, Olga Garmash, Carlton Xavier, Putian Zhou, Petri Clusius, Benjamin Foreback, Thomas Golin Almeida, Chenjuan Deng, Metin Baykara, Theo Kurten, and Michael Boy
EGUsphere, https://doi.org/10.5194/egusphere-2023-1415, https://doi.org/10.5194/egusphere-2023-1415, 2023
Preprint archived
Short summary
Short summary
Secondary organic aerosols (SOA) form effectively from gaseous precursors via a process called autoxidation. While key chemical reaction types seem to be known, no general description of autoxidation chemistry exists. In the present work, we present a method to create autoxidation chemistry schemes for any atmospherically relevant hydrocarbon. We exemplarily investigate benzene and its potential to form aerosols. We found that autoxidation, under some conditions, can dominate the SOA formation.
Jonas Elm, Aladár Czitrovszky, Andreas Held, Annele Virtanen, Astrid Kiendler-Scharr, Benjamin J. Murray, Daniel McCluskey, Daniele Contini, David Broday, Eirini Goudeli, Hilkka Timonen, Joan Rosell-Llompart, Jose L. Castillo, Evangelia Diapouli, Mar Viana, Maria E. Messing, Markku Kulmala, Naděžda Zíková, and Sebastian H. Schmitt
Aerosol Research, 1, 13–16, https://doi.org/10.5194/ar-1-13-2023, https://doi.org/10.5194/ar-1-13-2023, 2023
Zijun Li, Noora Hyttinen, Miika Vainikka, Olli-Pekka Tikkasalo, Siegfried Schobesberger, and Taina Yli-Juuti
Atmos. Chem. Phys., 23, 6863–6877, https://doi.org/10.5194/acp-23-6863-2023, https://doi.org/10.5194/acp-23-6863-2023, 2023
Short summary
Short summary
The saturation vapor pressure (psat) of low-volatility organic compounds (LVOCs) governs their partitioning between the gas and particle phases. To estimate the psat of selected LVOCs, we performed particle evaporation measurements in a residence time chamber at a temperature setting relevant to atmospheric aerosol formation and conducted state-of-the-art computational calculations. We found good agreement between the experimentally measured and model-estimated psat values for most LVOCs.
Erik Ahlberg, Stina Ausmeel, Lovisa Nilsson, Mårten Spanne, Julija Pauraite, Jacob Klenø Nøjgaard, Michele Bertò, Henrik Skov, Pontus Roldin, Adam Kristensson, Erik Swietlicki, and Axel Eriksson
Atmos. Chem. Phys., 23, 3051–3064, https://doi.org/10.5194/acp-23-3051-2023, https://doi.org/10.5194/acp-23-3051-2023, 2023
Short summary
Short summary
To investigate the properties and origin of black carbon particles in southern Sweden during late summer, we performed measurements both at a rural site and the nearby city of Malmö. We found that local traffic emissions of black carbon led to concentrations around twice as high as those at the rural site. Modeling show that these emissions are not clearly distinguishable at the rural site, unless meteorology was favourable, which shows the importance of long-range transport and processing.
Bernadette Rosati, Sini Isokääntä, Sigurd Christiansen, Mads Mørk Jensen, Shamjad P. Moosakutty, Robin Wollesen de Jonge, Andreas Massling, Marianne Glasius, Jonas Elm, Annele Virtanen, and Merete Bilde
Atmos. Chem. Phys., 22, 13449–13466, https://doi.org/10.5194/acp-22-13449-2022, https://doi.org/10.5194/acp-22-13449-2022, 2022
Short summary
Short summary
Sulfate aerosols have a strong influence on climate. Due to the reduction in sulfur-based fossil fuels, natural sulfur emissions play an increasingly important role. Studies investigating the climate relevance of natural sulfur aerosols are scarce. We study the water uptake of such particles in the laboratory, demonstrating a high potential to take up water and form cloud droplets. During atmospheric transit, chemical processing affects the particles’ composition and thus their water uptake.
Petri Clusius, Carlton Xavier, Lukas Pichelstorfer, Putian Zhou, Tinja Olenius, Pontus Roldin, and Michael Boy
Geosci. Model Dev., 15, 7257–7286, https://doi.org/10.5194/gmd-15-7257-2022, https://doi.org/10.5194/gmd-15-7257-2022, 2022
Short summary
Short summary
Atmospheric chemistry and aerosol processes form a dynamic and sensitively balanced system, and solving problems regarding air quality or climate requires detailed modelling and coupling of the processes. The models involved are often very complex to use. We have addressed this problem with the new ARCA box model. It puts much of the current knowledge of the nano- and microscale aerosol dynamics and chemistry into usable software and has the potential to become a valuable tool in the community.
Jingwen Xue, Fangfang Ma, Jonas Elm, Jingwen Chen, and Hong-Bin Xie
Atmos. Chem. Phys., 22, 11543–11555, https://doi.org/10.5194/acp-22-11543-2022, https://doi.org/10.5194/acp-22-11543-2022, 2022
Short summary
Short summary
·OH/·Cl initiated indole reactions mainly form organonitrates, alkoxy radicals and hydroperoxide products, showing a varying mechanism from previously reported amines reactions. This study reveals carcinogenic nitrosamines cannot be formed in indole oxidation reactions despite radicals formed from -NH- H abstraction. The results are important to understand the atmospheric impact of indole oxidation and extend current understanding on the atmospheric chemistry of organic nitrogen compounds.
Carlton Xavier, Metin Baykara, Robin Wollesen de Jonge, Barbara Altstädter, Petri Clusius, Ville Vakkari, Roseline Thakur, Lisa Beck, Silvia Becagli, Mirko Severi, Rita Traversi, Radovan Krejci, Peter Tunved, Mauro Mazzola, Birgit Wehner, Mikko Sipilä, Markku Kulmala, Michael Boy, and Pontus Roldin
Atmos. Chem. Phys., 22, 10023–10043, https://doi.org/10.5194/acp-22-10023-2022, https://doi.org/10.5194/acp-22-10023-2022, 2022
Short summary
Short summary
The focus of this work is to study and improve our understanding of processes involved in the formation and growth of new particles in a remote Arctic marine environment. We run the 1D model ADCHEM along air mass trajectories arriving at Ny-Ålesund in May 2018. The model finds that ion-mediated H2SO4–NH3 nucleation can explain the observed new particle formation at Ny-Ålesund. The growth of particles is driven via H2SO4 condensation and formation of methane sulfonic acid in the aqueous phase.
Rongjie Zhang, Jiewen Shen, Hong-Bin Xie, Jingwen Chen, and Jonas Elm
Atmos. Chem. Phys., 22, 2639–2650, https://doi.org/10.5194/acp-22-2639-2022, https://doi.org/10.5194/acp-22-2639-2022, 2022
Short summary
Short summary
Formic acid is screened out as the species that can effectively catalyze the new particle formation (NPF) of the methanesulfonic acid (MSA)–methylamine system, indicating organic acids might be required to facilitate MSA-driven NPF in the atmosphere. The results are significant to comprehensively understand the MSA-driven NPF and expand current knowledge of the contribution of OAs to NPF.
Noora Hyttinen, Iida Pullinen, Aki Nissinen, Siegfried Schobesberger, Annele Virtanen, and Taina Yli-Juuti
Atmos. Chem. Phys., 22, 1195–1208, https://doi.org/10.5194/acp-22-1195-2022, https://doi.org/10.5194/acp-22-1195-2022, 2022
Short summary
Short summary
Accurate saturation vapor pressure estimates of atmospherically relevant organic compounds are critical for modeling secondary organic aerosol (SOA) formation. We investigated vapor pressures of highly oxygenated SOA constituents using state-of-the-art computational and experimental methods. We found a good agreement between low and extremely low vapor pressures estimated using the two methods, and the smallest molecules detected in our experiment were likely products of thermal decomposition.
Louise N. Jensen, Manjula R. Canagaratna, Kasper Kristensen, Lauriane L. J. Quéléver, Bernadette Rosati, Ricky Teiwes, Marianne Glasius, Henrik B. Pedersen, Mikael Ehn, and Merete Bilde
Atmos. Chem. Phys., 21, 11545–11562, https://doi.org/10.5194/acp-21-11545-2021, https://doi.org/10.5194/acp-21-11545-2021, 2021
Short summary
Short summary
This work targets the chemical composition of α-pinene-derived secondary organic aerosol (SOA) formed in the temperature range from -15 to 20°C. Experiments were conducted in an atmospheric simulation chamber. Positive matrix factorization analysis of data obtained by a high-resolution time-of-flight aerosol mass spectrometer shows that the elemental aerosol composition is controlled by the initial α-pinene concentration and temperature during SOA formation.
Kai Wang, Ru-Jin Huang, Martin Brüggemann, Yun Zhang, Lu Yang, Haiyan Ni, Jie Guo, Meng Wang, Jiajun Han, Merete Bilde, Marianne Glasius, and Thorsten Hoffmann
Atmos. Chem. Phys., 21, 9089–9104, https://doi.org/10.5194/acp-21-9089-2021, https://doi.org/10.5194/acp-21-9089-2021, 2021
Short summary
Short summary
Here we present the detailed molecular composition of the organic aerosol collected in three eastern Chinese cities from north to south, Changchun, Shanghai and Guangzhou, by applying LC–Orbitrap analysis. Accordingly, the aromaticity degree of chemical compounds decreases from north to south, while the oxidation degree increases from north to south, which can be explained by the different anthropogenic emissions and photochemical oxidation processes.
Mona Kurppa, Pontus Roldin, Jani Strömberg, Anna Balling, Sasu Karttunen, Heino Kuuluvainen, Jarkko V. Niemi, Liisa Pirjola, Topi Rönkkö, Hilkka Timonen, Antti Hellsten, and Leena Järvi
Geosci. Model Dev., 13, 5663–5685, https://doi.org/10.5194/gmd-13-5663-2020, https://doi.org/10.5194/gmd-13-5663-2020, 2020
Short summary
Short summary
High-resolution modelling is needed to solve the aerosol concentrations in a complex urban area. Here, the performance of an aerosol module within the PALM model to simulate the detailed horizontal and vertical distribution of aerosol particles is studied. Further, sensitivity to the meteorological and aerosol boundary conditions is assessed using both model and observation data. The horizontal distribution is sensitive to the wind speed and stability, and the vertical to the wind direction.
Noora Hyttinen, Reyhaneh Heshmatnezhad, Jonas Elm, Theo Kurtén, and Nønne L. Prisle
Atmos. Chem. Phys., 20, 13131–13143, https://doi.org/10.5194/acp-20-13131-2020, https://doi.org/10.5194/acp-20-13131-2020, 2020
Short summary
Short summary
We present aqueous solubilities and activity coefficients of mono- and dicarboxylic acids (C1–C6 and C2–C8, respectively) estimated using the COSMOtherm program. In addition, we have calculated effective equilibrium constants of dimerization and hydration of the same acids in the condensed phase. We were also able to improve the agreement between experimental and estimated properties of monocarboxylic acids in aqueous solutions by including clustering reactions in COSMOtherm calculations.
Kasper Kristensen, Louise N. Jensen, Lauriane L. J. Quéléver, Sigurd Christiansen, Bernadette Rosati, Jonas Elm, Ricky Teiwes, Henrik B. Pedersen, Marianne Glasius, Mikael Ehn, and Merete Bilde
Atmos. Chem. Phys., 20, 12549–12567, https://doi.org/10.5194/acp-20-12549-2020, https://doi.org/10.5194/acp-20-12549-2020, 2020
Short summary
Short summary
Atmospheric particles are important in relation to human health and the global climate. As the global temperature changes, so may the atmospheric chemistry controlling the formation of particles from reactions of naturally emitted volatile organic compounds (VOCs). In the current work, we show how temperatures influence the formation and chemical composition of atmospheric particles from α-pinene: a biogenic VOC largely emitted in high-latitude environments such as the boreal forests.
Luisa Ickes, Grace C. E. Porter, Robert Wagner, Michael P. Adams, Sascha Bierbauer, Allan K. Bertram, Merete Bilde, Sigurd Christiansen, Annica M. L. Ekman, Elena Gorokhova, Kristina Höhler, Alexei A. Kiselev, Caroline Leck, Ottmar Möhler, Benjamin J. Murray, Thea Schiebel, Romy Ullrich, and Matthew E. Salter
Atmos. Chem. Phys., 20, 11089–11117, https://doi.org/10.5194/acp-20-11089-2020, https://doi.org/10.5194/acp-20-11089-2020, 2020
Short summary
Short summary
The Arctic is a region where aerosols are scarce. Sea spray might be a potential source of aerosols acting as ice-nucleating particles. We investigate two common phytoplankton species (Melosira arctica and Skeletonema marinoi) and present their ice nucleation activity in comparison with Arctic seawater microlayer samples from different field campaigns. We also aim to understand the aerosolization process of marine biological samples and the potential effect on the ice nucleation activity.
Cited articles
Andreae, M. O.: Ocean–atmosphere Interactions in the Global Biogeochemical
Sulfur Cycle, Mar. Chem., 30, 1–29, 1990. a
Bahreini, R., Ervens, B., Middlebrook, A., Warneke, C., de Gouw, J., DeCarlo,
P., Jimenez, J., Brock, C., Neuman, J., Ryerson, T., Stark, H., Atlas, E.,
Brioude, J., Fried, A., Holloway, J., Peischl, J., Richter, D., Walega, J.,
Weibring, P., and Fehsenfeld, F.: Organic aerosol formation in urban and
industrial plumes near Houston and Dallas, Texas, J. Geophys.
Res., 114, D00F16, https://doi.org/10.1029/2008JD011493, 2009. a
Benson, D. R., Yu, J. H., Markovich, A., and Lee, S.-H.: Ternary homogeneous nucleation of H2SO4, NH3, and H2O under conditions relevant to the lower troposphere, Atmos. Chem. Phys., 11, 4755–4766, https://doi.org/10.5194/acp-11-4755-2011, 2011. a
Berglen, T. F., Berntsen, T. K., Isaksen, I. S. A., and Sundet, J. K.: A global
model of the coupled sulfur/oxidant chemistry in the troposphere: The sulfur
cycle, J. Geophys. Res.-Atmos., 109,
https://doi.org/10.1029/2003JD003948, 2004. a
Berndt, T., Scholz, W., Mentler, B., Fischer, L., Hoffmann, E., Tilgner, A.,
Hyttinen, N., Prisle, N. L., Hansel, A., and Herrmann, H.: Fast Peroxy
Radical Isomerization and OH Recycling in the Reaction of OH Radicals with
Dimethyl Sulfide, J. Phys. Chem. Lett., 2019, 6478–6483,
https://doi.org/10.1021/acs.jpclett.9b02567, 2019. a, b, c, d, e, f, g, h
Berndt, T., Chen, J., Møller, K. H., Hyttinen, N., Prisle, N. L., Tilgner, A.,
Hoffmann, E. H., Herrmann, H., and Kjaergaard, H. G.: SO2 formation and
peroxy radical isomerization in the atmospheric reaction of OH radicals with
dimethyl disulfide, Chem. Commun., 56, 13634–13637,
https://doi.org/10.1039/D0CC05783E, 2020. a, b
Berresheim, H., Adam, M., Monahan, C., O'Dowd, C., Plane, J. M. C., Bohn, B., and Rohrer, F.: Missing SO2 oxidant in the coastal atmosphere? – observations from high-resolution measurements of OH and atmospheric sulfur compounds, Atmos. Chem. Phys., 14, 12209–12223, https://doi.org/10.5194/acp-14-12209-2014, 2014. a, b
Boylan, P., Helmig, D., and Oltmans, S.: Ozone in the Atlantic Ocean marine
boundary layer, Elementa, 3, 000045,
https://doi.org/10.12952/journal.elementa.000045, 2015. a
Cao, J., Wang, W.-L., Gao, L.-J., and Fu, F.: Mechanism and Thermodynamic
Properties of CH3SO3 Decomposition, Acta Phys.-Chim. Sin., 29, 1161–1167,
https://doi.org/10.3866/PKU.WHXB201304021, 2013. a, b, c
Chen, H., Varner, M., Gerber, R., and Finlayson-Pitts, B.: Reactions of
Methanesulfonic Acid with Amines and Ammonia as a Source of New Particles in
Air, J. Phys. Chem. B, 120, 1526–1536,
https://doi.org/10.1021/acs.jpcb.5b07433, 2015. a
Chen, Q., Sherwen, T., Evans, M., and Alexander, B.: DMS oxidation and sulfur aerosol formation in the marine troposphere: a focus on reactive halogen and multiphase chemistry, Atmos. Chem. Phys., 18, 13617–13637, https://doi.org/10.5194/acp-18-13617-2018, 2018. a
COSMOtherm: version C3.0, Release 19, COSMOlogic GmbH & Co.
KG., Leverkusen, Germany, 2019. a
Crounse, J., Nielsen, L., Jørgensen, S., Kjaergaard, H., and Wennberg, P.:
Autoxidation of Organic Compounds in the Atmosphere, J. Phys.
Chem. Lett., 4, 3513–3520, https://doi.org/10.1021/jz4019207, 2013. a
Damian, V., Sandu, A., Damian, M., Potra, F., and Carmichael, G. R.: The
kinetic preprocessor KPP-a software environment for solving chemical
kinetics, Comput. Chem. Eng., 26, 1567–1579,
https://doi.org/10.1016/S0098-1354(02)00128-X, 2002. a, b
Doussin, J.-F. and Monod, A.: Structure–activity relationship for the estimation of OH-oxidation rate constants of carbonyl compounds in the aqueous phase, Atmos. Chem. Phys., 13, 11625–11641, https://doi.org/10.5194/acp-13-11625-2013, 2013. a, b
Elm, J., Myllys, N., Hyttinen, N., and Kurtén, T.: Computational Study of
the Clustering of a Cyclohexene Autoxidation Product C6H8O7 with
Itself and Sulfuric Acid, J. Phys. Chem. A, 119, 8414–8421, 2015. a
Elm, J., Myllys, N., Luy, J., Kurtén, T., and Vehkamäki, H.: The Effect
of Water and Bases on the Clustering of a Cyclohexene Autoxidation Product
C6H8O7 with Sulfuric Acid, J. Phys. Chem. A, 120, 2240–2249, 2016. a
Elm, J., Myllys, N., and Kurtén, T.: What is Required for Highly Oxidized
Molecules to Form Clusters with Sulfuric Acid?, J. Phys. Chem. A., 121,
4578–4587, 2017. a
Fuchs, N. A.: On the stationary charge distribution on aerosol particles in a
bipolar ionic atmosphere, Geofisica Pura e Applicata, 56, 185–193,
https://doi.org/10.1007/BF01993343, 1963. a
Ghahremaninezhad, R., Gong, W., Galí, M., Norman, A.-L., Beagley, S. R., Akingunola, A., Zheng, Q., Lupu, A., Lizotte, M., Levasseur, M., and Leaitch, W. R.: Dimethyl sulfide and its role in aerosol formation and growth in the Arctic summer – a modelling study, Atmos. Chem. Phys., 19, 14455–14476, https://doi.org/10.5194/acp-19-14455-2019, 2019. a
Grosjean, D.: Wall Loss of Gaseous Pollutants in Outdoor Teflon Chambers,
Environ. Sci. Technol, 19, 1059–1065, 1985. a
Hindmarsh, A. C.: ODEPACK, A Systematized Collection of ODE Solvers in
Scientific Computing, edited by: Stepleman, R. S., Carver, M., Peskin, R., Ames, W. F., and Vichnevetsky, R., Vol. 1, North-Holland,
Amsterdam, 55–64, 1983. a
Hoffmann, E. H., Tilgner, A., Schrödner, R., Bräuer, P., Wolke, R., and
Herrmann, H.: An advanced modeling study on the impacts and atmospheric
implications of multiphase dimethyl sulfide chemistry, P. Natl. Acad. Sci. USA, 113, 11776–11781,
https://doi.org/10.1073/pnas.1606320113, 2016. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s
Hoppel, W. A. and Frick, G. M.: Ion-Aerosol Attachment Coefficients and the
Steady-State Charge Distribution on Aerosols in a Bipolar Ion Environment,
Aerosol Sci. Tech., 5, 1–21, https://doi.org/10.1080/02786828608959073,
1986. a
Hoppel, W. A. and Frick, G. M.: The Nonequilibrium Character of the Aerosol
Charge Distributions Produced by Neutralizes, Aerosol Sci. Tech.,
12, 471–496, https://doi.org/10.1080/02786829008959363, 1990. a
Hyttinen, N., Wolf, M., Rissanen, M. P., Ehn, M., Peräkylä, O.,
Kurtén, T., and Prisle, N. L.: Gas-to-Particle Partitioning of
Cyclohexene-and α-Pinene-Derived Highly Oxygenated Dimers Evaluated
Using COSMOtherm, J. Phys. Chem. A, 125, 3726–3738,
https://doi.org/10.1021/acs.jpca.0c11328, 2021. a
Jacobson, M. Z.: Fundamentals of Atmospheric Modelling (2nd edition), Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 828 pp., 2005. a
Jenkin, M. E., Saunders, S. M., and Pilling, M. J.: The tropospheric
degradation of volatile organic compounds: a protocol for mechanism
development, Atmos. Environ., 31, 81–104,
https://doi.org/10.1016/S1352-2310(96)00105-7, 1997. a, b
Jenkin, M. E., Saunders, S. M., Wagner, V., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds, Atmos. Chem. Phys., 3, 181–193, https://doi.org/10.5194/acp-3-181-2003, 2003. a, b
Jenkin, M. E., Young, J. C., and Rickard, A. R.: The MCM v3.3.1 degradation scheme for isoprene, Atmos. Chem. Phys., 15, 11433–11459, https://doi.org/10.5194/acp-15-11433-2015, 2015. a, b
Kent, E. C., Fangohr, S., and Berry, D. I.: A comparative assessment of monthly
mean wind speed products over the global ocean, Int. J. Clim., 33, 2520–2541, https://doi.org/10.1002/joc.3606, 2013. a
Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J., Ehrhart, S.,
Franchin, A., Gagné, S., Ickes, L., Kürten, A., Kupc, A., Metzger, A.,
Riccobono, F., Rondo, L., Schobesberger, S., Tsagkogeorgas, G., Wimmer, D.,
Amorim, A., Bianchi, F., and Kulmala, M.: Role of sulphuric acid, ammonia and
galactic cosmic rays in atmospheric aerosol nucleation, Nature, 476, 429–33,
https://doi.org/10.1038/nature10343, 2011. a
Kirkby, J., Duplissy, J., Sengupta, K., Frege, C., Gordon, H., Williamson, C.,
and Heinritzi, M.: Ion-induced nucleation of pure biogenic particles, Nature,
533, 521–526, https://doi.org/10.1038/nature17953, 2016. a
Kloster, S., Feichter, J., Maier-Reimer, E., Six, K. D., Stier, P., and Wetzel, P.: DMS cycle in the marine ocean-atmosphere system – a global model study, Biogeosciences, 3, 29–51, https://doi.org/10.5194/bg-3-29-2006, 2006. a
Korhonen, P., Kulmala, M., Laaksonen, A., Viisanen, Y., McGraw, R., and
Seinfeld, J. H.: Ternary nucleation of H2SO4, NH3, and H2O in the atmosphere,
J. Geophys. Res.-Atmos., 104, 26349–26353,
https://doi.org/10.1029/1999JD900784, 1999. a
Kreidenweis, S. M., Walcek, C. J., Feingold, G., Gong, W., Jacobson, M. Z.,
Kim, C., Liu, X., Penner, J. E., Nenes, A., and Seinfeld, J. H.: Modification
of aerosol mass and size distributiondue to aqueous-phase SO2
oxidation in clouds: Comparisons of several models, J. Geophys.
Res.-Atmos., 108, 4213, https://doi.org/10.1029/2002JD002697, 2003. a
Kristensen, K., Jensen, L. N., Glasius, M., and Bilde, M.: The effect of
sub-zero temperature on the formation and composition of secondary organic
aerosol from ozonolysis of alpha-pinene, Environ. Sci., 19, 1220–1234, https://doi.org/10.1039/C7EM00231A, 2017. a, b
Kristensen, T. B., Müller, T., Kandler, K., Benker, N., Hartmann, M., Prospero, J. M., Wiedensohler, A., and Stratmann, F.: Properties of cloud condensation nuclei (CCN) in the trade wind marine boundary layer of the western North Atlantic, Atmos. Chem. Phys., 16, 2675–2688, https://doi.org/10.5194/acp-16-2675-2016, 2016. a
Kukui, A., Borissenko, D., Laverdet, G., and Bras, G.: Gas-Phase Reactions of
OH Radicals with Dimethyl Sulfoxide and Methane Sulfinic Acid Using Turbulent
Flow Reactor and Chemical Ionization Mass Spectrometry, J. Phys.
Chem. A, 107, 5732–5742, https://doi.org/10.1021/jp0276911, 2003. a, b, c, d, e, f, g
Kurtén, T., Tiusanen, K., Roldin, P., Rissanen, M., Luy, J.-N., Boy, M., Ehn,
M., and Donahue, N.: α-Pinene Autoxidation Products May Not Have Extremely
Low Saturation Vapor Pressures Despite High O:C Ratios, J. Phys. Chem. A, 120, 2569–2582, https://doi.org/10.1021/acs.jpca.6b02196, 2016. a
Kürten, A., Bianchi, F., Almeida, J., Kupiainen-Määttä, O., Dunne, E.,
Duplissy, J., Williamson, C., Barmet, P., Breitenlechner, M., Dommen, J.,
Donahue, N., Flagan, R., Franchin, A., Gordon, H., Hakala, J., Hansel, A.,
Heinritzi, M., Ickes, L., Jokinen, T., and Curtius, J.: Experimental particle
formation rates spanning tropospheric sulfuric acid and ammonia abundances,
ion production rates, and temperatures, J. Geophys. Res.-Atmos., 121, 12377–12400, https://doi.org/10.1002/2015JD023908, 2016. a
Laakso, L., Grönholm, T., Üllar Rannik, Kosmale, M., Fiedler, V., Vehkamäki,
H., and Kulmala, M.: Ultrafine particle scavenging coefficients calculated
from 6 years field measurements, Atmos. Environ., 37, 3605–3613,
https://doi.org/10.1016/S1352-2310(03)00326-1, 2003. a, b
Leser, H., Honninger, G., and Platt, U.: MAX-DOAS measurements of BrO and NO2
in the marine boundary layer, Geophys. Res. Lett., 30, 101029,
https://doi.org/10.1029/2002GL015811, 2003. a
Lovelock, J. E., Maggs, R. J., and Rasmussen, R. A.: Atmospheric Dimethyl Sulfide and the Natural Sulfur Cycle, Nature, 237, 452–453, 1972. a
McGrath, M. J., Olenius, T., Ortega, I. K., Loukonen, V., Paasonen, P., Kurtén, T., Kulmala, M., and Vehkamäki, H.: Atmospheric Cluster Dynamics Code: a flexible method for solution of the birth-death equations, Atmos. Chem. Phys., 12, 2345–2355, https://doi.org/10.5194/acp-12-2345-2012, 2012. a
Olenius, T., Kupiainen-Määttä, O., Ortega, I., Kurtén, T., and Vehkamäki,
H.: Free energy barrier in the growth of sulfuric acid-ammonia and sulfuric
acid-dimethylamine clusters, J. Chem. Phys., 139, 084312,
https://doi.org/10.1063/1.4819024, 2013. a
Pruppacher, H. and Jaenicke, R.: The processing of water vapor and aerosols by
atmospheric clouds, a global estimate, Atmos. Res., 38, 283–295,
https://doi.org/10.1016/0169-8095(94)00098-X, 1995. a
Quéléver, L. L. J., Kristensen, K., Normann Jensen, L., Rosati, B., Teiwes, R., Daellenbach, K. R., Peräkylä, O., Roldin, P., Bossi, R., Pedersen, H. B., Glasius, M., Bilde, M., and Ehn, M.: Effect of temperature on the formation of highly oxygenated organic molecules (HOMs) from alpha-pinene ozonolysis, Atmos. Chem. Phys., 19, 7609–7625, https://doi.org/10.5194/acp-19-7609-2019, 2019. a
Roldin, P. and Wollesen de Jonge, R.: DMS multiphase chemistry mechanism and model results, Zenodo [Dataset], https://doi.org/10.5281/zenodo.5016758, 2021. a
Roldin, P., Eriksson, A. C., Nordin, E. Z., Hermansson, E., Mogensen, D., Rusanen, A., Boy, M., Swietlicki, E., Svenningsson, B., Zelenyuk, A., and Pagels, J.: Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM, Atmos. Chem. Phys., 14, 7953–7993, https://doi.org/10.5194/acp-14-7953-2014, 2014. a, b, c
Roldin, P., Ehn, M., Kurtén, T., Olenius, T., Rissanen, M. P., Sarnela, N.,
Elm, J., Rantala, P., Hao, L., Hyttinen, N., Heikkinen, L., Worsnop, D. R., Pichelstorfer, L., Xavier, C., Clusius, P., Öström, E., Petäjä, T., Kulmala, M., Vehkamäki, H., Virtanen, A., Riipinen, I., and Boy, M.: The role of highly
oxygenated organic molecules in the Boreal aerosol-cloud-climate system, Nat.
Commun., 10, 1–15, 2019. a
Rosati, B., Christiansen, S., Dinesen, A., Roldin, P., Massling, A., Nilsson,
E. D., and Bilde, M.: The impact of atmospheric oxidation on hygroscopicity
and cloud droplet activation of inorganic sea spray aerosol, Sci. Rep., 11, 10008, https://doi.org/10.1038/s41598-021-89346-6, 2021a. a
Rosati, B., Christiansen, S., Wollesen de Jonge, R., Roldin, P., Jensen, M. M.,
Wang, K., Moosakutty, S. P., Thomsen, D., Salomonsen, C., Hyttinen, N., Elm,
J., Feilberg, A., Glasius, M., and Bilde, M.: New Particle Formation and
Growth from Dimethyl Sulfide Oxidation by Hydroxyl Radicals, ACS Earth
Space Chem., 5, 801–811, https://doi.org/10.1021/acsearthspacechem.0c00333,
2021b. a, b, c, d, e, f, g, h, i, j, k, l
Salter, M. E., Zieger, P., Acosta Navarro, J. C., Grythe, H., Kirkevåg, A., Rosati, B., Riipinen, I., and Nilsson, E. D.: An empirically derived inorganic sea spray source function incorporating sea surface temperature, Atmos. Chem. Phys., 15, 11047–11066, https://doi.org/10.5194/acp-15-11047-2015, 2015. a, b
Saltzman, E. S., Savoie, D. L., Zika, R. G., and Prospero, J. M.: Methane
sulfonic acid in the marine atmosphere, J. Geophys. Res.-Oceans, 88, 10897–10902, https://doi.org/10.1029/JC088iC15p10897, 1983. a
Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds, Atmos. Chem. Phys., 3, 161–180, https://doi.org/10.5194/acp-3-161-2003, 2003. a
Song, M., Zhang, C., Wu, H., Mu, Y., Ma, Z., Zhang, Y., Liu, J., and Li, X.:
The influence of OH concentration on SOA formation from isoprene
photooxidation, Sci. Total Environ., 650, 951–957,
https://doi.org/10.1016/j.scitotenv.2018.09.084, 2019. a
Sumner, A. L., Menke, E. J., Dubowski, Y., Newberg, J. T., Penner, R. M.,
Hemminger, J. C., Wingen, L. M., Brauers, T., and Finlayson-Pitts, B. J.: The
nature of water on surfaces of laboratory systems and implications for
heterogeneous chemistry in the troposphere, Phys. Chem. Chem. Phys., 6,
604–613, https://doi.org/10.1039/B308125G, 2004. a, b, c, d, e, f
Turnipseed, A. A., Barone, S. B., Jensen, N. R., Hanson, D. R., Howard, C. J.,
and Ravishankara, A. R.: Kinetics of the Reactions of CF3O Radicals with CO
and H2O, J. Phys. Chem., 99, 6000–6009,
https://doi.org/10.1021/j100016a041, 1995.
a, b, c
Veres, P. R., Neuman, J. A., Bertram, T. H., Assaf, E., Wolfe, G. M.,
Williamson, C. J., Weinzierl, B., Tilmes, S., Thompson, C. R., Thames, A. B.,
Schroder, J. C., Saiz-Lopez, A., Rollins, A. W., Roberts, J. M., Price, D.,
Peischl, J., Nault, B. A., Møller, K. H., Miller, D. O., Meinardi, S., Li,
Q., Lamarque, J.-F., Kupc, A., Kjaergaard, H. G., Kinnison, D., Jimenez,
J. L., Jernigan, C. M., Hornbrook, R. S., Hills, A., Dollner, M., Day, D. A.,
Cuevas, C. A., Campuzano-Jost, P., Burkholder, J., Bui, T. P., Brune, W. H.,
Brown, S. S., Brock, C. A., Bourgeois, I., Blake, D. R., Apel, E. C., and
Ryerson, T. B.: Global airborne sampling reveals a previously unobserved
dimethyl sulfide oxidation mechanism in the marine atmosphere, P. Natl. Acad. Sci. USA, 117, 4505–4510,
https://doi.org/10.1073/pnas.1919344117, 2020. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Zhang, X., Cappa, C. D., Jathar, S. H., McVay, R. C., Ensberg, J. J., Kleeman,
M. J., and Seinfeld, J. H.: Influence of vapor wall loss in laboratory
chambers on yields of secondary organic aerosol, P. Natl. Acad. Sci. USA, 111, 5802–5807, https://doi.org/10.1073/pnas.1404727111, 2014. a, b
Zhu, L., Nenes, A., Wine, P. H., and Nicovich, J. M.: Effects of aqueous
organosulfur chemistry on particulate methanesulfonate to non–sea salt
sulfate ratios in the marine atmosphere, J. Geophys. Res.-Atmos., 111, D05316, https://doi.org/10.1029/2005JD006326, 2006. a
Short summary
This study presents a detailed analysis of the OH-initiated oxidation of dimethyl sulfide (DMS) based on experiments performed in the Aarhus University Research on Aerosol (AURA) smog chamber and the gas- and particle-phase chemistry kinetic multilayer model (ADCHAM). We capture the formation, growth and chemical composition of aerosols in the chamber setup by an improved multiphase oxidation mechanism and utilize our results to reproduce the important role of DMS in the marine boundary layer.
This study presents a detailed analysis of the OH-initiated oxidation of dimethyl sulfide (DMS)...
Altmetrics
Final-revised paper
Preprint