Articles | Volume 20, issue 15
https://doi.org/10.5194/acp-20-9547-2020
https://doi.org/10.5194/acp-20-9547-2020
Research article
 | 
14 Aug 2020
Research article |  | 14 Aug 2020

Towards the connection between snow microphysics and melting layer: insights from multifrequency and dual-polarization radar observations during BAECC

Haoran Li, Jussi Tiira, Annakaisa von Lerber, and Dmitri Moisseev

Related authors

Elucidating the boundary layer turbulence dissipation rate using high-resolution measurements from a radar wind profiler network over the Tibetan Plateau
Deli Meng, Jianping Guo, Xiaoran Guo, Yinjun Wang, Ning Li, Yuping Sun, Zhen Zhang, Na Tang, Haoran Li, Fan Zhang, Bing Tong, Hui Xu, and Tianmeng Chen
EGUsphere, https://doi.org/10.5194/egusphere-2024-860,https://doi.org/10.5194/egusphere-2024-860, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Assessing specific differential phase (KDP)-based quantitative precipitation estimation for the record- breaking rainfall over Zhengzhou city on 20 July 2021
Haoran Li, Dmitri Moisseev, Yali Luo, Liping Liu, Zheng Ruan, Liman Cui, and Xinghua Bao
Hydrol. Earth Syst. Sci., 27, 1033–1046, https://doi.org/10.5194/hess-27-1033-2023,https://doi.org/10.5194/hess-27-1033-2023, 2023
Short summary
Improved spectral processing for a multi-mode pulse compression Ka–Ku-band cloud radar system
Han Ding, Haoran Li, and Liping Liu
Atmos. Meas. Tech., 15, 6181–6200, https://doi.org/10.5194/amt-15-6181-2022,https://doi.org/10.5194/amt-15-6181-2022, 2022
Short summary
Two-year statistics of columnar-ice production in stratiform clouds over Hyytiälä, Finland: environmental conditions and the relevance to secondary ice production
Haoran Li, Ottmar Möhler, Tuukka Petäjä, and Dmitri Moisseev
Atmos. Chem. Phys., 21, 14671–14686, https://doi.org/10.5194/acp-21-14671-2021,https://doi.org/10.5194/acp-21-14671-2021, 2021
Short summary
Supercooled liquid water and secondary ice production in Kelvin–Helmholtz instability as revealed by radar Doppler spectra observations
Haoran Li, Alexei Korolev, and Dmitri Moisseev
Atmos. Chem. Phys., 21, 13593–13608, https://doi.org/10.5194/acp-21-13593-2021,https://doi.org/10.5194/acp-21-13593-2021, 2021
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
A Lagrangian perspective on the lifecycle and cloud radiative effect of deep convective clouds over Africa
William K. Jones, Martin Stengel, and Philip Stier
Atmos. Chem. Phys., 24, 5165–5180, https://doi.org/10.5194/acp-24-5165-2024,https://doi.org/10.5194/acp-24-5165-2024, 2024
Short summary
Daytime variation in the aerosol indirect effect for warm marine boundary layer clouds in the eastern North Atlantic
Shaoyue Qiu, Xue Zheng, David Painemal, Christopher R. Terai, and Xiaoli Zhou
Atmos. Chem. Phys., 24, 2913–2935, https://doi.org/10.5194/acp-24-2913-2024,https://doi.org/10.5194/acp-24-2913-2024, 2024
Short summary
Technical note: Bimodal parameterizations of in situ ice cloud particle size distributions
Irene Bartolomé García, Odran Sourdeval, Reinhold Spang, and Martina Krämer
Atmos. Chem. Phys., 24, 1699–1716, https://doi.org/10.5194/acp-24-1699-2024,https://doi.org/10.5194/acp-24-1699-2024, 2024
Short summary
Inter-relations of precipitation, aerosols, and clouds over Andalusia, southern Spain, revealed by the Andalusian Global ObseRvatory of the Atmosphere (AGORA)
Wenyue Wang, Klemens Hocke, Leonardo Nania, Alberto Cazorla, Gloria Titos, Renaud Matthey, Lucas Alados-Arboledas, Agustín Millares, and Francisco Navas-Guzmán
Atmos. Chem. Phys., 24, 1571–1585, https://doi.org/10.5194/acp-24-1571-2024,https://doi.org/10.5194/acp-24-1571-2024, 2024
Short summary
On the relationship between mesoscale cellular convection and meteorological forcing: comparing the Southern Ocean against the North Pacific
Francisco Lang, Steven T. Siems, Yi Huang, Tahereh Alinejadtabrizi, and Luis Ackermann
Atmos. Chem. Phys., 24, 1451–1466, https://doi.org/10.5194/acp-24-1451-2024,https://doi.org/10.5194/acp-24-1451-2024, 2024
Short summary

Cited articles

ARM Climate Research Facility: Marine W-Band (95 GHz) ARM Cloud Radar (MWACR). 2014-01-15 to 2014-09-13, ARM Mobile Facility (TMP) U. of Helsinki Research Station (SMEAR II), Hyytiala, Finland; AMF2 (M1), Compiled by: Isom, B., Bharadwaj, N., Lindenmaier, I., Nelson, D., Hardin, J., and Matthews, A., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive, Oak Ridge, Tennessee, USA, https://doi.org/10.5439/1150242, 2006. a
ARM Climate Research Facility: Ka-Band Scanning ARM Cloud Radar (KASACRVPT). 2014-01-15 to 2014-09-13, ARM Mobile Facility (TMP) U. of Helsinki Research Station (SMEAR II), Hyytiala, Finland; AMF2 (M1), Compiled by: Isom, B., Bharadwaj, N., Lindenmaier, I., Nelson, D., Hardin, J., and Matthews, A., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive, Oak Ridge, Tennessee, USA, https://doi.org/10.5439/1046201, 2010. a
ARM Climate Research Facility: X-Band Scanning ARM Cloud Radar (XSACRVPT). 2014-01-15 to 2014-09-13, ARM Mobile Facility (TMP) U. of Helsinki Research Station (SMEAR II), Hyytiala, Finland; AMF2 (M1), Compiled by: Isom, B., Bharadwaj, N., Lindenmaier, I., Nelson, D., Hardin, J., and Matthews, A., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive, Oak Ridge, Tennessee, USA, https://doi.org/10.5439/1150303, 2011. a
Atlas, D.: Drop size and radar structure of a precipitation streamer, J. Meteorol., 14, 261–271, 1957. a
Bailey, M. P. and Hallett, J.: A comprehensive habit diagram for atmospheric ice crystals: confirmation from the laboratory, AIRS II, and other field studies, J. Atmos. Sci., 66, 2888–2899, 2009. a
Download
Short summary
A method for classifying rimed and unrimed snow based on X- and Ka-band Doppler radar measurements is developed and applied to synergetic radar observations collected during BAECC 2014. The results show that the radar-observed melting layer properties are highly related to the precipitation intensity. The previously reported bright band sagging is mainly connected to the increase in precipitation intensity, while riming plays a secondary role.
Altmetrics
Final-revised paper
Preprint