Articles | Volume 21, issue 11
https://doi.org/10.5194/acp-21-8845-2021
https://doi.org/10.5194/acp-21-8845-2021
Research article
 | 
11 Jun 2021
Research article |  | 11 Jun 2021

Harnessing stratospheric diffusion barriers for enhanced climate geoengineering

Nikolas O. Aksamit, Ben Kravitz, Douglas G. MacMartin, and George Haller

Related authors

A quasi-objective single-buoy approach for understanding Lagrangian coherent structures and sea ice dynamics
Nikolas O. Aksamit, Randall K. Scharien, Jennifer K. Hutchings, and Jennifer V. Lukovich
The Cryosphere, 17, 1545–1566, https://doi.org/10.5194/tc-17-1545-2023,https://doi.org/10.5194/tc-17-1545-2023, 2023
Short summary
Warm-air entrainment and advection during alpine blowing snow events
Nikolas O. Aksamit and John W. Pomeroy
The Cryosphere, 14, 2795–2807, https://doi.org/10.5194/tc-14-2795-2020,https://doi.org/10.5194/tc-14-2795-2020, 2020
Short summary
Near-surface snow particle dynamics from particle tracking velocimetry and turbulence measurements during alpine blowing snow storms
Nikolas O. Aksamit and John W. Pomeroy
The Cryosphere, 10, 3043–3062, https://doi.org/10.5194/tc-10-3043-2016,https://doi.org/10.5194/tc-10-3043-2016, 2016
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Surface temperature dependence of stratospheric sulfate aerosol clear-sky forcing and feedback
Ravikiran Hegde, Moritz Günther, Hauke Schmidt, and Clarissa Kroll
Atmos. Chem. Phys., 25, 3873–3887, https://doi.org/10.5194/acp-25-3873-2025,https://doi.org/10.5194/acp-25-3873-2025, 2025
Short summary
Stratospheric residence time and the lifetime of volcanic stratospheric aerosols
Matthew Toohey, Yue Jia, Sujan Khanal, and Susann Tegtmeier
Atmos. Chem. Phys., 25, 3821–3839, https://doi.org/10.5194/acp-25-3821-2025,https://doi.org/10.5194/acp-25-3821-2025, 2025
Short summary
Spatiotemporal variations of stratospheric aerosol size between 2002 and 2005 from measurements with SAGE III/M3M
Felix Wrana, Terry Deshler, Christian Löns, Larry W. Thomason, and Christian von Savigny
Atmos. Chem. Phys., 25, 3717–3736, https://doi.org/10.5194/acp-25-3717-2025,https://doi.org/10.5194/acp-25-3717-2025, 2025
Short summary
Impact of SO2 injection profiles on simulated volcanic forcing for the 2009 Sarychev eruptions – investigating the importance of using high-vertical-resolution methods when compiling SO2 data
Emma Axebrink, Moa K. Sporre, and Johan Friberg
Atmos. Chem. Phys., 25, 2047–2059, https://doi.org/10.5194/acp-25-2047-2025,https://doi.org/10.5194/acp-25-2047-2025, 2025
Short summary
The optical properties of stratospheric aerosol layer perturbation of the Hunga volcano eruption of January 15th, 2022
Pasquale Sellitto, Redha Belhadji, Bernard Legras, Aurélien Podglajen, and Clair Duchamp
EGUsphere, https://doi.org/10.5194/egusphere-2024-1433,https://doi.org/10.5194/egusphere-2024-1433, 2024
Short summary

Cited articles

Beron-Vera, F. J., Olascoaga, M. J., Brown, M. G., and Koçak, H.: Zonal Jets as Meridional Transport Barriers in the Subtropical and Polar Lower Stratosphere, J. Atmos. Sci., 69, 753–767, https://doi.org/10.1175/JAS-D-11-084.1, 2012. 
BozorgMagham, A. E. and Ross, S. D.: Atmospheric Lagrangian coherent structures considering unresolved turbulence and forecast uncertainty, Commun. Nonlinear Sci. Numer. Simul., 22, 964–979, https://doi.org/10.1016/j.cnsns.2014.07.011, 2015. 
Crutzen, P. J.: Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma?, Clim. Change, 77, 211–220, https://doi.org/10.1007/s10584-006-9101-y, 2006. 
Domeisen, D. I. V., Garfinkel, C. I., and Butler, A. H.: The Teleconnection of El Niño Southern Oscillation to the Stratosphere, Rev. Geophys., 5–47, https://doi.org/10.1029/2018RG000596, 2019. 
Driscoll, S., Bozzo, A., Gray, L. J., Robock, A., and Stenchikov, G.: Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions, J. Geophys. Res.-Atmos., 117, D17105, https://doi.org/10.1029/2012JD017607, 2012. 
Download
Short summary
There exist robust and influential material features evolving within turbulent fluids that behave as the skeleton for fluid transport pathways. Recent developments in applied mathematics have made the identification of these time-varying structures more rigorous and insightful than ever. Using short-range wind forecasts, we detail how and why these material features can be exploited in an effort to optimize the spread of aerosols in the stratosphere for climate geoengineering.
Share
Altmetrics
Final-revised paper
Preprint