Articles | Volume 20, issue 14
https://doi.org/10.5194/acp-20-8691-2020
https://doi.org/10.5194/acp-20-8691-2020
Research article
 | 
22 Jul 2020
Research article |  | 22 Jul 2020

Analysis of 24 years of mesopause region OH rotational temperature observations at Davis, Antarctica – Part 2: Evidence of a quasi-quadrennial oscillation (QQO) in the polar mesosphere

W. John R. French, Andrew R. Klekociuk, and Frank J. Mulligan

Related authors

Assessing the cloud radiative bias at Macquarie Island in the ACCESS-AM2 model
Zhangcheng Pei, Sonya L. Fiddes, W. John R. French, Simon P. Alexander, Marc D. Mallet, Peter Kuma, and Adrian McDonald
Atmos. Chem. Phys., 23, 14691–14714, https://doi.org/10.5194/acp-23-14691-2023,https://doi.org/10.5194/acp-23-14691-2023, 2023
Short summary
Analysis of 24 years of mesopause region OH rotational temperature observations at Davis, Antarctica – Part 1: long-term trends
W. John R. French, Frank J. Mulligan, and Andrew R. Klekociuk
Atmos. Chem. Phys., 20, 6379–6394, https://doi.org/10.5194/acp-20-6379-2020,https://doi.org/10.5194/acp-20-6379-2020, 2020
Short summary
Evaluation of the ACCESS – chemistry–climate model for the Southern Hemisphere
Kane A. Stone, Olaf Morgenstern, David J. Karoly, Andrew R. Klekociuk, W. John French, N. Luke Abraham, and Robyn Schofield
Atmos. Chem. Phys., 16, 2401–2415, https://doi.org/10.5194/acp-16-2401-2016,https://doi.org/10.5194/acp-16-2401-2016, 2016
Short summary

Related subject area

Subject: Dynamics | Research Activity: Remote Sensing | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Upper-atmosphere responses to the 2022 Hunga Tonga–Hunga Ha′apai volcanic eruption via acoustic gravity waves and air–sea interaction
Qinzeng Li, Jiyao Xu, Aditya Riadi Gusman, Hanli Liu, Wei Yuan, Weijun Liu, Yajun Zhu, and Xiao Liu
Atmos. Chem. Phys., 24, 8343–8361, https://doi.org/10.5194/acp-24-8343-2024,https://doi.org/10.5194/acp-24-8343-2024, 2024
Short summary
Influences of sudden stratospheric warmings on the ionosphere above Okinawa
Klemens Hocke, Wenyue Wang, and Guanyi Ma
Atmos. Chem. Phys., 24, 5837–5846, https://doi.org/10.5194/acp-24-5837-2024,https://doi.org/10.5194/acp-24-5837-2024, 2024
Short summary
Gravity waves generated by the Hunga Tonga–Hunga Ha′apai volcanic eruption and their global propagation in the mesosphere/lower thermosphere observed by meteor radars and modeled with the High-Altitude general Mechanistic Circulation Model
Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Alexander Kozlovsky, Diego Janches, Zishun Qiao, Witali Krochin, Guochun Shi, Wen Yi, Jie Zeng, Peter Brown, Denis Vida, Neil Hindley, Christoph Jacobi, Damian Murphy, Ricardo Buriti, Vania Andrioli, Paulo Batista, John Marino, Scott Palo, Denise Thorsen, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Johan Kero, Evgenia Belova, Nicholas Mitchell, Tracy Moffat-Griffin, and Na Li
Atmos. Chem. Phys., 24, 4851–4873, https://doi.org/10.5194/acp-24-4851-2024,https://doi.org/10.5194/acp-24-4851-2024, 2024
Short summary
Long-term studies of the summer wind in the mesosphere and lower thermosphere at middle and high latitudes over Europe
Juliana Jaen, Toralf Renkwitz, Huixin Liu, Christoph Jacobi, Robin Wing, Aleš Kuchař, Masaki Tsutsumi, Njål Gulbrandsen, and Jorge L. Chau
Atmos. Chem. Phys., 23, 14871–14887, https://doi.org/10.5194/acp-23-14871-2023,https://doi.org/10.5194/acp-23-14871-2023, 2023
Short summary
Progress in investigating long-term trends in the mesosphere, thermosphere, and ionosphere
Jan Laštovička
Atmos. Chem. Phys., 23, 5783–5800, https://doi.org/10.5194/acp-23-5783-2023,https://doi.org/10.5194/acp-23-5783-2023, 2023
Short summary

Cited articles

Baldwin, M. P., Birner, T., Brasseur, G., Burrows, J., Butchart, N., Garcia, R., Geller, M., Gray, L., Hamilton, K., Harnik, N., Hegglin, M. I., Langematz, U., Robock, A., Sato, K., and Scaife, A.: 100 Years of Progress in Understanding the Stratosphere and Mesosphere, Meteorol. Monogr., 59, 27.1–27.62, https://doi.org/10.1175/amsmonographs-d-19-0003.1, 2019. 
Brasseur, G. and Solomon, S.: Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, Springer Nature, Dordrecht, the Netherlands, https://doi.org/10.1007/1-4020-3824-0, 2005. 
Burns, G. and French, J.: Rotational temperature studies of the hydroxyl airglow layer above Davis, Antarctica, Ver. 8, Australian Antarctic Data Centre – https://data.aad.gov.au/metadata/records/Davis_OH_airglow (last access: 3 July 2020), 2002. 
Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service Climate Data Store (CDS), available at: https://cds.climate.copernicus.eu/cdsapp#!/home (last access: 3 July 2020), 2017. 
Cosentino, R. G., Morales-Juberías, R., Greathouse, T., Orton, G., Johnson, P., Fletcher, L. N., and Simon, A.: New Observations and Modeling of Jupiter's Quasi-Quadrennial Oscillation, J. Geophys. Res.-Planet., 122, 2719–2744, https://doi.org/10.1002/2017JE005342, 2017. 
Short summary
We explore a quasi-quadrennial oscillation (QQO; 3–4 K amplitude, ~ 4-year period) in mesopause region temperatures observed in 24 years of hydroxyl airglow measurements over Davis, Antarctica (68° S, 78° E). Correlation and composite analysis using meteorological reanalysis and satellite data reveals complex patterns on the QQO timescale in both hemispheres. Modulation of the meridional circulation, linked to the propagation of gravity waves, plays a significant role in producing the QQO response.
Altmetrics
Final-revised paper
Preprint