Articles | Volume 21, issue 4
https://doi.org/10.5194/acp-21-3143-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-3143-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effectiveness of emission control in reducing PM2.5 pollution in central China during winter haze episodes under various potential synoptic controls
Yingying Yan
Department of Atmospheric Sciences, School of Environmental Studies,
China University of Geosciences, Wuhan 430074, China
Yue Zhou
Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research,
Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205,
China
Shaofei Kong
CORRESPONDING AUTHOR
Department of Atmospheric Sciences, School of Environmental Studies,
China University of Geosciences, Wuhan 430074, China
Department of Environmental Science and Engineering, School of
Environmental Studies, China University of Geosciences, Wuhan 430074, China
Jintai Lin
Laboratory for Climate and Ocean-Atmosphere Studies, Department of
Atmospheric and Oceanic Sciences, School of Physics, Peking University,
Beijing 100871, China
Jian Wu
Department of Atmospheric Sciences, School of Environmental Studies,
China University of Geosciences, Wuhan 430074, China
Department of Environmental Science and Engineering, School of
Environmental Studies, China University of Geosciences, Wuhan 430074, China
Huang Zheng
Department of Atmospheric Sciences, School of Environmental Studies,
China University of Geosciences, Wuhan 430074, China
Department of Environmental Science and Engineering, School of
Environmental Studies, China University of Geosciences, Wuhan 430074, China
Zexuan Zhang
Department of Atmospheric Sciences, School of Environmental Studies,
China University of Geosciences, Wuhan 430074, China
Department of Environmental Science and Engineering, School of
Environmental Studies, China University of Geosciences, Wuhan 430074, China
Aili Song
Department of Atmospheric Sciences, School of Environmental Studies,
China University of Geosciences, Wuhan 430074, China
Yongqing Bai
Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research,
Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205,
China
Zhang Ling
Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research,
Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205,
China
Dantong Liu
Department of Atmospheric Sciences, School of Earth Sciences,
Zhejiang University, Hangzhou 310058, China
Tianliang Zhao
School of Atmospheric Physics, Nanjing University of Information
Science and Technology, Nanjing 210044, China
Related authors
Zhenzhen Niu, Shaofei Kong, Qin Yan, Yi Cheng, Huang Zheng, Yao Hu, Jian Wu, Xujing Qin, Haoyu Dong, Weisi Jiang, Yingying Yan, Wei Liu, Feng Ding, Yongqing Bai, and Shihua Qi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-354, https://doi.org/10.5194/essd-2025-354, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Trichlorofluoromethane (CFC-11) is usually recognized from CFC-11 production and use sources. In this study, we established CFC-11 emission inventory from coal combustion in China during 2000~2021. We found that CFC-11 emissions from coal combustion exhibited fluctuations and an overall upward trend, peaking in 2016, and Hebei and Shandong provinces had higher emissions. The CFC-11 emissions from coal combustion in the coastal regions might influence the monitored CFC-11 concentrations.
Yi Cheng, Shaofei Kong, Liquan Yao, Huang Zheng, Jian Wu, Qin Yan, Shurui Zheng, Yao Hu, Zhenzhen Niu, Yingying Yan, Zhenxing Shen, Guofeng Shen, Dantong Liu, Shuxiao Wang, and Shihua Qi
Earth Syst. Sci. Data, 14, 4757–4775, https://doi.org/10.5194/essd-14-4757-2022, https://doi.org/10.5194/essd-14-4757-2022, 2022
Short summary
Short summary
This work establishes the first emission inventory of carbonaceous aerosols from cooking, fireworks, sacrificial incense, joss paper burning, and barbecue, using multi-source datasets and tested emission factors. These emissions were concentrated in specific periods and areas. Positive and negative correlations between income and emissions were revealed in urban and rural regions. The dataset will be helpful for improving modeling studies and modifying corresponding emission control policies.
Kelvin H. Bates, Daniel J. Jacob, Ke Li, Peter D. Ivatt, Mat J. Evans, Yingying Yan, and Jintai Lin
Atmos. Chem. Phys., 21, 18351–18374, https://doi.org/10.5194/acp-21-18351-2021, https://doi.org/10.5194/acp-21-18351-2021, 2021
Short summary
Short summary
Simple aromatic compounds (benzene, toluene, xylene) have complex gas-phase chemistry that is inconsistently represented in atmospheric models. We compile recent experimental and theoretical insights to develop a new mechanism for gas-phase aromatic oxidation that is sufficiently compact for use in multiscale models. We compare our new mechanism to chamber experiments and other mechanisms, and implement it in a global model to quantify the impacts of aromatic oxidation on tropospheric chemistry.
Qingjian Yang, Tianliang Zhao, Yongqing Bai, Kai Meng, Yuehan Luo, Zhijie Tian, Xiaoyun Sun, Weikang Fu, Kai Yang, and Jun Hu
Atmos. Chem. Phys., 25, 8029–8042, https://doi.org/10.5194/acp-25-8029-2025, https://doi.org/10.5194/acp-25-8029-2025, 2025
Short summary
Short summary
This study reveals a unique driver of the Tibetan Plateau (TP) thermal forcing of the interannual variations in stratosphere-to-troposphere transport (STT) of ozone with diverse structures. Anomalous strong TP thermal forcing induces anticyclonic anomalies in the upper troposphere over the TP, which strengthens and attenuates the northern and southern branches of the westerly jet, intensifying (weakening) the westerly trough for more (fewer) tropopause folds of ozone STT over the East Asian region.
Zhenzhen Niu, Shaofei Kong, Qin Yan, Yi Cheng, Huang Zheng, Yao Hu, Jian Wu, Xujing Qin, Haoyu Dong, Weisi Jiang, Yingying Yan, Wei Liu, Feng Ding, Yongqing Bai, and Shihua Qi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-354, https://doi.org/10.5194/essd-2025-354, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Trichlorofluoromethane (CFC-11) is usually recognized from CFC-11 production and use sources. In this study, we established CFC-11 emission inventory from coal combustion in China during 2000~2021. We found that CFC-11 emissions from coal combustion exhibited fluctuations and an overall upward trend, peaking in 2016, and Hebei and Shandong provinces had higher emissions. The CFC-11 emissions from coal combustion in the coastal regions might influence the monitored CFC-11 concentrations.
Chenjie Yu, Paola Formenti, Joel F. de Brito, Astrid Bauville, Antonin Bergé, Hichem Bouzidi, Mathieu Cazaunau, Manuela Cirtog, Claudia Di Biagio, Ludovico Di Antonio, Cécile Gaimoz, Franck Maisonneuve, Pascal Zapf, Tobias Seubert, Simone T. Andersen, Patrick Dewald, Gunther N. T. E. Türk, John N. Crowley, Alexandre Kukui, Chaoyang Xue, Cyrielle Denjean, Olivier Garrouste, Jean-Claude Etienne, Huihui Wu, James D. Allan, Dantong Liu, Yangzhou Wu, Christopher Cantrell, and Vincent Michoud
EGUsphere, https://doi.org/10.5194/egusphere-2025-2667, https://doi.org/10.5194/egusphere-2025-2667, 2025
Short summary
Short summary
We presented a field measurement in a Paris suburban forest region to characterise the impacts of photochemical aging process on aerosol physical chemical properties. Photochemical production of organic aerosols increased forest fine particle mass and significantly enhanced absorption of short-wavelength sunlight. This study highlights the critical need to incorporate light absorbing carbonaceous particles formation mechanisms into models to accurately simulate their direct radiative impacts.
Zhuozhi Shu, Fumo Yang, Guangming Shi, Yuqing Zhang, Yongjie Huang, Xinning Yu, Baiwan Pan, and Tianliang Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2025-2628, https://doi.org/10.5194/egusphere-2025-2628, 2025
Short summary
Short summary
We targeted four stratospheric intrusion episodes to investigate the impacts of cross-layer transport of stratospheric O3 on the near-surface environmental atmosphere over Sichuan Basin and uncover multi-scale atmospheric circulation coupling mechanisms with the seasonally discrepant terrain effects of Tibetan Plateau. Results provided the critical insights into understanding of regional O3 pollution genesis with the exceptional natural sources contribution derived from the stratosphere.
Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao
Geosci. Model Dev., 18, 3623–3634, https://doi.org/10.5194/gmd-18-3623-2025, https://doi.org/10.5194/gmd-18-3623-2025, 2025
Short summary
Short summary
This study combines machine learning with concentration-weighted trajectory analysis to quantify regional transport PM2.5. From 2013–2020, local emissions dominated Beijing's pollution events. The Air Pollution Prevention and Control Action Plan reduced regional transport pollution, but the eastern region showed the smallest decrease. Beijing should prioritize local emission reduction while considering the east region's contributions in future strategies.
Huang Zheng, Shaofei Kong, Deping Ding, Marjan Savadkoohi, Congbo Song, Mingming Zheng, and Roy Harrison
EGUsphere, https://doi.org/10.5194/egusphere-2025-2113, https://doi.org/10.5194/egusphere-2025-2113, 2025
Short summary
Short summary
This study analyzes 13 years of BC data in China, uncovering patterns in its concentration and sources. Spatial-temporal variations and trends of BC are reported. Our analysis revealed that the reduction rates of BC and its sources varied across different station types, with spatial differences in the drivers of reduction. These long-term observations provide valuable insights to enhance understanding of pollution trends and improve models for predicting air quality.
Xiaochun Zhu, Le Cao, Xin Yang, Simeng Li, Jiandong Wang, and Tianliang Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-3873, https://doi.org/10.5194/egusphere-2024-3873, 2025
Short summary
Short summary
We applied various criteria to identify springtime ODEs at Utqiagvik, Arctic, and investigated the influences of using different criteria on conclusions regarding the characteristics of ODEs. We found criteria using a constant threshold and using thresholds based on the monthly averaged ozone more suitable for identifying ODEs than the others. Applying a threshold varying with the monthly average or stricter thresholds also signifies a more significant reduction in the ODE occurrences.
Sihan Liu, Honglei Wang, Delong Zhao, Wei Zhou, Yuanmou Du, Zhengguo Zhang, Peng Cheng, Tianliang Zhao, Yue Ke, Zihao Wu, and Mengyu Huang
Atmos. Chem. Phys., 25, 4151–4165, https://doi.org/10.5194/acp-25-4151-2025, https://doi.org/10.5194/acp-25-4151-2025, 2025
Short summary
Short summary
To understand the effect of aerosols on the vertical distribution of stratocumulus microphysical quantities in southwest China, the daily variation characteristics and formation mechanism of the vertical profiles of stratocumulus microphysical characteristics in this region were described using the data of nine cloud-crossing aircraft observations over Guangxi from 10 October to 3 November 2020.
Yuhang Zhang, Huan Yu, Isabelle De Smedt, Jintai Lin, Nicolas Theys, Michel Van Roozendael, Gaia Pinardi, Steven Compernolle, Ruijing Ni, Fangxuan Ren, Sijie Wang, Lulu Chen, Jos Van Geffen, Mengyao Liu, Alexander M. Cede, Martin Tiefengraber, Alexis Merlaud, Martina M. Friedrich, Andreas Richter, Ankie Piters, Vinod Kumar, Vinayak Sinha, Thomas Wagner, Yongjoo Choi, Hisahiro Takashima, Yugo Kanaya, Hitoshi Irie, Robert Spurr, Wenfu Sun, and Lorenzo Fabris
Atmos. Meas. Tech., 18, 1561–1589, https://doi.org/10.5194/amt-18-1561-2025, https://doi.org/10.5194/amt-18-1561-2025, 2025
Short summary
Short summary
We developed an advanced algorithm for global retrieval of TROPOspheric Monitoring Instrument (TROPOMI) HCHO and NO2 vertical column densities with much improved consistency. Sensitivity tests demonstrate the complexity and nonlinear interactions of auxiliary parameters in the air mass factor calculation. An improved agreement is found with measurements from a global ground-based instrument network. The scientific retrieval provides a useful source of information for studies combining HCHO and NO2.
Yongqing Bai, Tianliang Zhao, Kai Meng, Yue Zhou, Jie Xiong, Xiaoyun Sun, Lijuan Shen, Yanyu Yue, Yan Zhu, Weiyang Hu, and Jingyan Yao
Atmos. Chem. Phys., 25, 1273–1287, https://doi.org/10.5194/acp-25-1273-2025, https://doi.org/10.5194/acp-25-1273-2025, 2025
Short summary
Short summary
We proposed a composite statistical method to identify the quasi-weekly oscillation (QWO) of regional PM2.5 transport over China in winter from 2015 to 2019. The QWO of regional PM2.5 transport is constrained by synoptic-scale disturbances of the East Asian winter monsoon circulation with the periodic activities of the Siberian high, providing a new insight into the understanding of regional pollutant transport with meteorological drivers in atmospheric environment changes.
Xiaodan Ma, Jianping Huang, Michaela I. Hegglin, Patrick Jöckel, and Tianliang Zhao
Atmos. Chem. Phys., 25, 943–958, https://doi.org/10.5194/acp-25-943-2025, https://doi.org/10.5194/acp-25-943-2025, 2025
Short summary
Short summary
Our research explored changes in ozone levels in the northwest Pacific region over 30 years, revealing a significant increase in the middle-to-upper troposphere, especially during spring and summer. This rise is influenced by both stratospheric and tropospheric sources, which affect climate and air quality in East Asia. This work underscores the need for continued study to understand underlying mechanisms.
Yuanmou Du, Dantong Liu, Delong Zhao, Mengyu Huang, Ping Tian, Dian Wen, Wei Xiao, Wei Zhou, Hui He, Baiwan Pan, Dongfei Zuo, Xiange Liu, Yingying Jing, Rong Zhang, Jiujiang Sheng, Fei Wang, Yu Huang, Yunbo Chen, and Deping Ding
Atmos. Chem. Phys., 24, 13429–13444, https://doi.org/10.5194/acp-24-13429-2024, https://doi.org/10.5194/acp-24-13429-2024, 2024
Short summary
Short summary
By conducting in situ measurements, we investigated ice production processes in stratiform clouds with embedded convection over the North China Plain. The results show that the ice number concentration is strongly related to the distance to the cloud top, and the level with a larger distance to the cloud top has more graupel falling from upper levels, which promotes collision and coalescence between graupel and droplets and enhances secondary ice production.
Chenghao Xu, Jintai Lin, Hao Kong, Junli Jin, Lulu Chen, and Xiaobin Xu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3471, https://doi.org/10.5194/egusphere-2024-3471, 2024
Short summary
Short summary
We observed a strong increase in deseasonalized ozone at urban stations on the Tibetan Plateau from 2015 to 2019, far exceeding the trend at the baseline station Waliguan and the Tibet Plateau average trend of four tropospheric ozone products. By combining multiple datasets and modeling approaches, we identified the main contributing factors as more frequent transport passing through the lower layers of high-emission regions and the rapid increase in anthropogenic nitrogen oxide emissions.
Kai Meng, Tianliang Zhao, Yongqing Bai, Ming Wu, Le Cao, Xuewei Hou, Yuehan Luo, and Yongcheng Jiang
Atmos. Chem. Phys., 24, 12623–12642, https://doi.org/10.5194/acp-24-12623-2024, https://doi.org/10.5194/acp-24-12623-2024, 2024
Short summary
Short summary
We studied the impact of stratospheric intrusions (SIs) on tropospheric and near-surface ozone in Central and Eastern China from a stratospheric source tracing perspective. SIs contribute the most in the eastern plains, with a contribution exceeding 15 %, and have a small contribution to the west and south. Western Siberia and Mongolia are the most critical source areas for indirect and direct SIs, with the Rossby wave and northeast cold vortex being important driving circulation systems.
Fangxuan Ren, Jintai Lin, Chenghao Xu, Jamiu A. Adeniran, Jingxu Wang, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Larry W. Horowitz, Steven T. Turnock, Naga Oshima, Jie Zhang, Susanne Bauer, Kostas Tsigaridis, Øyvind Seland, Pierre Nabat, David Neubauer, Gary Strand, Twan van Noije, Philippe Le Sager, and Toshihiko Takemura
Geosci. Model Dev., 17, 4821–4836, https://doi.org/10.5194/gmd-17-4821-2024, https://doi.org/10.5194/gmd-17-4821-2024, 2024
Short summary
Short summary
We evaluate the performance of 14 CMIP6 ESMs in simulating total PM2.5 and its 5 components over China during 2000–2014. PM2.5 and its components are underestimated in almost all models, except that black carbon (BC) and sulfate are overestimated in two models, respectively. The underestimation is the largest for organic carbon (OC) and the smallest for BC. Models reproduce the observed spatial pattern for OC, sulfate, nitrate and ammonium well, yet the agreement is poorer for BC.
Yuehan Luo, Tianliang Zhao, Kai Meng, Jun Hu, Qingjian Yang, Yongqing Bai, Kai Yang, Weikang Fu, Chenghao Tan, Yifan Zhang, Yanzhe Zhang, and Zhikuan Li
Atmos. Chem. Phys., 24, 7013–7026, https://doi.org/10.5194/acp-24-7013-2024, https://doi.org/10.5194/acp-24-7013-2024, 2024
Short summary
Short summary
We reveal a significant mechanism of stratospheric O3 intrusion (SI) into the atmospheric environment induced by an extratropical cyclone system. This system facilitates the downward transport of stratospheric O3 to the near-surface layer by vertical coupling, involving the upper westerly trough, the middle northeast cold vortex, and the lower extratropical cyclone in the troposphere. On average, stratospheric O3 contributed 26.77 % to near-surface O3 levels over the North China Plain.
Ping Tian, Dantong Liu, Kang Hu, Yangzhou Wu, Mengyu Huang, Hui He, Jiujiang Sheng, Chenjie Yu, Dawei Hu, and Deping Ding
Atmos. Chem. Phys., 24, 5149–5164, https://doi.org/10.5194/acp-24-5149-2024, https://doi.org/10.5194/acp-24-5149-2024, 2024
Short summary
Short summary
The results provide direct evidence of efficient droplet activation of black carbon (BC). The cloud condensation nuclei (CCN) activation fraction of BC was higher than for all particles, suggesting higher CCN activity of BC, even though its hygroscopicity is lower. Our research reveals that the evolution of BC's hygroscopicity and its CCN activation properties through atmospheric aging can be effectively characterized by the photochemical age.
Yuhang Zhang, Jintai Lin, Jhoon Kim, Hanlim Lee, Junsung Park, Hyunkee Hong, Michel Van Roozendael, Francois Hendrick, Ting Wang, Pucai Wang, Qin He, Kai Qin, Yongjoo Choi, Yugo Kanaya, Jin Xu, Pinhua Xie, Xin Tian, Sanbao Zhang, Shanshan Wang, Siyang Cheng, Xinghong Cheng, Jianzhong Ma, Thomas Wagner, Robert Spurr, Lulu Chen, Hao Kong, and Mengyao Liu
Atmos. Meas. Tech., 16, 4643–4665, https://doi.org/10.5194/amt-16-4643-2023, https://doi.org/10.5194/amt-16-4643-2023, 2023
Short summary
Short summary
Our tropospheric NO2 vertical column density product with high spatiotemporal resolution is based on the Geostationary Environment Monitoring Spectrometer (GEMS) and named POMINO–GEMS. Strong hotspot signals and NO2 diurnal variations are clearly seen. Validations with multiple satellite products and ground-based, mobile car and surface measurements exhibit the overall great performance of the POMINO–GEMS product, indicating its capability for application in environmental studies.
Jun-Wei Xu, Jintai Lin, Dan Tong, and Lulu Chen
Atmos. Chem. Phys., 23, 10075–10089, https://doi.org/10.5194/acp-23-10075-2023, https://doi.org/10.5194/acp-23-10075-2023, 2023
Short summary
Short summary
This study highlights the necessity of a low-carbon pathway in foreign countries for China to achieve air quality goals and to protect public health. We find that adopting the low-carbon instead of the fossil-fuel-intensive pathway in foreign countries would prevent 63 000–270 000 transboundary PM2.5-associated mortalities in China in 2060. Our study provides direct evidence of the necessity of inter-regional cooperation for air quality improvement.
Naifu Shao, Chunsong Lu, Xingcan Jia, Yuan Wang, Yubin Li, Yan Yin, Bin Zhu, Tianliang Zhao, Duanyang Liu, Shengjie Niu, Shuxian Fan, Shuqi Yan, and Jingjing Lv
Atmos. Chem. Phys., 23, 9873–9890, https://doi.org/10.5194/acp-23-9873-2023, https://doi.org/10.5194/acp-23-9873-2023, 2023
Short summary
Short summary
Fog is an important meteorological phenomenon that affects visibility. Aerosols and the planetary boundary layer (PBL) play critical roles in the fog life cycle. In this study, aerosol-induced changes in fog properties become more remarkable in the second fog (Fog2) than in the first fog (Fog1). The reason is that aerosol–cloud interaction (ACI) delays Fog1 dissipation, leading to the PBL meteorological conditions being more conducive to Fog2 formation and to stronger ACI in Fog2.
Qian Li, Dantong Liu, Xiaotong Jiang, Ping Tian, Yangzhou Wu, Siyuan Li, Kang Hu, Quan Liu, Mengyu Huang, Ruijie Li, Kai Bi, Shaofei Kong, Deping Ding, and Chenjie Yu
Atmos. Chem. Phys., 23, 9439–9453, https://doi.org/10.5194/acp-23-9439-2023, https://doi.org/10.5194/acp-23-9439-2023, 2023
Short summary
Short summary
By attributing the shortwave absorption from black carbon, primary organic aerosol and secondary organic aerosol in a suburban environment, we firstly observed that the photochemically produced nitrogen-containing secondary organic aerosol may contribute to the enhancement of brown carbon absorption, partly compensating for some bleaching effect on the absorption of primary organic aerosol, hereby exerting radiative impacts.
Qi Yuan, Yuanyuan Wang, Yixin Chen, Siyao Yue, Jian Zhang, Yinxiao Zhang, Liang Xu, Wei Hu, Dantong Liu, Pingqing Fu, Huiwang Gao, and Weijun Li
Atmos. Chem. Phys., 23, 9385–9399, https://doi.org/10.5194/acp-23-9385-2023, https://doi.org/10.5194/acp-23-9385-2023, 2023
Short summary
Short summary
This study for the first time found large amounts of liquid–liquid phase separation particles with soot redistributing in organic coatings instead of sulfate cores in the eastern Tibetan Plateau atmosphere. The particle size and the ratio of the organic matter coating thickness to soot size are two of the major possible factors that likely affect the soot redistribution process. The soot redistribution process promoted the morphological compaction of soot particles.
Jun-Wei Xu, Jintai Lin, Gan Luo, Jamiu Adeniran, and Hao Kong
Atmos. Chem. Phys., 23, 4149–4163, https://doi.org/10.5194/acp-23-4149-2023, https://doi.org/10.5194/acp-23-4149-2023, 2023
Short summary
Short summary
Research on the sources of Chinese PM2.5 pollution has focused on the contributions of China’s domestic emissions. However, the impact of foreign anthropogenic emissions has typically been simplified or neglected. Here we find that foreign anthropogenic emissions play an important role in Chinese PM2.5 pollution through chemical interactions between foreign-transported pollutants and China’s local emissions. Thus, foreign emission reductions are essential for improving Chinese air quality.
Chi Li, Randall V. Martin, Ronald C. Cohen, Liam Bindle, Dandan Zhang, Deepangsu Chatterjee, Hongjian Weng, and Jintai Lin
Atmos. Chem. Phys., 23, 3031–3049, https://doi.org/10.5194/acp-23-3031-2023, https://doi.org/10.5194/acp-23-3031-2023, 2023
Short summary
Short summary
Models are essential to diagnose the significant effects of nitrogen oxides (NOx) on air pollution. We use an air quality model to illustrate the variability of NOx resolution-dependent simulation biases; how these biases depend on specific chemical environments, driving mechanisms, and vertical variabilities; and how these biases affect the interpretation of satellite observations. High-resolution simulations are thus critical to accurately interpret NOx and its relevance to air quality.
Yi Cheng, Shaofei Kong, Liquan Yao, Huang Zheng, Jian Wu, Qin Yan, Shurui Zheng, Yao Hu, Zhenzhen Niu, Yingying Yan, Zhenxing Shen, Guofeng Shen, Dantong Liu, Shuxiao Wang, and Shihua Qi
Earth Syst. Sci. Data, 14, 4757–4775, https://doi.org/10.5194/essd-14-4757-2022, https://doi.org/10.5194/essd-14-4757-2022, 2022
Short summary
Short summary
This work establishes the first emission inventory of carbonaceous aerosols from cooking, fireworks, sacrificial incense, joss paper burning, and barbecue, using multi-source datasets and tested emission factors. These emissions were concentrated in specific periods and areas. Positive and negative correlations between income and emissions were revealed in urban and rural regions. The dataset will be helpful for improving modeling studies and modifying corresponding emission control policies.
Siyuan Li, Dantong Liu, Shaofei Kong, Yangzhou Wu, Kang Hu, Huang Zheng, Yi Cheng, Shurui Zheng, Xiaotong Jiang, Shuo Ding, Dawei Hu, Quan Liu, Ping Tian, Delong Zhao, and Jiujiang Sheng
Atmos. Chem. Phys., 22, 6937–6951, https://doi.org/10.5194/acp-22-6937-2022, https://doi.org/10.5194/acp-22-6937-2022, 2022
Short summary
Short summary
The understanding of secondary organic aerosols is hindered by the aerosol–gas evolution by different oxidation mechanisms. By concurrently measuring detailed mass spectra of aerosol and gas phases in a megacity online, we identified the primary and secondary source sectors and investigated the transformation between gas and aerosol phases influenced by photooxidation and moisture. The results will help us to understand the respective evolution of major sources in a typical urban environment.
Chenglong Zhou, Yuzhi Liu, Qingzhe Zhu, Qing He, Tianliang Zhao, Fan Yang, Wen Huo, Xinghua Yang, and Ali Mamtimin
Atmos. Chem. Phys., 22, 5195–5207, https://doi.org/10.5194/acp-22-5195-2022, https://doi.org/10.5194/acp-22-5195-2022, 2022
Short summary
Short summary
Based on the radiosonde observations, an anomalously warm layer is measured at altitudes between 500 and 300 hPa over the Tarim Basin (TB) with an average intensity of 2.53 and 1.39 K in the spring and summer, respectively. The heat contributions of dust to this anomalously warm atmospheric layer in spring and summer were 13.77 and 10.25 %, respectively. Topographically, the TB is adjacent to the Tibetan Plateau; we propose the concept of the Tibetan heat source’s northward extension.
Chenjie Yu, Dantong Liu, Kang Hu, Ping Tian, Yangzhou Wu, Delong Zhao, Huihui Wu, Dawei Hu, Wenbo Guo, Qiang Li, Mengyu Huang, Deping Ding, and James D. Allan
Atmos. Chem. Phys., 22, 4375–4391, https://doi.org/10.5194/acp-22-4375-2022, https://doi.org/10.5194/acp-22-4375-2022, 2022
Short summary
Short summary
In this study, we applied a new technique to investigate the aerosol properties on both a mass and number basis and CCN abilities in Beijing suburban regions. The size-resolved aerosol chemical compositions and CCN activation measurement enable a detailed analysis of BC-containing particle hygroscopicity and its size-dependent contribution to the CCN activation. The results presented in this study will affect future models and human health studies.
Xiaoyun Sun, Tianliang Zhao, Yongqing Bai, Shaofei Kong, Huang Zheng, Weiyang Hu, Xiaodan Ma, and Jie Xiong
Atmos. Chem. Phys., 22, 3579–3593, https://doi.org/10.5194/acp-22-3579-2022, https://doi.org/10.5194/acp-22-3579-2022, 2022
Short summary
Short summary
This study revealed the impact of anthropogenic emissions and meteorological conditions on PM2.5 decline in the regional transport of air pollutants over a receptor region in central China. The meteorological drivers led to upwind accelerating and downward offsetting of the effects of emission reductions over the receptor region in regional PM2.5 transport, and the contribution of gaseous precursor emissions to PM2.5 pollution was enhanced with reduced anthropogenic emissions in recent years.
Xiangde Xu, Chan Sun, Deliang Chen, Tianliang Zhao, Jianjun Xu, Shengjun Zhang, Juan Li, Bin Chen, Yang Zhao, Hongxiong Xu, Lili Dong, Xiaoyun Sun, and Yan Zhu
Atmos. Chem. Phys., 22, 1149–1157, https://doi.org/10.5194/acp-22-1149-2022, https://doi.org/10.5194/acp-22-1149-2022, 2022
Short summary
Short summary
A vertical transport window of tropospheric vapor exists on the Tibetan Plateau (TP). The TP's thermal forcing drives the vertical transport
windowof vapor in the troposphere. The effects of the TP's vertical transport window of vapor are of importance in global climate change.
Kelvin H. Bates, Daniel J. Jacob, Ke Li, Peter D. Ivatt, Mat J. Evans, Yingying Yan, and Jintai Lin
Atmos. Chem. Phys., 21, 18351–18374, https://doi.org/10.5194/acp-21-18351-2021, https://doi.org/10.5194/acp-21-18351-2021, 2021
Short summary
Short summary
Simple aromatic compounds (benzene, toluene, xylene) have complex gas-phase chemistry that is inconsistently represented in atmospheric models. We compile recent experimental and theoretical insights to develop a new mechanism for gas-phase aromatic oxidation that is sufficiently compact for use in multiscale models. We compare our new mechanism to chamber experiments and other mechanisms, and implement it in a global model to quantify the impacts of aromatic oxidation on tropospheric chemistry.
Dawei Hu, M. Rami Alfarra, Kate Szpek, Justin M. Langridge, Michael I. Cotterell, Claire Belcher, Ian Rule, Zixia Liu, Chenjie Yu, Yunqi Shao, Aristeidis Voliotis, Mao Du, Brett Smith, Greg Smallwood, Prem Lobo, Dantong Liu, Jim M. Haywood, Hugh Coe, and James D. Allan
Atmos. Chem. Phys., 21, 16161–16182, https://doi.org/10.5194/acp-21-16161-2021, https://doi.org/10.5194/acp-21-16161-2021, 2021
Short summary
Short summary
Here, we developed new techniques for investigating these properties in the laboratory and applied these to BC and BrC from different sources, including diesel exhaust, inverted propane flame and wood combustion. These have allowed us to quantify the changes in shape and chemical composition of different soots according to source and variables such as the moisture content of wood.
Liam Bindle, Randall V. Martin, Matthew J. Cooper, Elizabeth W. Lundgren, Sebastian D. Eastham, Benjamin M. Auer, Thomas L. Clune, Hongjian Weng, Jintai Lin, Lee T. Murray, Jun Meng, Christoph A. Keller, William M. Putman, Steven Pawson, and Daniel J. Jacob
Geosci. Model Dev., 14, 5977–5997, https://doi.org/10.5194/gmd-14-5977-2021, https://doi.org/10.5194/gmd-14-5977-2021, 2021
Short summary
Short summary
Atmospheric chemistry models like GEOS-Chem are versatile tools widely used in air pollution and climate studies. The simulations used in such studies can be very computationally demanding, and thus it is useful if the model can simulate a specific geographic region at a higher resolution than the rest of the globe. Here, we implement, test, and demonstrate a new variable-resolution capability in GEOS-Chem that is suitable for simulations conducted on supercomputers.
Quan Liu, Dantong Liu, Yangzhou Wu, Kai Bi, Wenkang Gao, Ping Tian, Delong Zhao, Siyuan Li, Chenjie Yu, Guiqian Tang, Yunfei Wu, Kang Hu, Shuo Ding, Qian Gao, Fei Wang, Shaofei Kong, Hui He, Mengyu Huang, and Deping Ding
Atmos. Chem. Phys., 21, 14749–14760, https://doi.org/10.5194/acp-21-14749-2021, https://doi.org/10.5194/acp-21-14749-2021, 2021
Short summary
Short summary
Through simultaneous online measurements of detailed aerosol compositions at both surface and surface-influenced mountain sites, the evolution of aerosol composition during daytime vertical transport was investigated. The results show that, from surface to the top of the planetary boundary layer, the oxidation state of organic aerosol had been significantly enhanced due to evaporation and further oxidation of these evaporated gases.
Xiangde Xu, Wenyue Cai, Tianliang Zhao, Xinfa Qiu, Wenhui Zhu, Chan Sun, Peng Yan, Chunzhu Wang, and Fei Ge
Atmos. Chem. Phys., 21, 14131–14139, https://doi.org/10.5194/acp-21-14131-2021, https://doi.org/10.5194/acp-21-14131-2021, 2021
Short summary
Short summary
We found that the structure of atmospheric thermodynamics in the troposphere can be regarded as a strong forewarning signal for variations of surface PM2.5 concentration in heavy air pollution.
Dongfei Zuo, Deping Ding, Yichen Chen, Ling Yang, Delong Zhao, Mengyu Huang, Ping Tian, Wei Xiao, Wei Zhou, Yuanmou Du, and Dantong Liu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-221, https://doi.org/10.5194/amt-2021-221, 2021
Publication in AMT not foreseen
Short summary
Short summary
According to the echo attenuation analysis of mixed precipitation, the melting layer is found to be the key factor affecting the attenuation correction. This study hereby proposes an adaptive echo attenuation correction method based on the melting layer, and uses the ground-based S-band radar to extract the echo on the aircraft trajectory to verify the correction results. The results show that the echo attenuation correction value above the melting layer is related to the flight position.
Sobhan Kumar Kompalli, Surendran Nair Suresh Babu, Krishnaswamy Krishna Moorthy, Sreedharan Krishnakumari Satheesh, Mukunda Madhab Gogoi, Vijayakumar S. Nair, Venugopalan Nair Jayachandran, Dantong Liu, Michael J. Flynn, and Hugh Coe
Atmos. Chem. Phys., 21, 9173–9199, https://doi.org/10.5194/acp-21-9173-2021, https://doi.org/10.5194/acp-21-9173-2021, 2021
Short summary
Short summary
The first observations of refractory black carbon aerosol size distributions and mixing state in South Asian outflow to the northern Indian Ocean were carried out as a part of the ICARB-2018 experiment during winter. Size distributions indicated mixed sources of BC particles in the outflow, which are thickly coated. The coating thickness of BC is controlled mainly by the availability of condensable species in the outflow.
Zhuozhi Shu, Yubao Liu, Tianliang Zhao, Junrong Xia, Chenggang Wang, Le Cao, Haoliang Wang, Lei Zhang, Yu Zheng, Lijuan Shen, Lei Luo, and Yueqing Li
Atmos. Chem. Phys., 21, 9253–9268, https://doi.org/10.5194/acp-21-9253-2021, https://doi.org/10.5194/acp-21-9253-2021, 2021
Short summary
Short summary
Focusing on a heavy haze pollution event in the Sichuan Basin (SCB), we investigated the elevated 3D structure of PM2.5 and trans-boundary transport with the WRF-Chem simulation. It is remarkable for vertical PM2.5 that the unique hollows were structured, which which occurred by the interaction of vortex circulations and topographic effects. The SCB was regarded as the major air pollutant source with the trans-boundary transport of PM2.5 affecting atmospheric environment changes.
Lei Liu, Jian Zhang, Yinxiao Zhang, Yuanyuan Wang, Liang Xu, Qi Yuan, Dantong Liu, Yele Sun, Pingqing Fu, Zongbo Shi, and Weijun Li
Atmos. Chem. Phys., 21, 2251–2265, https://doi.org/10.5194/acp-21-2251-2021, https://doi.org/10.5194/acp-21-2251-2021, 2021
Short summary
Short summary
We found that large numbers of light-absorbing primary organic particles with high viscosity, especially tarballs, from domestic coal and biomass burning occurred in rural and even urban hazes in the winter of North China. For the first time, we characterized the atmospheric aging process of these burning-related primary organic particles by microscopic analysis and further evaluated their light absorption enhancement resulting from the “lensing effect” of secondary inorganic coatings.
Lei Zhang, Sunling Gong, Tianliang Zhao, Chunhong Zhou, Yuesi Wang, Jiawei Li, Dongsheng Ji, Jianjun He, Hongli Liu, Ke Gui, Xiaomei Guo, Jinhui Gao, Yunpeng Shan, Hong Wang, Yaqiang Wang, Huizheng Che, and Xiaoye Zhang
Geosci. Model Dev., 14, 703–718, https://doi.org/10.5194/gmd-14-703-2021, https://doi.org/10.5194/gmd-14-703-2021, 2021
Short summary
Short summary
Development of chemical transport models with advanced physics and chemical schemes is important for improving air-quality forecasts. This study develops the chemical module CUACE by updating with a new particle dry deposition scheme and adding heterogenous chemical reactions and couples it with the WRF model. The coupled model (WRF/CUACE) was able to capture well the variations of PM2.5, O3, NO2, and secondary inorganic aerosols in eastern China.
Shuo Ding, Dantong Liu, Kang Hu, Delong Zhao, Ping Tian, Fei Wang, Ruijie Li, Yichen Chen, Hui He, Mengyu Huang, and Deping Ding
Atmos. Chem. Phys., 21, 681–694, https://doi.org/10.5194/acp-21-681-2021, https://doi.org/10.5194/acp-21-681-2021, 2021
Short summary
Short summary
In this study, we for the first time characterized the detailed black carbon (BC) microphysics at a mountain site located at the top of the planetary boundary layer (PBL) influenced by surface emission over the North China Plain. We investigated the optical and hygroscopic properties of BC at this level as influenced by microphysical properties. Such information will constrain the impacts of BC in influencing the PBL dynamics and low-level cloud formation over anthropogenically polluted regions.
Rutambhara Joshi, Dantong Liu, Eiko Nemitz, Ben Langford, Neil Mullinger, Freya Squires, James Lee, Yunfei Wu, Xiaole Pan, Pingqing Fu, Simone Kotthaus, Sue Grimmond, Qiang Zhang, Ruili Wu, Oliver Wild, Michael Flynn, Hugh Coe, and James Allan
Atmos. Chem. Phys., 21, 147–162, https://doi.org/10.5194/acp-21-147-2021, https://doi.org/10.5194/acp-21-147-2021, 2021
Short summary
Short summary
Black carbon (BC) is a component of particulate matter which has significant effects on climate and human health. Sources of BC include biomass burning, transport, industry and domestic cooking and heating. In this study, we measured BC emissions in Beijing, finding a dominance of traffic emissions over all other sources. The quantitative method presented here has benefits for revising widely used emissions inventories and for understanding BC sources with impacts on air quality and climate.
Xiaodan Ma, Jianping Huang, Tianliang Zhao, Cheng Liu, Kaihui Zhao, Jia Xing, and Wei Xiao
Atmos. Chem. Phys., 21, 1–16, https://doi.org/10.5194/acp-21-1-2021, https://doi.org/10.5194/acp-21-1-2021, 2021
Short summary
Short summary
The present work aims at identifying and quantifying the relative contributions of the key factors in driving a rapid increase in summertime surface O3 over the North China Plain during 2013–2019. In addition to anthropogenic emission reduction and meteorological variabilities, our study highlights the importance of inclusion of aerosol absorption and scattering properties rather than aerosol abundance only in accurate assessment of aerosol radiative effect on surface O3 formation and change.
Junfeng Wang, Jianhuai Ye, Dantong Liu, Yangzhou Wu, Jian Zhao, Weiqi Xu, Conghui Xie, Fuzhen Shen, Jie Zhang, Paul E. Ohno, Yiming Qin, Xiuyong Zhao, Scot T. Martin, Alex K. Y. Lee, Pingqing Fu, Daniel J. Jacob, Qi Zhang, Yele Sun, Mindong Chen, and Xinlei Ge
Atmos. Chem. Phys., 20, 14091–14102, https://doi.org/10.5194/acp-20-14091-2020, https://doi.org/10.5194/acp-20-14091-2020, 2020
Short summary
Short summary
We compared the organics in total submicron matter and those coated on BC cores during summertime in Beijing and found large differences between them. Traffic-related OA was associated significantly with BC, while cooking-related OA did not coat BC. In addition, a factor likely originated from primary biomass burning OA was only identified in BC-containing particles. Such a unique BBOA requires further field and laboratory studies to verify its presence and elucidate its properties and impacts.
Yongqing Bai, Tianliang Zhao, Yue Zhou, Jie Xiong, Weiyang Hu, Yao Gu, Lin Liu, Shaofei Kong, and Huang Zheng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-708, https://doi.org/10.5194/acp-2020-708, 2020
Revised manuscript not accepted
Short summary
Short summary
Heavy air pollution over central China with regional transport of PM2.5 during January of 2015-2019 were studied by using MV-EOF with multi-source observation data. It is revealed that the 3-D meteorological structure biulding a receptor region in regional transport of air pollutants over China for improving our our understanding on meteorological mechanism of regional transport of source-receptor air pollutants.
Xiaoning Xie, Anmin Duan, Zhengguo Shi, Xinzhou Li, Hui Sun, Xiaodong Liu, Xugeng Cheng, Tianliang Zhao, Huizheng Che, and Yangang Liu
Atmos. Chem. Phys., 20, 11143–11159, https://doi.org/10.5194/acp-20-11143-2020, https://doi.org/10.5194/acp-20-11143-2020, 2020
Short summary
Short summary
Observational and modeling results both show that the surface dust concentrations over the East Asian (EA) dust source region and over the northwestern Pacific (NP) in MAM are significantly positively correlated with TPSH. These atmospheric circulation anomalies induced by the increased TPSH result in increasing westerly winds over both EA and NP, which in turn increases dust emissions over the dust source and dust transport over these two regions, as well as the regional dust cycles.
Wanyu Zhao, Hong Ren, Kimitaka Kawamura, Huiyun Du, Xueshun Chen, Siyao Yue, Qiaorong Xie, Lianfang Wei, Ping Li, Xin Zeng, Shaofei Kong, Yele Sun, Zifa Wang, and Pingqing Fu
Atmos. Chem. Phys., 20, 10331–10350, https://doi.org/10.5194/acp-20-10331-2020, https://doi.org/10.5194/acp-20-10331-2020, 2020
Short summary
Short summary
Our observations provide detailed information on the abundance and vertical distribution of dicarboxylic acids, oxoacids and α-dicarbonyls in PM2.5 collected at three heights based on a 325 m meteorological tower in Beijing in summer. Our results demonstrate that organic acids at the ground surface are largely associated with local traffic emissions, while long-range atmospheric transport followed by photochemical ageing contributes more in the urban boundary layer than the ground surface.
Cited articles
Agarwal, N. K., Sharma, P., and Agarwal, S. K.: Particulate matter air
pollution and cardiovascular disease, Med. Sci., 21, 270–279, 2017.
An, Z., Huang, R. J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi, Z.,
Han, Y., Gu, Z., and Ji, Y.: Severe haze in northern China: A synergy of
anthropogenic emissions and atmospheric processes, P.
Natl. Acad. Sci. USA, 116,
8657–8666, https://doi.org/10.1073/pnas.1900125116, 2019.
Bai, Z., Winiwarter, W., Klimont, Z., Velthof, G., Misselbrook, T., Zhao,
Z., Jin, X., Oenema, O., Hu, C., and Ma, L.: Further Improvement of Air
Quality in China Needs Clear Ammonia Mitigation Target, Environ.
Sci. Technol., 53, 10542–10544, https://doi.org/10.1021/acs.est.9b04725, 2019.
Bei, N., Zhao, L., Xiao, B., Meng, N., and Feng, T.: Impacts of local
circulations on the wintertime air pollution in the Guanzhong Basin, China,
Sci. Total Environ., 592, 373–390,
https://doi.org/10.1016/j.scitotenv.2017.02.151, 2017.
Bi, X., Dai, Q., Wu, J., Zhang, Q., Zhang, W., Luo, R., Cheng, Y., Zhang, J., Wang, L., Yu, Z., Zhang, Y., Tian, Y., and Feng, Y.: Characteristics of the main primary source profiles of particulate matter across China from 1987 to 2017, Atmos. Chem. Phys., 19, 3223–3243, https://doi.org/10.5194/acp-19-3223-2019, 2019.
Cao, J.-J., Shen, Z.-X., Chow, J. C., Watson, J. G., Lee, S.-C., Tie, X.-X.,
Ho, K.-F., Wang, G.-H., and Han, Y.-M.: Winter and Summer PM2.5 Chemical
Compositions in Fourteen Chinese Cities, J. Air Waste
Ma., 62, 1214–1226, https://doi.org/10.1080/10962247.2012.701193, 2012.
Chang, W. and Zhan, J.: The association of weather patterns with haze
episodes: Recognition by PM2.5 oriented circulation classification applied
in Xiamen, Southeastern China, Atmos. Res., 197, 425–436,
https://doi.org/10.1016/j.atmosres.2017.07.024, 2017.
Cheng, J., Su, J., Cui, T., Li, X., Dong, X., Sun, F., Yang, Y., Tong, D., Zheng, Y., Li, Y., Li, J., Zhang, Q., and He, K.: Dominant role of emission reduction in PM2.5 air quality improvement in Beijing during 2013–2017: a model-based decomposition analysis, Atmos. Chem. Phys., 19, 6125–6146, https://doi.org/10.5194/acp-19-6125-2019, 2019.
Cheng, Z., Luo, L., Wang, S., Wang, Y., Sharma, S., Shimadera, H., Wang, X.,
Bressi, M., de Miranda, R. M., Jiang, J., Zhou, W., Fajardo, O., Yan, N.,
and Hao, J.: Status and characteristics of ambient PM2.5 pollution in
global megacities, Environ. Int., 89/90, 212–221,
https://doi.org/10.1016/j.envint.2016.02.003, 2016.
Chuang, M. T., Chiang, P. C., Chan, C. C., Wang, C. F., Chang, E. E., and Lee,
C. T.: The effects of synoptical weather pattern and complex terrain on the
formation of aerosol events in the Greater Taipei area, Sci. Total
Environ., 399, 128–146, https://doi.org/10.1016/j.scitotenv.2008.01.051, 2008.
Dai, H., Zhu, J., Liao, H., Li, J., Liang, M., Yang, Y., and Yue, X.:
Co-occurrence of ozone and PM2.5 pollution in the Yangtze River Delta over
2013–2019: Spatiotemporal distribution and meteorological conditions,
Atmos. Res., 249, 105363, https://doi.org/10.1016/j.atmosres.2020.105363, 2021.
Ding, A., Huang, X., Nie, W., Chi, X., Xu, Z., Zheng, L., Xu, Z., Xie, Y., Qi, X., Shen, Y., Sun, P., Wang, J., Wang, L., Sun, J., Yang, X.-Q., Qin, W., Zhang, X., Cheng, W., Liu, W., Pan, L., and Fu, C.: Significant reduction of PM2.5 in eastern China due to regional-scale emission control: evidence from SORPES in 2011–2018, Atmos. Chem. Phys., 19, 11791–11801, https://doi.org/10.5194/acp-19-11791-2019, 2019.
Fu, X., Wang, S., Xing, J., Zhang, X., Wang, T., and Hao, J.: Increasing
Ammonia Concentrations Reduce the Effectiveness of Particle Pollution
Control Achieved via SO2 and NOX Emissions Reduction in East China,
Environ. Sci. Technol. Lett., 4, 221–227,
https://doi.org/10.1021/acs.estlett.7b00143, 2017.
Geng, G., Xiao, Q., Zheng, Y., Tong, D., Zhang, Y., Zhang, X., Zhang, Q.,
He, K., and Liu, Y.: Impact of China's Air Pollution Prevention and Control
Action Plan on PM2.5 chemical composition over eastern China, Science
China-Earth Sciences, 62, 1872–1884, https://doi.org/10.1007/s11430-018-9353-x, 2019.
Gong, W., Zhang, T., Zhu, Z., Ma, Y., Ma, X., and Wang, W.: Characteristics
of PM1.0, PM2.5, and PM10, and Their Relation to Black Carbon
in Wuhan, Central China, Atmosphere, 6, 1377–1387, https://doi.org/10.3390/atmos6091377,
2015.
Guo, L., Guo, X., Fang, C., and Zhu, S.: Observation analysis on
characteristics of formation, evolution and transition of a long-lasting
severe fog and haze episode in North China, Science China-Earth Sciences,
58, 329–344, https://doi.org/10.1007/s11430-014-4924-2, 2015.
He, J., Gong, S., Zhou, C., Lu, S., Wu, L., Chen, Y., Yu, Y., Zhao, S., Yu,
L., and Yin, C.: Analyses of winter circulation types and their impacts on
haze pollution in Beijing, Atmos. Environ., 192, 94–103,
https://doi.org/10.1016/j.atmosenv.2018.08.060, 2018.
Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y.,
Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P.,
Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G.,
Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J.,
Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., El Haddad, I., and
Prevot, A. S. H.: High secondary aerosol contribution to particulate
pollution during haze events in China, Nature, 514, 218–222,
https://doi.org/10.1038/nature13774, 2014.
Huang, W., Cao, J., Tao, Y., Dai, L., Lu, S.-E., Hou, B., Wang, Z., and Zhu,
T.: Seasonal Variation of Chemical Species Associated With Short-Term
Mortality Effects of PM2.5 in Xi'an, a Central City in China, Am.
J. Epidemiol., 175, 556–566, https://doi.org/10.1093/aje/kwr342, 2012.
Huang, X., Ding, A., Gao, J., Zheng, B., Zhou, D., Qi, X., Tang, R., Wang,
J., Ren, C., Nie, W., Chi, X., Xu, Z., Chen, L., Li, Y., Che, F., Pang, N.,
Wang, H., Tong, D., Qin, W., Cheng, W., Liu, W., Fu, Q., Liu, B., Chai, F.,
Davis, S. J., Zhang, Q., and He, K.: Enhanced secondary pollution offset
reduction of primary emissions during COVID-19 lockdown in China, Natl.
Sci. Rev., 8, 137, https://doi.org/10.1093/nsr/nwaa137, 2020.
Jenkinson, A. F. and Collison, F. P.: An initial climatology of gales over the
North Sea. Synoptic Climatology Branch Memorandum, Bracknell Meteorological Office, 62, 1–18, 1977.
Kurita, H., Sasaki, K., Muroga, H., Ueda, H., and Wakamatsu, S.: Long-range
transport of air pollution under light gradient wind conditions, J.
Clim. Appl. Meteorol., 24, 425–434,
https://doi.org/10.1175/1520-0450(1985)024<0425:lrtoap>2.0.co;2, 1985.
Lamb, H. H.: Types and spells of weather around the year in the British Isles,
Q. J. Roy. Meteor. Soc., 76, 393–438, 1950.
Leung, D. M., Tai, A. P. K., Mickley, L. J., Moch, J. M., van Donkelaar, A., Shen, L., and Martin, R. V.: Synoptic meteorological modes of variability for fine particulate matter (PM2.5) air quality in major metropolitan regions of China, Atmos. Chem. Phys., 18, 6733–6748, https://doi.org/10.5194/acp-18-6733-2018, 2018.
Li, J., Liao, H., Hu, J., and Li, N.: Severe particulate pollution days in
China during 2013–2018 and the associated typical weather patterns in
Beijing-Tianjin-Hebei and the Yangtze River Delta regions, Environ.
Pollut., 248, 74–81, https://doi.org/10.1016/j.envpol.2019.01.124, 2019.
Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, 2017a.
Li, X., Zhang, Q., Zhang, Y., Zhang, L., Wang, Y., Zhang, Q., Li, M., Zheng,
Y., Geng, G., Wallington, T. J., Han, W., Shen, W., and He, K.: Attribution
of PM2.5 exposure in Beijing-Tianjin-Hebei region to emissions:
implication to control strategies, Sci. Bull., 62, 957–964,
https://doi.org/10.1016/j.scib.2017.06.005, 2017b.
Li, Z., Guo, J., Ding, A., Liao, H., Liu, J., Sun, Y., Wang, T., Xue, H.,
Zhang, H., and Zhu, B.: Aerosol and boundary-layer interactions and impact
on air quality, Natl. Sci. Rev., 4, 810–833, https://doi.org/10.1093/nsr/nwx117,
2017c.
Liao, Z., Gao, M., Sun, J., and Fan, S.: The impact of synoptic circulation
on air quality and pollution-related human health in the Yangtze River Delta
region, Sci. Total Environ., 607, 838–846,
https://doi.org/10.1016/j.scitotenv.2017.07.031, 2017.
Liao, Z., Xie, J., Fang, X., Wang, Y., Zhang, Y., Xu, X., and Fan, S.:
Modulation of synoptic circulation to dry season PM2.5 pollution over
the Pearl River Delta region: An investigation based on self-organizing
maps, Atmos. Environ., 230, 117482, https://doi.org/10.1016/j.atmosenv.2020.117482, 2020.
Lin, Y., Zou, J., Yang, W., and Li, C. Q.: A Review of Recent Advances in
Research on PM2.5 in China, Int. J. Env.
Res. Pub. He., 15, 438, https://doi.org/10.3390/ijerph15030438, 2018.
Liu, M., Huang, X., Song, Y., Tang, J., Cao, J., Zhang, X., Zhang, Q., Wang,
S., Xu, T., Kang, L., Cai, X., Zhang, H., Yang, F., Wang, H., Yu, J. Z.,
Lau, A. K. H., He, L., Huang, X., Duan, L., Ding, A., Xue, L., Gao, J., Liu,
B., and Zhu, T.: Ammonia emission control in China would mitigate haze
pollution and nitrogen deposition, but worsen acid rain, P.
Natl. Acad. Sci. USA, 116,
7760–7765, https://doi.org/10.1073/pnas.1814880116, 2019.
Liu, Z., Gao, W., Yu, Y., Hu, B., Xin, J., Sun, Y., Wang, L., Wang, G., Bi, X., Zhang, G., Xu, H., Cong, Z., He, J., Xu, J., and Wang, Y.: Characteristics of PM2.5 mass concentrations and chemical species in urban and background areas of China: emerging results from the CARE-China network, Atmos. Chem. Phys., 18, 8849–8871, https://doi.org/10.5194/acp-18-8849-2018, 2018.
Luo, Y., Zhou, X., Zhang, J., Xiao, Y., Wang, Z., Zhou, Y., and Wang, W.:
PM2.5 pollution in a petrochemical industry city of northern China: Seasonal
variation and source apportionment, Atmos. Res., 212, 285–295,
https://doi.org/10.1016/j.atmosres.2018.05.029, 2018.
Mao, J., Jacob, D. J., Evans, M. J., Olson, J. R., Ren, X., Brune, W. H., Clair, J. M. St., Crounse, J. D., Spencer, K. M., Beaver, M. R., Wennberg, P. O., Cubison, M. J., Jimenez, J. L., Fried, A., Weibring, P., Walega, J. G., Hall, S. R., Weinheimer, A. J., Cohen, R. C., Chen, G., Crawford, J. H., McNaughton, C., Clarke, A. D., Jaeglé, L., Fisher, J. A., Yantosca, R. M., Le Sager, P., and Carouge, C.: Chemistry of hydrogen oxide radicals (HOx) in the Arctic troposphere in spring, Atmos. Chem. Phys., 10, 5823–5838, https://doi.org/10.5194/acp-10-5823-2010, 2010.
Miao, Y., Guo, J., Liu, S., Liu, H., Li, Z., Zhang, W., and Zhai, P.: Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution, Atmos. Chem. Phys., 17, 3097–3110, https://doi.org/10.5194/acp-17-3097-2017, 2017.
Ning, G., Wang, S., Yim, S. H. L., Li, J., Hu, Y., Shang, Z., Wang, J., and Wang, J.: Impact of low-pressure systems on winter heavy air pollution in the northwest Sichuan Basin, China, Atmos. Chem. Phys., 18, 13601–13615, https://doi.org/10.5194/acp-18-13601-2018, 2018.
Philipp, A., Beck, C., Huth, R., and Jacobeit, J.: Development and
comparison of circulation type classifications using the COST 733 dataset
and software, Int. J. Climatol., 36, 2673–2691,
https://doi.org/10.1002/joc.3920, 2016.
Pope, R. J., Savage, N. H., Chipperfield, M. P., Arnold, S. R., and Osborn,
T. J.: The influence of synoptic weather regimes on UK air quality: analysis
of satellite column NO2, Atmos. Sci. Lett., 15, 211–217,
https://doi.org/10.1002/asl2.492, 2014.
Pope, R. J., Savage, N. H., Chipperfield, M. P., Ordóñez, C., and Neal, L. S.: The influence of synoptic weather regimes on UK air quality: regional model studies of tropospheric column NO2, Atmos. Chem. Phys., 15, 11201–11215, https://doi.org/10.5194/acp-15-11201-2015, 2015.
Russo, A., Trigo, R. M., Martins, H., and Mendes, M. T.: NO2, PM10 and O3
urban concentrations and its association with circulation weather types in
Portugal, Atmos. Environ., 89, 768–785,
https://doi.org/10.1016/j.atmosenv.2014.02.010, 2014.
Santurtun, A., Carlos Gonzalez-Hidalgo, J., Sanchez-Lorenzo, A., and Teresa
Zarrabeitia, M.: Surface ozone concentration trends and its relationship
with weather types in Spain (2001–2010), Atmos. Environ., 101,
10–22, https://doi.org/10.1016/j.atmosenv.2014.11.005, 2015.
Shu, L., Xie, M., Gao, D., Wang, T., Fang, D., Liu, Q., Huang, A., and Peng, L.: Regional severe particle pollution and its association with synoptic weather patterns in the Yangtze River Delta region, China, Atmos. Chem. Phys., 17, 12871–12891, https://doi.org/10.5194/acp-17-12871-2017, 2017.
Sun, Y., Niu, T., He, J., Ma, Z., Liu, P., Xiao, D., Hu, J., Yang, J., and
Yan, X.: Classification of circulation patterns during the formation and
dissipation of continuous pollution weather over the Sichuan Basin, China,
Atmos. Environ., 223, 117244, https://doi.org/10.1016/j.atmosenv.2019.117244, 2020.
Sun, Y. L., Chen, C., Zhang, Y. J., Xu, W. Q., Zhou, L. B., Cheng, X. L.,
Zheng, H. T., Ji, D. S., Li, J., Tang, X., Fu, P. Q., and Wang, Z. F.: Rapid
formation and evolution of an extreme haze episode in Northern China during
winter 2015, Sci. Rep., 6, 27151, https://doi.org/10.1038/srep27151, 2016.
The People's Government of Beijing Municipality (PGBM): Emergency plan for
severe air pollution in Beijing, available at:
http://www.beijing.gov.cn/zhengce/zhengcefagui/201905/t20190522_61613.html (last access: 14 July 2018), 2018 (in Chinese).
The People's Government of Guangdong Province (PGGP): Emergency plan for
severe air pollution in Pearl River Delta, available at:
http://www.gd.gov.cn/gkmlpt/content/0/142/post_142657.html (last access: 14 July 2018), 2014 (in Chinese).
The People's Government of Shanghai Municipality (PGSM): Special emergency
plan for heavy air pollution in Shanghai, available at:
http://www.shanghai.gov.cn/nw2/nw2314/nw2319/nw31973/nw32019/nw32022/nw32023/u21aw1316153.html
(last access: 14 July 2018), 2018 (in Chinese).
The State Council of the People's Republic of China (SCPPC): The Thirteenth
Five-Year Plan for Energy Saving and Emission Reduction, available at:
http://www.gov.cn/gongbao/content/2017/content_5163448.html
(last access: 14 July 2018), 2016 (in Chinese).
Tian, S. L., Pan, Y. P., and Wang, Y. S.: Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes, Atmos. Chem. Phys., 16, 1–19, https://doi.org/10.5194/acp-16-1-2016, 2016.
Trigo, R. M. and DaCamara, C. C.: Circulation weather types and their
influence on the precipitation regime in Portugal, Int. J.
Climatol., 20, 1559–1581, https://doi.org/10.1002/1097-0088(20001115)20:13<1559::aid-joc555>3.0.co;2-5, 2000.
Twohy, C. H., Coakley Jr., J. A., and Tahnk, W. R.: Effect of changes in
relative humidity on aerosol scattering near clouds, J. Geophys.
Res.-Atmos., 114, D05205, https://doi.org/10.1029/2008jd010991, 2009.
Wang, H. L., Qiao, L. P., Lou, S. R., Zhou, M., Ding, A. J., Huang, H. Y.,
Chen, J. M., Wang, Q., Tao, S., Chen, C. H., Li, L., and Huang, C.: Chemical
composition of PM2.5 and meteorological impact among three years in urban
Shanghai, China, J. Clean. Prod., 112, 1302–1311,
https://doi.org/10.1016/j.jclepro.2015.04.099, 2016a.
Wang, J., Li, X., Zhang, W., Jiang, N., Zhang, R., and Tang, X.: Secondary
PM2.5 in Zhengzhou, China: Chemical Species Based on Three Years of
Observations, Aerosol Air Qual. Res., 16, 91–104,
https://doi.org/10.4209/aaqr.2015.01.0007, 2016b.
Wang, Q., Fang, J., Shi, W., and Dong, X.: Distribution characteristics and
policy-related improvements of PM2.5 and its components in six Chinese
cities, Environ. Pollut., 266, 115299, https://doi.org/10.1016/j.envpol.2020.115299, 2020.
Wang, X., Wei, W., Cheng, S., Li, J., Zhang, H., and Lv, Z.: Characteristics
and classification of PM2.5 pollution episodes in Beijing from 2013 to
2015, Sci. Total Environ., 612, 170–179,
https://doi.org/10.1016/j.scitotenv.2017.08.206, 2018.
Wang, Y., Chen, Y., Wu, Z., Shang, D., Bian, Y., Du, Z., Schmitt, S. H., Su, R., Gkatzelis, G. I., Schlag, P., Hohaus, T., Voliotis, A., Lu, K., Zeng, L., Zhao, C., Alfarra, M. R., McFiggans, G., Wiedensohler, A., Kiendler-Scharr, A., Zhang, Y., and Hu, M.: Mutual promotion between aerosol particle liquid water and particulate nitrate enhancement leads to severe nitrate-dominated particulate matter pollution and low visibility, Atmos. Chem. Phys., 20, 2161–2175, https://doi.org/10.5194/acp-20-2161-2020, 2020.
Wu, J., Kong, S., Wu, F., Cheng, Y., Zheng, S., Yan, Q., Zheng, H., Yang, G., Zheng, M., Liu, D., Zhao, D., and Qi, S.: Estimating the open biomass burning emissions in central and eastern China from 2003 to 2015 based on satellite observation, Atmos. Chem. Phys., 18, 11623–11646, https://doi.org/10.5194/acp-18-11623-2018, 2018.
Xing, J., Ding, D., Wang, S., Zhao, B., Jang, C., Wu, W., Zhang, F., Zhu, Y., and Hao, J.: Quantification of the enhanced effectiveness of NOx control from simultaneous reductions of VOC and NH3 for reducing air pollution in the Beijing–Tianjin–Hebei region, China, Atmos. Chem. Phys., 18, 7799–7814, https://doi.org/10.5194/acp-18-7799-2018, 2018.
Xing, J., Ding, D., Wang, S., Dong, Z., Kelly, J. T., Jang, C., Zhu, Y., and Hao, J.: Development and application of observable response indicators for design of an effective ozone and fine-particle pollution control strategy in China, Atmos. Chem. Phys., 19, 13627–13646, https://doi.org/10.5194/acp-19-13627-2019, 2019.
Xu, G., Jiao, L., Zhang, B., Zhao, S., Yuan, M., Gu, Y., Liu, J., and Tang,
X.: Spatial and temporal variability of the PM2.5/PM10 ratio in
Wuhan, Central China, Aerosol Air Qual. Res., 17, 741–751,
https://doi.org/10.4209/aaqr.2016.09.0406, 2017.
Xu, Q., Wang, S., Jiang, J., Bhattarai, N., Li, X., Chang, X., Qiu, X.,
Zheng, M., Hua, Y., and Hao, J.: Nitrate dominates the chemical composition
of PM2.5 during haze event in Beijing, China, Sci. Total
Environ., 689, 1293–1303, https://doi.org/10.1016/j.scitotenv.2019.06.294, 2019.
Xu, Z., Liu, M., Zhang, M., Song, Y., Wang, S., Zhang, L., Xu, T., Wang, T., Yan, C., Zhou, T., Sun, Y., Pan, Y., Hu, M., Zheng, M., and Zhu, T.: High efficiency of livestock ammonia emission controls in alleviating particulate nitrate during a severe winter haze episode in northern China, Atmos. Chem. Phys., 19, 5605–5613, https://doi.org/10.5194/acp-19-5605-2019, 2019.
Yan, Q., Kong, S., Yan, Y., Liu, H., Wang, W., Chen, K., Yin, Y., Zheng, H.,
Wu, J., Yao, L., Zeng, X., Cheng, Y., Zheng, S., Wu, F., Niu, Z., Zhang, Y.,
Zheng, M., Zhao, D., Liu, D., and Qi, S.: Emission and simulation of primary
fine and submicron particles and water-soluble ions from domestic coal
combustion in China, Atmos. Environ., 224, 117308,
https://doi.org/10.1016/j.atmosenv.2020.117308, 2020.
Yan, Y., Cabrera-Perez, D., Lin, J., Pozzer, A., Hu, L., Millet, D. B., Porter, W. C., and Lelieveld, J.: Global tropospheric effects of aromatic chemistry with the SAPRC-11 mechanism implemented in GEOS-Chem version 9-02, Geosci. Model Dev., 12, 111–130, https://doi.org/10.5194/gmd-12-111-2019, 2019.
Yan, Y.-Y., Lin, J.-T., Kuang, Y., Yang, D., and Zhang, L.: Tropospheric carbon monoxide over the Pacific during HIPPO: two-way coupled simulation of GEOS-Chem and its multiple nested models, Atmos. Chem. Phys., 14, 12649–12663, https://doi.org/10.5194/acp-14-12649-2014, 2014.
Yang, Y., Zheng, X., Gao, Z., Wang, H., Wang, T., Li, Y., Lau, G. N. C., and
Yim, S. H. L.: Long-term trends of persistent synoptic circulation events in
planetary boundary layer and their relationships with haze pollution in
winter half year over Eastern China, J. Geophys.
Res.-Atmos., 123, 10991–11007, https://doi.org/10.1029/2018jd028982, 2018.
Ye, Z., Guo, X., Cheng, L., Cheng, S., Chen, D., Wang, W., and Liu, B.:
Reducing PM2.5 and secondary inorganic aerosols by agricultural ammonia
emission mitigation within the Beijing-Tianjin-Hebei region, China,
Atmos. Environ., 219, 116989, https://doi.org/10.1016/j.atmosenv.2019.116989, 2019.
Yu, C., Zhao, T., Bai, Y., Zhang, L., Kong, S., Yu, X., He, J., Cui, C., Yang, J., You, Y., Ma, G., Wu, M., and Chang, J.: Heavy air pollution with a unique “non-stagnant” atmospheric boundary layer in the Yangtze River middle basin aggravated by regional transport of PM2.5 over China, Atmos. Chem. Phys., 20, 7217–7230, https://doi.org/10.5194/acp-20-7217-2020, 2020.
Zhang, J. P., Zhu, T., Zhang, Q. H., Li, C. C., Shu, H. L., Ying, Y., Dai, Z. P., Wang, X., Liu, X. Y., Liang, A. M., Shen, H. X., and Yi, B. Q.: The impact of circulation patterns on regional transport pathways and air quality over Beijing and its surroundings, Atmos. Chem. Phys., 12, 5031–5053, https://doi.org/10.5194/acp-12-5031-2012, 2012.
Zhang, Q., Jiang, X., Tong, D., Davis, S. J., Zhao, H., Geng, G., Feng, T.,
Zheng, B., Lu, Z., Streets, D. G., Ni, R., Brauer, M., van Donkelaar, A.,
Martin, R. V., Huo, H., Liu, Z., Pan, D., Kan, H., Yan, Y., Lin, J., He, K.,
and Guan, D.: Transboundary health impacts of transported global air
pollution and international trade, Nature, 543, 705–709, https://doi.org/10.1038/nature21712, 2017.
Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang,
J., He, H., Liu, W., Ding, Y., Lei, Y., Li, J., Wang, Z., Zhang, X., Wang,
Y., Cheng, J., Liu, Y., Shi, Q., Yan, L., Geng, G., Hong, C., Li, M., Liu,
F., Zheng, B., Cao, J., Ding, A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu,
Z., Yang, F., He, K., and Hao, J.: Drivers of improved PM2.5 air quality in
China from 2013 to 2017, P. Natl. Acad. Sci.
USA, 116, 24463–24469, https://doi.org/10.1073/pnas.1907956116,
2019.
Zhang, T., Cao, J. J., Tie, X. X., Shen, Z. X., Liu, S. X., Ding, H., Han,
Y. M., Wang, G. H., Ho, K. F., Qiang, J., and Li, W. T.: Water-soluble ions
in atmospheric aerosols measured in Xi'an, China: Seasonal variations and
sources, Atmos. Res., 102, 110–119, https://doi.org/10.1016/j.atmosres.2011.06.014,
2011.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
Zheng, H., Kong, S., Wu, F., Cheng, Y., Niu, Z., Zheng, S., Yang, G., Yao, L., Yan, Q., Wu, J., Zheng, M., Chen, N., Xu, K., Yan, Y., Liu, D., Zhao, D., Zhao, T., Bai, Y., Li, S., and Qi, S.: Intra-regional transport of black carbon between the south edge of the North China Plain and central China during winter haze episodes, Atmos. Chem. Phys., 19, 4499–4516, https://doi.org/10.5194/acp-19-4499-2019, 2019.
Zheng, J., Hu, M., Peng, J., Wu, Z., Kumar, P., Li, M., Wang, Y., and Guo,
S.: Spatial distributions and chemical properties of PM2.5 based on 21 field
campaigns at 17 sites in China, Chemosphere, 159, 480–487,
https://doi.org/10.1016/j.chemosphere.2016.06.032, 2016.
Zheng, M., Wang, Y., Bao, J., Yuan, L., Zheng, H., Yan, Y., Liu, D., Xie,
M., and Kong, S.: Initial Cost Barrier of Ammonia Control in Central China,
Geophys. Res. Lett., 46, 14175–14184, https://doi.org/10.1029/2019gl084351, 2019.
Zheng, X. Y., Fu, Y. F., Yang, Y. J., and Liu, G. S.: Impact of atmospheric circulations on aerosol distributions in autumn over eastern China: observational evidence, Atmos. Chem. Phys., 15, 12115–12138, https://doi.org/10.5194/acp-15-12115-2015, 2015.
Zhong, J., Zhang, X., Dong, Y., Wang, Y., Liu, C., Wang, J., Zhang, Y., and Che, H.: Feedback effects of boundary-layer meteorological factors on cumulative explosive growth of PM2.5 during winter heavy pollution episodes in Beijing from 2013 to 2016, Atmos. Chem. Phys., 18, 247–258, https://doi.org/10.5194/acp-18-247-2018, 2018.
Short summary
We analyze the effectiveness of emission reduction for local and upwind regions during winter haze episodes controlled by the main potential synoptic patterns over central China, a regional pollutant transport hub with sub-basin topography. Our results provide an opportunity to effectively mitigate haze pollution via local emission control actions in coordination with regional collaborative actions according to different synoptic patterns.
We analyze the effectiveness of emission reduction for local and upwind regions during winter...
Altmetrics
Final-revised paper
Preprint