Articles | Volume 20, issue 9
https://doi.org/10.5194/acp-20-5811-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-5811-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Meridional and vertical variations of the water vapour isotopic composition in the marine boundary layer over the Atlantic and Southern Ocean
Iris Thurnherr
CORRESPONDING AUTHOR
Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland
Anna Kozachek
Climate and Environmental Research Laboratory, Arctic and Antarctic Research Institute, St. Petersburg, Russia
Pascal Graf
Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland
Yongbiao Weng
Geophysical Institute, University of Bergen, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
Dimitri Bolshiyanov
Climate and Environmental Research Laboratory, Arctic and Antarctic Research Institute, St. Petersburg, Russia
Sebastian Landwehr
Paul Scherrer Institute, Laboratory of Atmospheric Chemistry, Villigen, Switzerland
Extreme Environments Research Laboratory, École Polytechnique Fédérale de Lausanne, School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland
Stephan Pfahl
Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland
Institute of Meteorology, Freie Universität Berlin, Berlin, Germany
Julia Schmale
Paul Scherrer Institute, Laboratory of Atmospheric Chemistry, Villigen, Switzerland
Extreme Environments Research Laboratory, École Polytechnique Fédérale de Lausanne, School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland
Harald Sodemann
Geophysical Institute, University of Bergen, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
Hans Christian Steen-Larsen
Geophysical Institute, University of Bergen, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
Alessandro Toffoli
Department of Infrastructure Engineering, The University of Melbourne, Melbourne, Australia
Heini Wernli
Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland
Franziska Aemisegger
Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland
Related authors
Emmanouil Flaounas, Stavros Dafis, Silvio Davolio, Davide Faranda, Christian Ferrarin, Katharina Hartmuth, Assaf Hochman, Aristeidis Koutroulis, Samira Khodayar, Mario Marcello Miglietta, Florian Pantillon, Platon Patlakas, Michael Sprenger, and Iris Thurnherr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2809, https://doi.org/10.5194/egusphere-2024-2809, 2024
Short summary
Short summary
Storm Daniel (2023) is one of the most catastrophic ones ever documented in the Mediterranean. Our results highlight the different dynamics and therefore the different predictability skill of precipitation, its extremes and impacts that have been produced in Greece and Libya, the two most affected countries. Our approach concerns a holistic analysis of the storm by articulating dynamics, weather prediction, hydrological and oceanographic implications, climate extremes and attribution theory.
Esther S. Breuninger, Julie Tolu, Iris Thurnherr, Franziska Aemisegger, Aryeh Feinberg, Sylvain Bouchet, Jeroen E. Sonke, Véronique Pont, Heini Wernli, and Lenny H. E. Winkel
Atmos. Chem. Phys., 24, 2491–2510, https://doi.org/10.5194/acp-24-2491-2024, https://doi.org/10.5194/acp-24-2491-2024, 2024
Short summary
Short summary
Atmospheric deposition is an important source of selenium (Se) and other health-relevant trace elements in surface environments. We found that the variability in elemental concentrations in atmospheric deposition reflects not only changes in emission sources but also weather conditions during atmospheric removal. Depending on the sources and if Se is derived more locally or from further away, the Se forms can be different, affecting the bioavailability of Se atmospherically supplied to soils.
Iris Thurnherr and Franziska Aemisegger
Atmos. Chem. Phys., 22, 10353–10373, https://doi.org/10.5194/acp-22-10353-2022, https://doi.org/10.5194/acp-22-10353-2022, 2022
Short summary
Short summary
Stable water isotopes in marine boundary layer vapour are strongly influenced by the strength of air–sea fluxes. Here, we investigate a distinct vapour isotope signal observed in the warm sector of Southern Ocean cyclones. Single-process air parcel models are used together with high-resolution isotope-enabled simulations with the weather prediction model COSMOiso to improve our understanding of the importance of air–sea fluxes for the moisture cycling in the context of extratropical cyclones.
Sebastian Landwehr, Michele Volpi, F. Alexander Haumann, Charlotte M. Robinson, Iris Thurnherr, Valerio Ferracci, Andrea Baccarini, Jenny Thomas, Irina Gorodetskaya, Christian Tatzelt, Silvia Henning, Rob L. Modini, Heather J. Forrer, Yajuan Lin, Nicolas Cassar, Rafel Simó, Christel Hassler, Alireza Moallemi, Sarah E. Fawcett, Neil Harris, Ruth Airs, Marzieh H. Derkani, Alberto Alberello, Alessandro Toffoli, Gang Chen, Pablo Rodríguez-Ros, Marina Zamanillo, Pau Cortés-Greus, Lei Xue, Conor G. Bolas, Katherine C. Leonard, Fernando Perez-Cruz, David Walton, and Julia Schmale
Earth Syst. Dynam., 12, 1295–1369, https://doi.org/10.5194/esd-12-1295-2021, https://doi.org/10.5194/esd-12-1295-2021, 2021
Short summary
Short summary
The Antarctic Circumnavigation Expedition surveyed a large number of variables describing the dynamic state of ocean and atmosphere, freshwater cycle, atmospheric chemistry, ocean biogeochemistry, and microbiology in the Southern Ocean. To reduce the dimensionality of the dataset, we apply a sparse principal component analysis and identify temporal patterns from diurnal to seasonal cycles, as well as geographical gradients and
hotspotsof interaction. Code and data are open access.
Iris Thurnherr, Katharina Hartmuth, Lukas Jansing, Josué Gehring, Maxi Boettcher, Irina Gorodetskaya, Martin Werner, Heini Wernli, and Franziska Aemisegger
Weather Clim. Dynam., 2, 331–357, https://doi.org/10.5194/wcd-2-331-2021, https://doi.org/10.5194/wcd-2-331-2021, 2021
Short summary
Short summary
Extratropical cyclones are important for the transport of moisture from low to high latitudes. In this study, we investigate how the isotopic composition of water vapour is affected by horizontal temperature advection associated with extratropical cyclones using measurements and modelling. It is shown that air–sea moisture fluxes induced by this horizontal temperature advection lead to the strong variability observed in the isotopic composition of water vapour in the marine boundary layer.
Sebastian Landwehr, Iris Thurnherr, Nicolas Cassar, Martin Gysel-Beer, and Julia Schmale
Atmos. Meas. Tech., 13, 3487–3506, https://doi.org/10.5194/amt-13-3487-2020, https://doi.org/10.5194/amt-13-3487-2020, 2020
Short summary
Short summary
Shipborne wind speed measurements are relevant for field studies of air–sea interaction processes. Distortion of the airflow by the ship’s structure can, however, lead to errors. We estimate the flow distortion bias by comparing the observations to ERA-5 reanalysis data. The underlying assumptions are that the bias depends only on the relative orientation of the ship to the wind direction and that the ERA-5 wind speeds are (on average) representative of the true wind speed.
Kalpana Hamal and Stephan Pfahl
EGUsphere, https://doi.org/10.5194/egusphere-2024-3732, https://doi.org/10.5194/egusphere-2024-3732, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
This study investigates the global drivers of sudden temperature changes from one day to the next using observational data and trajectory analysis. In extratropical regions, these shifts are mainly driven by air mass movements linked to circulation patterns. In tropical areas, local factors like cloud cover play a key role. Understanding these mechanisms improves predictions of extreme temperature events, aiding in better preparation and mitigation strategies.
Stephanie Mayer, Martin Hendrick, Adrien Michel, Bettina Richter, Jürg Schweizer, Heini Wernli, and Alec van Herwijnen
The Cryosphere, 18, 5495–5517, https://doi.org/10.5194/tc-18-5495-2024, https://doi.org/10.5194/tc-18-5495-2024, 2024
Short summary
Short summary
Understanding the impact of climate change on snow avalanche activity is crucial for safeguarding lives and infrastructure. Here, we project changes in avalanche activity in the Swiss Alps throughout the 21st century. Our findings reveal elevation-dependent patterns of change, indicating a decrease in dry-snow avalanches alongside an increase in wet-snow avalanches at elevations above the current treeline. These results underscore the necessity to revisit measures for avalanche risk mitigation.
Matthew Boyer, Diego Aliaga, Lauriane L. J. Quéléver, Silvia Bucci, Hélène Angot, Lubna Dada, Benjamin Heutte, Lisa Beck, Marina Duetsch, Andreas Stohl, Ivo Beck, Tiia Laurila, Nina Sarnela, Roseline C. Thakur, Branka Miljevic, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 24, 12595–12621, https://doi.org/10.5194/acp-24-12595-2024, https://doi.org/10.5194/acp-24-12595-2024, 2024
Short summary
Short summary
We analyze the seasonal cycle and sources of gases that are relevant for the formation of aerosol particles in the central Arctic. Since theses gases can form new particles, they can influence Arctic climate. We show that the sources of these gases are associated with changes in the Arctic environment during the year, especially with respect to sea ice. Therefore, the concentration of these gases will likely change in the future as the Arctic continues to warm.
Jakob Pernov, William Aeberhard, Michele Volpi, Eliza Harris, Benjamin Hohermuth, Sakiko Ishino, Ragnhild Bieltvedt Skeie, Stephan Henne, Ulas Im, Patricia Quinn, Lucia Upchurch, and Julia Schmale
EGUsphere, https://doi.org/10.5194/egusphere-2024-3379, https://doi.org/10.5194/egusphere-2024-3379, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
MSAp is a vital part of the Arctic climate system. Numerical models struggle to reproduce the seasonal cycle of MSAp. We evaluate three numerical models and one reanalysis product’s ability to simulate MSAp. We develop data-driven models for MSAp at four High Arctic stations. The data-driven models outperform the numerical models and reanalysis product and identified precursor source, chemical processing, and removal-related features as being important for modeling MSAp.
Nicolai Krieger, Heini Wernli, Michael Sprenger, and Christian Kühnlein
EGUsphere, https://doi.org/10.5194/egusphere-2024-3461, https://doi.org/10.5194/egusphere-2024-3461, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
This study investigates the Laseyer, a local windstorm in a narrow Swiss valley, characterized by strong south-easterly winds during north-westerly ambient flow. Using large-eddy simulations (LES) with 30 m grid spacing, this is the first study to reveal that the extreme gusts in the valley are caused by an amplifying interplay of two recirculation regions. Modifying terrain and ambient wind conditions affects the windstorm's intensity and highlights the importance of topographic details in LES.
Heini Wernli and Suzanne L. Gray
Weather Clim. Dynam., 5, 1299–1408, https://doi.org/10.5194/wcd-5-1299-2024, https://doi.org/10.5194/wcd-5-1299-2024, 2024
Short summary
Short summary
The science of extratropical dynamics has reached a new level where the interplay of dry dynamics with effects of latent heating in clouds and other diabatic processes is considered central to the field. This review documents how research about the role of diabatic processes evolved over more than a century; it highlights that progress relied essentially on the integration of theory, field campaigns, novel diagnostics, and numerical modelling, and it outlines avenues for future research.
Andrew W. Seidl, Aina Johannessen, Alena Dekhtyareva, Jannis M. Huss, Marius O. Jonassen, Alexander Schulz, Ove Hermansen, Christoph K. Thomas, and Harald Sodemann
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-293, https://doi.org/10.5194/essd-2024-293, 2024
Preprint under review for ESSD
Short summary
Short summary
ISLAS2020 set out to measure the stable water isotopic composition of Arctic moisture. By not only measuring at different sites around Ny-Ålesund, Svalbard, but also measuring at variable heights above surface level, we aim to characterize processes that produce or modify the isotopic composition. We also collect precipitation samples from sites that were typically downstream of Ny-Ålesund, so as to capture the isotopic composition during removal from the atmospheric water cycle.
Sonja Wahl, Benjamin Walter, Franziska Aemisegger, Luca Bianchi, and Michael Lehning
The Cryosphere, 18, 4493–4515, https://doi.org/10.5194/tc-18-4493-2024, https://doi.org/10.5194/tc-18-4493-2024, 2024
Short summary
Short summary
Wind-driven airborne transport of snow is a frequent phenomenon in snow-covered regions and a process difficult to study in the field as it is unfolding over large distances. Thus, we use a ring wind tunnel with infinite fetch positioned in a cold laboratory to study the evolution of the shape and size of airborne snow. With the help of stable water isotope analyses, we identify the hitherto unobserved process of airborne snow metamorphism that leads to snow particle rounding and growth.
George Pacey, Stephan Pfahl, and Lisa Schielicke
EGUsphere, https://doi.org/10.5194/egusphere-2024-2978, https://doi.org/10.5194/egusphere-2024-2978, 2024
Short summary
Short summary
Cold fronts are often associated with areas of intense precipitation (cells) in the warm-season, but the drivers and environments of cells at different locations relative to the front are not well-understood. We show that cells ahead of the surface front have the highest amount of environmental instability and moisture. Also, low-level lifting is maximised ahead of the surface front and upper-level lifting is particularly important for cell initiation behind the front.
Hanin Binder and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2936, https://doi.org/10.5194/egusphere-2024-2936, 2024
Short summary
Short summary
This study presents a systematic analysis of frequency anomalies and characteristics of extratropical cyclones during extremely wet, dry, windy, and calm winter and summer seasons in the extratropics, based on 1050 years of present-day climate simulations. We show that anomalies in cyclone frequency, intensity and stationarity are crucial for the occurrence of many extreme seasons, and that these anomaly patterns exhibit substantial regional and seasonal variability.
Emmanouil Flaounas, Stavros Dafis, Silvio Davolio, Davide Faranda, Christian Ferrarin, Katharina Hartmuth, Assaf Hochman, Aristeidis Koutroulis, Samira Khodayar, Mario Marcello Miglietta, Florian Pantillon, Platon Patlakas, Michael Sprenger, and Iris Thurnherr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2809, https://doi.org/10.5194/egusphere-2024-2809, 2024
Short summary
Short summary
Storm Daniel (2023) is one of the most catastrophic ones ever documented in the Mediterranean. Our results highlight the different dynamics and therefore the different predictability skill of precipitation, its extremes and impacts that have been produced in Greece and Libya, the two most affected countries. Our approach concerns a holistic analysis of the storm by articulating dynamics, weather prediction, hydrological and oceanographic implications, climate extremes and attribution theory.
Roman Pohorsky, Andrea Baccarini, Natalie Brett, Brice Barret, Slimane Bekki, Gianluca Pappaccogli, Elsa Dieudonné, Brice Temime-Roussel, Barbara D'Anna, Meeta Cesler-Maloney, Antonio Donateo, Stefano Decesari, Kathy S. Law, William R. Simpson, Javier Fochesatto, Steve R. Arnold, and Julia Schmale
EGUsphere, https://doi.org/10.5194/egusphere-2024-2863, https://doi.org/10.5194/egusphere-2024-2863, 2024
Short summary
Short summary
This study presents an analysis of vertical measurements of pollution in an Alaskan city during winter. It investigates the relationship between the atmospheric structure and the layering of aerosols and trace gases. Results indicate an overall very shallow surface mixing layer. The height of this layer is strongly influenced by a local shallow wind. The study also provides information on the pollution chemical composition at different altitudes, including pollution signatures from power plants.
Florian Ruff and Stephan Pfahl
Nat. Hazards Earth Syst. Sci., 24, 2939–2952, https://doi.org/10.5194/nhess-24-2939-2024, https://doi.org/10.5194/nhess-24-2939-2024, 2024
Short summary
Short summary
High-impact river floods are often caused by extreme precipitation. Flood protection relies on reliable estimates of the return values. Observational time series are too short for a precise calculation. Here, 100-year return values of daily precipitation are estimated on a global grid based on a large set of model-generated precipitation events from ensemble weather prediction. The statistical uncertainties in the return values can be substantially reduced compared to observational estimates.
Brice Barret, Patrice Medina, Natalie Brett, Roman Pohorsky, Kathy Law, Slimane Bekki, Gilberto J. Fochesatto, Julia Schmale, Steve Arnold, Andrea Baccarini, Mauricio Busetto, Meeta Cesler-Maloney, Barbara D'Anna, Stefano Decesari, Jingqiu Mao, Gianluca Pappaccogli, Joel Savarino, Federico Scoto, and William R. Simpson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2421, https://doi.org/10.5194/egusphere-2024-2421, 2024
Short summary
Short summary
The Fairbanks area experiences severe pollution episodes in winter because of enhanced emissions of pollutants trapped near the surface by strong temperature inversions. Low-cost sensors were deployed onboard a car and a tethered balloon to measure the concentrations of gaseous pollutants (CO, O3, NOx) in Fairbanks during the winter of 2022. Data calibration with reference measurements and machine learning methods enabled to document pollution at the surface and power plant plumes aloft.
Michael S. Town, Hans Christian Steen-Larsen, Sonja Wahl, Anne-Katrine Faber, Melanie Behrens, Tyler R. Jones, and Arny Sveinbjornsdottir
The Cryosphere, 18, 3653–3683, https://doi.org/10.5194/tc-18-3653-2024, https://doi.org/10.5194/tc-18-3653-2024, 2024
Short summary
Short summary
A polar snow isotope dataset from northeast Greenland shows that snow changes isotopically after deposition. Summer snow sometimes enriches in oxygen-18, making it seem warmer than it actually was when the snow fell. Deuterium excess sometimes changes after deposition, making the snow seem to come from warmer, closer, or more humid places. After a year of aging, deuterium excess of summer snow layers always increases. Reinterpretation of deuterium excess used in climate models is necessary.
Manfred Wendisch, Susanne Crewell, André Ehrlich, Andreas Herber, Benjamin Kirbus, Christof Lüpkes, Mario Mech, Steven J. Abel, Elisa F. Akansu, Felix Ament, Clémantyne Aubry, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Marlen Brückner, Hans-Christian Clemen, Sandro Dahlke, Georgios Dekoutsidis, Julien Delanoë, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Irina V. Gorodetskaya, Sarah Grawe, Silke Groß, Jörg Hartmann, Silvia Henning, Lutz Hirsch, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsofia Jurányi, Michail Karalis, Mona Kellermann, Marcus Klingebiel, Michael Lonardi, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Marion Maturilli, Bernhard Mayer, Johanna Mayer, Stephan Mertes, Janosch Michaelis, Michel Michalkov, Guillaume Mioche, Manuel Moser, Hanno Müller, Roel Neggers, Davide Ori, Daria Paul, Fiona M. Paulus, Christian Pilz, Felix Pithan, Mira Pöhlker, Veronika Pörtge, Maximilian Ringel, Nils Risse, Gregory C. Roberts, Sophie Rosenburg, Johannes Röttenbacher, Janna Rückert, Michael Schäfer, Jonas Schaefer, Vera Schemann, Imke Schirmacher, Jörg Schmidt, Sebastian Schmidt, Johannes Schneider, Sabrina Schnitt, Anja Schwarz, Holger Siebert, Harald Sodemann, Tim Sperzel, Gunnar Spreen, Bjorn Stevens, Frank Stratmann, Gunilla Svensson, Christian Tatzelt, Thomas Tuch, Timo Vihma, Christiane Voigt, Lea Volkmer, Andreas Walbröl, Anna Weber, Birgit Wehner, Bruno Wetzel, Martin Wirth, and Tobias Zinner
Atmos. Chem. Phys., 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024, https://doi.org/10.5194/acp-24-8865-2024, 2024
Short summary
Short summary
The Arctic is warming faster than the rest of the globe. Warm-air intrusions (WAIs) into the Arctic may play an important role in explaining this phenomenon. Cold-air outbreaks (CAOs) out of the Arctic may link the Arctic climate changes to mid-latitude weather. In our article, we describe how to observe air mass transformations during CAOs and WAIs using three research aircraft instrumented with state-of-the-art remote-sensing and in situ measurement devices.
Henry Schoeller, Robin Chemnitz, Péter Koltai, Maximilian Engel, and Stephan Pfahl
EGUsphere, https://doi.org/10.5194/egusphere-2024-2173, https://doi.org/10.5194/egusphere-2024-2173, 2024
Short summary
Short summary
We identify spatially coherent air streams into atmospheric blockings, which are important weather phenomena. By adapting mathematical methods to the atmosphere, we confirm previous findings. Our work shows that spatially coherent air streams featuring cloud formation correlate with strengthening of the blocking. The developed framework also allows statements about the spatial behavior of the air parcels as a whole and indicates that blockings reduce the dispersion air parcels.
Hans Christian Steen-Larsen and Daniele Zannoni
Atmos. Meas. Tech., 17, 4391–4409, https://doi.org/10.5194/amt-17-4391-2024, https://doi.org/10.5194/amt-17-4391-2024, 2024
Short summary
Short summary
The water vapor generation module is completely scalable, allowing autonomous calibrations to use N standards and providing integration times only restricted by sample availability. We document improved reproducibility in 17O-excess liquid measurements. This module makes spectroscopy measurements comparable to mass spectrometry. We document that the vapor generation module can be used to analyze instrument performance and for vapor isotope calibration during field campaign measurements.
Killian P. Brennan, Michael Sprenger, André Walser, Marco Arpagaus, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2148, https://doi.org/10.5194/egusphere-2024-2148, 2024
Short summary
Short summary
Our study looked at the intense hailstorms in Switzerland on June 28, 2021. We used detailed computer simulations to understand how these storms formed, grew stronger, and eventually faded away. By tracking storm features and studying the airflows and weather conditions around them, we found that our model accurately predicted storm paths and lifespans. The storms showed complex patterns of hail and rain. This research can help improve the forecasting and handling of severe weather events.
Ellina Agayar, Franziska Aemisegger, Moshe Armon, Alexander Scherrmann, and Heini Wernli
Nat. Hazards Earth Syst. Sci., 24, 2441–2459, https://doi.org/10.5194/nhess-24-2441-2024, https://doi.org/10.5194/nhess-24-2441-2024, 2024
Short summary
Short summary
This study presents the results of a climatological investigation of extreme precipitation events (EPEs) in Ukraine for the period 1979–2019. During all seasons EPEs are associated with pronounced upper-level potential vorticity (PV) anomalies. In addition, we find distinct seasonal and regional differences in moisture sources. Several extreme precipitation cases demonstrate the importance of these processes, complemented by a detailed synoptic analysis.
Astrid Bragstad Gjelsvik, Robert Oscar David, Tim Carlsen, Franziska Hellmuth, Stefan Hofer, Zachary McGraw, Harald Sodemann, and Trude Storelvmo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1879, https://doi.org/10.5194/egusphere-2024-1879, 2024
Short summary
Short summary
Ice formation in clouds has a substantial impact on radiation and precipitation, and must be realistically simulated in order to understand present and future Arctic climate. Rare aerosols known as ice-nucleating particles can play an important role for cloud ice formation, but their representation in global climate models is not well suited for the Arctic. In this study, the simulation of cloud phase is improved when the representation of these particles are constrained by Arctic observations.
Benjamin Heutte, Nora Bergner, Hélène Angot, Jakob B. Pernov, Lubna Dada, Jessica A. Mirrielees, Ivo Beck, Andrea Baccarini, Matthew Boyer, Jessie M. Creamean, Kaspar R. Daellenbach, Imad El Haddad, Markus M. Frey, Silvia Henning, Tiaa Laurila, Vaios Moschos, Tuukka Petäjä, Kerri A. Pratt, Lauriane L. J. Quéléver, Matthew D. Shupe, Paul Zieger, Tuija Jokinen, and Julia Schmale
EGUsphere, https://doi.org/10.5194/egusphere-2024-1912, https://doi.org/10.5194/egusphere-2024-1912, 2024
Short summary
Short summary
Limited aerosol measurements in the central Arctic hinder our understanding of aerosol-climate interactions in the region. Our year-long observations of aerosol physicochemical properties during the MOSAiC expedition reveal strong seasonal variations in aerosol chemical composition, where the short-term variability is heavily affected by storms in the Arctic. Locally wind-generated particles are shown to be an important source of cloud seeds, especially in autumn.
Natalie Brett, Kathy S. Law, Steve R. Arnold, Javier G. Fochesatto, Jean-Christophe Raut, Tatsuo Onishi, Robert Gilliam, Kathleen Fahey, Deanna Huff, George Pouliot, Brice Barret, Elsa Dieudonne, Roman Pohorsky, Julia Schmale, Andrea Baccarini, Slimane Bekki, Gianluca Pappaccogli, Federico Scoto, Stefano Decesari, Antonio Donateo, Meeta Cesler-Maloney, William Simpson, Patrice Medina, Barbara D'Anna, Brice Temime-Roussel, Joel Savarino, Sarah Albertin, Jingqiu Mao, Becky Alexander, Allison Moon, Peter F. DeCarlo, Vanessa Selimovic, Robert Yokelson, and Ellis S. Robinson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1450, https://doi.org/10.5194/egusphere-2024-1450, 2024
Short summary
Short summary
Processes influencing dispersion of local anthropogenic emissions in Arctic wintertime are investigated with dispersion model simulations. Modelled power plant plume rise that considers surface and elevated temperature inversions improves results compared to observations. Modelled near-surface concentrations are improved by representation of vertical mixing and emission estimates. Large increases in diesel vehicle emissions at temperatures reaching -35 °C are required to reproduce observed NOx.
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-92, https://doi.org/10.5194/gmd-2024-92, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We explore a high-level programming model for GPU porting of NWP model codes, based on the Python domain-specific library GT4Py. We present a Python rewrite with GT4Py of the ECMWF cloud microphysics scheme and the associated tangent-linear and adjoint algorithms. We find excellent portability, competitive performance and robust execution on diverse CPU and GPU architectures. The additional advantages in terms of maintainability, productivity and readability are also highlighted.
Luise J. Fischer, David N. Bresch, Dominik Büeler, Christian M. Grams, Matthias Röthlisberger, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1253, https://doi.org/10.5194/egusphere-2024-1253, 2024
Short summary
Short summary
Atmospheric flows over the North Atlantic can be meaningfully classified into weather regimes, and climate simulations suggest that the regime frequencies might change in the future. We provide a quantitative framework that helps assessing whether these regime frequency changes are relevant for understanding climate change signals in precipitation. At least in our example application, this is not the case, i.e., regime frequency changes explain little of the projected precipitation changes.
Katharina Heitmann, Michael Sprenger, Hanin Binder, Heini Wernli, and Hanna Joos
Weather Clim. Dynam., 5, 537–557, https://doi.org/10.5194/wcd-5-537-2024, https://doi.org/10.5194/wcd-5-537-2024, 2024
Short summary
Short summary
Warm conveyor belts (WCBs) are coherently ascending air streams that occur in extratropical cyclones where they form precipitation and often affect the large-scale flow. We quantified the key characteristics and impacts of WCBs and linked them to different phases in the cyclone life cycle and to different WCB branches. A climatology of these metrics revealed that WCBs are most intense during cyclone intensification and that the cyclonic and anticyclonic WCB branches show distinct differences.
Alexandra M. Zuhr, Sonja Wahl, Hans Christian Steen-Larsen, Maria Hörhold, Hanno Meyer, Vasileios Gkinis, and Thomas Laepple
Earth Syst. Sci. Data, 16, 1861–1874, https://doi.org/10.5194/essd-16-1861-2024, https://doi.org/10.5194/essd-16-1861-2024, 2024
Short summary
Short summary
We present stable water isotope data from the accumulation zone of the Greenland ice sheet. A spatial sampling scheme covering 39 m and three depth layers was carried out between 14 May and 3 August 2018. The data suggest spatial and temporal variability related to meteorological conditions, such as wind-driven snow redistribution and vapour–snow exchange processes. The data can be used to study the formation of the stable water isotopes signal, which is seen as a climate proxy.
Katharina Hartmuth, Heini Wernli, and Lukas Papritz
EGUsphere, https://doi.org/10.5194/egusphere-2024-878, https://doi.org/10.5194/egusphere-2024-878, 2024
Short summary
Short summary
In this study, we use large-ensemble climate model simulations to analyze extreme winters in the Barents Sea in a changing climate. We find that variability in both atmospheric processes and sea ice conditions determines the formation of such seasons in the present-day climate. The reduction in sea ice variability results in a decreasing importance of surface boundary conditions in a warmer climate, while the robust link shown for surface weather systems persists.
Joëlle C. Rieder, Franziska Aemisegger, Elad Dente, and Moshe Armon
EGUsphere, https://doi.org/10.5194/egusphere-2024-539, https://doi.org/10.5194/egusphere-2024-539, 2024
Short summary
Short summary
The Sahara was wetter in the past and may become wetter in the future. Lake remnants are evidence of the desert’s wetter past. If the Sahara gets wetter in the future, these lakes may serve as a water resource. However, it is unclear how these lakes get filled and how moisture is carried into the desert and converted into rain in the first place. Therefore, we examine processes currently leading to the filling of a dry lake in the Sahara, which can help in assessing future water availability.
Alexander Scherrmann, Heini Wernli, and Emmanouil Flaounas
Weather Clim. Dynam., 5, 419–438, https://doi.org/10.5194/wcd-5-419-2024, https://doi.org/10.5194/wcd-5-419-2024, 2024
Short summary
Short summary
We show that the formation of Mediterranean cyclones follows the presence of cyclones over the North Atlantic. The distinct regions of cyclone activity in the Mediterranean in the different seasons can be linked to the atmospheric state, in particular the position of the polar jet over the North Atlantic. With this we now better understand the processes that lead to the formation of Mediterranean cyclones. We used a novel simulation framework in which we directly show and probe this connection.
Inès Ollivier, Hans Christian Steen-Larsen, Barbara Stenni, Laurent Arnaud, Mathieu Casado, Alexandre Cauquoin, Giuliano Dreossi, Christophe Genthon, Bénédicte Minster, Ghislain Picard, Martin Werner, and Amaëlle Landais
EGUsphere, https://doi.org/10.5194/egusphere-2024-685, https://doi.org/10.5194/egusphere-2024-685, 2024
Short summary
Short summary
The role of post-depositional processes taking place at the ice sheet's surface on the water stable isotope signal measured in polar ice cores is not fully understood. Using field observations and modelling results, we show that the original precipitation isotopic signal at Dome C, East Antarctica, is modified by post-depositional processes and provide the first quantitative estimation of their mean impact on the isotopic signal observed in the snow.
Esther S. Breuninger, Julie Tolu, Iris Thurnherr, Franziska Aemisegger, Aryeh Feinberg, Sylvain Bouchet, Jeroen E. Sonke, Véronique Pont, Heini Wernli, and Lenny H. E. Winkel
Atmos. Chem. Phys., 24, 2491–2510, https://doi.org/10.5194/acp-24-2491-2024, https://doi.org/10.5194/acp-24-2491-2024, 2024
Short summary
Short summary
Atmospheric deposition is an important source of selenium (Se) and other health-relevant trace elements in surface environments. We found that the variability in elemental concentrations in atmospheric deposition reflects not only changes in emission sources but also weather conditions during atmospheric removal. Depending on the sources and if Se is derived more locally or from further away, the Se forms can be different, affecting the bioavailability of Se atmospherically supplied to soils.
Qinggang Gao, Louise C. Sime, Alison J. McLaren, Thomas J. Bracegirdle, Emilie Capron, Rachael H. Rhodes, Hans Christian Steen-Larsen, Xiaoxu Shi, and Martin Werner
The Cryosphere, 18, 683–703, https://doi.org/10.5194/tc-18-683-2024, https://doi.org/10.5194/tc-18-683-2024, 2024
Short summary
Short summary
Antarctic precipitation is a crucial component of the climate system. Its spatio-temporal variability impacts sea level changes and the interpretation of water isotope measurements in ice cores. To better understand its climatic drivers, we developed water tracers in an atmospheric model to identify moisture source conditions from which precipitation originates. We find that mid-latitude surface winds exert an important control on moisture availability for Antarctic precipitation.
Edgar Dolores-Tesillos and Stephan Pfahl
Weather Clim. Dynam., 5, 163–179, https://doi.org/10.5194/wcd-5-163-2024, https://doi.org/10.5194/wcd-5-163-2024, 2024
Short summary
Short summary
In a warmer climate, the winter extratropical cyclones over the North Atlantic basin are expected to have a larger footprint of strong winds. Dynamical changes at different altitudes are responsible for these wind changes. Based on backward trajectories using the CESM-LE simulations, we show that the diabatic processes gain relevance as the planet warms. For instance, changes in the radiative processes will play an important role in the upper-level cyclone dynamics.
Roman Pohorsky, Andrea Baccarini, Julie Tolu, Lenny H. E. Winkel, and Julia Schmale
Atmos. Meas. Tech., 17, 731–754, https://doi.org/10.5194/amt-17-731-2024, https://doi.org/10.5194/amt-17-731-2024, 2024
Short summary
Short summary
This manuscript presents a new tethered-balloon-based platform for in situ vertical measurements of aerosols and trace gases in the lower atmosphere of polar and alpine regions. The system can host various instrumental setups to target different research questions and features new instruments, in particular a miniaturized scanning electrical mobility spectrometer, deployed for the first time in a tethered balloon.
Vladimir Mikhalenko, Stanislav Kutuzov, Pavel Toropov, Michel Legrand, Sergey Sokratov, Gleb Chernyakov, Ivan Lavrentiev, Susanne Preunkert, Anna Kozachek, Mstislav Vorobiev, Aleksandra Khairedinova, and Vladimir Lipenkov
Clim. Past, 20, 237–255, https://doi.org/10.5194/cp-20-237-2024, https://doi.org/10.5194/cp-20-237-2024, 2024
Short summary
Short summary
In this paper, we present a reconstruction of snow accumulation for both summer and winter over the past 260 years using ice-core records obtained from Mt. Elbrus in the Caucasus region. The accumulation record represents the historical precipitation patterns in a vast region encompassing the northern Caucasus, Black Sea, and southeastern Europe. Our findings show that the North Atlantic plays a crucial role in determining precipitation levels in this region.
Leonie Villiger and Franziska Aemisegger
Atmos. Chem. Phys., 24, 957–976, https://doi.org/10.5194/acp-24-957-2024, https://doi.org/10.5194/acp-24-957-2024, 2024
Short summary
Short summary
Three numerical simulations performed with an isotope-enabled weather forecast model are used to investigate the cloud–circulation coupling between shallow trade-wind cumulus clouds and atmospheric circulations on different scales. It is shown that stable water isotopes near cloud base in the tropics reflect (1) the diel cycle of the atmospheric circulation, which drives the formation and dissipation of clouds, and (2) changes in the large-scale circulation over the North Atlantic.
Julian F. Quinting, Christian M. Grams, Edmund Kar-Man Chang, Stephan Pfahl, and Heini Wernli
Weather Clim. Dynam., 5, 65–85, https://doi.org/10.5194/wcd-5-65-2024, https://doi.org/10.5194/wcd-5-65-2024, 2024
Short summary
Short summary
Research in the last few decades has revealed that rapidly ascending airstreams in extratropical cyclones have an important effect on the evolution of downstream weather and predictability. In this study, we show that the occurrence of these airstreams over the North Pacific is modulated by tropical convection. Depending on the modulation, known atmospheric circulation patterns evolve quite differently, which may affect extended-range predictions in the Atlantic–European region.
Laura J. Dietrich, Hans Christian Steen-Larsen, Sonja Wahl, Anne-Katrine Faber, and Xavier Fettweis
The Cryosphere, 18, 289–305, https://doi.org/10.5194/tc-18-289-2024, https://doi.org/10.5194/tc-18-289-2024, 2024
Short summary
Short summary
The contribution of the humidity flux to the surface mass balance in the accumulation zone of the Greenland Ice Sheet is uncertain. Here, we evaluate the regional climate model MAR using a multi-annual dataset of eddy covariance measurements and bulk estimates of the humidity flux. The humidity flux largely contributes to the summer surface mass balance (SMB) in the accumulation zone, indicating its potential importance for the annual SMB in a warming climate.
Ashleigh Womack, Alberto Alberello, Marc de Vos, Alessandro Toffoli, Robyn Verrinder, and Marcello Vichi
The Cryosphere, 18, 205–229, https://doi.org/10.5194/tc-18-205-2024, https://doi.org/10.5194/tc-18-205-2024, 2024
Short summary
Short summary
Synoptic events have a significant influence on the evolution of Antarctic sea ice. Our current understanding of the interactions between cyclones and sea ice remains limited. Using two ensembles of buoys, deployed in the north-eastern Weddell Sea region during winter and spring of 2019, we show how the evolution and spatial pattern of sea ice drift and deformation in the Antarctic marginal ice zone were affected by the balance between atmospheric and oceanic forcing and the local ice.
George Pacey, Stephan Pfahl, Lisa Schielicke, and Kathrin Wapler
Nat. Hazards Earth Syst. Sci., 23, 3703–3721, https://doi.org/10.5194/nhess-23-3703-2023, https://doi.org/10.5194/nhess-23-3703-2023, 2023
Short summary
Short summary
Cold fronts are often associated with areas of intense precipitation (cells) and sometimes with hazards such as flooding, hail and lightning. We find that cold-frontal cell days are associated with higher cell frequency and cells are typically more intense. We also show both spatially and temporally where cells are most frequent depending on their cell-front distance. These results are an important step towards a deeper understanding of cold-frontal storm climatology and improved forecasting.
Leonie Villiger, Marina Dütsch, Sandrine Bony, Marie Lothon, Stephan Pfahl, Heini Wernli, Pierre-Etienne Brilouet, Patrick Chazette, Pierre Coutris, Julien Delanoë, Cyrille Flamant, Alfons Schwarzenboeck, Martin Werner, and Franziska Aemisegger
Atmos. Chem. Phys., 23, 14643–14672, https://doi.org/10.5194/acp-23-14643-2023, https://doi.org/10.5194/acp-23-14643-2023, 2023
Short summary
Short summary
This study evaluates three numerical simulations performed with an isotope-enabled weather forecast model and investigates the coupling between shallow trade-wind cumulus clouds and atmospheric circulations on different scales. We show that the simulations reproduce key characteristics of shallow trade-wind clouds as observed during the field experiment EUREC4A and that the spatial distribution of stable-water-vapour isotopes is shaped by the overturning circulation associated with these clouds.
Harald Sodemann, Alena Dekhtyareva, Alvaro Fernandez, Andrew Seidl, and Jenny Maccali
Atmos. Meas. Tech., 16, 5181–5203, https://doi.org/10.5194/amt-16-5181-2023, https://doi.org/10.5194/amt-16-5181-2023, 2023
Short summary
Short summary
We describe a device that allows one to produce a continuous stream of water vapour with a specified level of humidity. As a main innovation, we can mix waters with different water isotope composition. Through a series of tests we show that the performance characteristics of the device are in line with specifications. We present two laboratory applications where the device proves useful, first in characterizing instruments, and second for the analysis of water contained in stalagmites.
Elena De La Torre Castro, Tina Jurkat-Witschas, Armin Afchine, Volker Grewe, Valerian Hahn, Simon Kirschler, Martina Krämer, Johannes Lucke, Nicole Spelten, Heini Wernli, Martin Zöger, and Christiane Voigt
Atmos. Chem. Phys., 23, 13167–13189, https://doi.org/10.5194/acp-23-13167-2023, https://doi.org/10.5194/acp-23-13167-2023, 2023
Short summary
Short summary
In this study, we show the differences in the microphysical properties between high-latitude (HL) cirrus and mid-latitude (ML) cirrus over the Arctic, North Atlantic, and central Europe during summer. The in situ measurements are combined with backward trajectories to investigate the influence of the region on cloud formation. We show that HL cirrus are characterized by a lower concentration of larger ice crystals when compared to ML cirrus.
Mark J. Rodwell and Heini Wernli
Weather Clim. Dynam., 4, 591–615, https://doi.org/10.5194/wcd-4-591-2023, https://doi.org/10.5194/wcd-4-591-2023, 2023
Short summary
Short summary
Midlatitude storms and their downstream impacts have a major impact on society, yet their prediction is especially prone to uncertainty. While this can never be fully eliminated, we find that the initial rate of growth of uncertainty varies for a range of forecast models. Examination of the model of the European Centre for Medium-Range Weather Forecasts (ECMWF) suggests ways in which uncertainty growth could be reduced, leading to sharper and more reliable forecasts over the first few days.
Astrid Fremme, Paul J. Hezel, Øyvind Seland, and Harald Sodemann
Weather Clim. Dynam., 4, 449–470, https://doi.org/10.5194/wcd-4-449-2023, https://doi.org/10.5194/wcd-4-449-2023, 2023
Short summary
Short summary
We study the atmospheric moisture transport into eastern China for past, present, and future climate. Hence, we use different climate and weather prediction model data with a moisture source identification method. We find that while the moisture to first order originates mostly from similar regions, smaller changes consistently point to differences in the recycling of precipitation over land between different climates. Some differences are larger between models than between different climates.
Florian Ruff and Stephan Pfahl
Weather Clim. Dynam., 4, 427–447, https://doi.org/10.5194/wcd-4-427-2023, https://doi.org/10.5194/wcd-4-427-2023, 2023
Short summary
Short summary
In this study, we analyse the generic atmospheric processes of very extreme, 100-year precipitation events in large central European river catchments and the corresponding differences to less extreme events, based on a large time series (~1200 years) of simulated but realistic daily precipitation events from the ECMWF. Depending on the catchment, either dynamical mechanisms or thermodynamic conditions or a combination of both distinguish 100-year events from less extreme precipitation events.
Charles G. Gertler, Paul A. O'Gorman, and Stephan Pfahl
Weather Clim. Dynam., 4, 361–379, https://doi.org/10.5194/wcd-4-361-2023, https://doi.org/10.5194/wcd-4-361-2023, 2023
Short summary
Short summary
The relationship between the time-mean state of the atmosphere and aspects of atmospheric circulation drives general understanding of the atmospheric circulation. Here, we present new techniques to calculate local properties of the time-mean atmosphere and relate those properties to aspects of extratropical circulation with important implications for weather. This relationship should help connect changes to the atmosphere, such as under global warming, to changes in midlatitude weather.
Mauro Hermann, Matthias Röthlisberger, Arthur Gessler, Andreas Rigling, Cornelius Senf, Thomas Wohlgemuth, and Heini Wernli
Biogeosciences, 20, 1155–1180, https://doi.org/10.5194/bg-20-1155-2023, https://doi.org/10.5194/bg-20-1155-2023, 2023
Short summary
Short summary
This study examines the multi-annual meteorological history of low-forest-greenness events in Europe's temperate and Mediterranean biome in 2002–2022. We systematically identify anomalies in temperature, precipitation, and weather systems as event precursors, with noteworthy differences between the two biomes. We also quantify the impact of the most extensive event in 2022 (37 % coverage), underlining the importance of understanding the forest–meteorology interaction in a changing climate.
Romilly Harris Stuart, Anne-Katrine Faber, Sonja Wahl, Maria Hörhold, Sepp Kipfstuhl, Kristian Vasskog, Melanie Behrens, Alexandra M. Zuhr, and Hans Christian Steen-Larsen
The Cryosphere, 17, 1185–1204, https://doi.org/10.5194/tc-17-1185-2023, https://doi.org/10.5194/tc-17-1185-2023, 2023
Short summary
Short summary
This empirical study uses continuous daily measurements from the Greenland Ice Sheet to document changes in surface snow properties. Consistent changes in snow isotopic composition are observed in the absence of deposition due to surface processes, indicating the isotopic signal of deposited precipitation is not always preserved. Our observations have potential implications for the interpretation of water isotopes in ice cores – historically assumed to reflect isotopic composition at deposition.
Ruth Price, Andrea Baccarini, Julia Schmale, Paul Zieger, Ian M. Brooks, Paul Field, and Ken S. Carslaw
Atmos. Chem. Phys., 23, 2927–2961, https://doi.org/10.5194/acp-23-2927-2023, https://doi.org/10.5194/acp-23-2927-2023, 2023
Short summary
Short summary
Arctic clouds can control how much energy is absorbed by the surface or reflected back to space. Using a computer model of the atmosphere we investigated the formation of atmospheric particles that allow cloud droplets to form. We found that particles formed aloft are transported to the lowest part of the Arctic atmosphere and that this is a key source of particles. Our results have implications for the way Arctic clouds will behave in the future as climate change continues to impact the region.
Andrew W. Seidl, Harald Sodemann, and Hans Christian Steen-Larsen
Atmos. Meas. Tech., 16, 769–790, https://doi.org/10.5194/amt-16-769-2023, https://doi.org/10.5194/amt-16-769-2023, 2023
Short summary
Short summary
It is challenging to make field measurements of stable water isotopes in the Arctic. To this end, we present a modular stable-water-isotope analyzer profiling system. The system operated for a 2-week field campaign on Svalbard during the Arctic winter. We evaluate the system’s performance and analyze any potential impact that the field conditions might have had on the isotopic measurements and the system's ability to resolve isotope gradients in the lowermost layer of the atmosphere.
Adriana Bailey, Franziska Aemisegger, Leonie Villiger, Sebastian A. Los, Gilles Reverdin, Estefanía Quiñones Meléndez, Claudia Acquistapace, Dariusz B. Baranowski, Tobias Böck, Sandrine Bony, Tobias Bordsdorff, Derek Coffman, Simon P. de Szoeke, Christopher J. Diekmann, Marina Dütsch, Benjamin Ertl, Joseph Galewsky, Dean Henze, Przemyslaw Makuch, David Noone, Patricia K. Quinn, Michael Rösch, Andreas Schneider, Matthias Schneider, Sabrina Speich, Bjorn Stevens, and Elizabeth J. Thompson
Earth Syst. Sci. Data, 15, 465–495, https://doi.org/10.5194/essd-15-465-2023, https://doi.org/10.5194/essd-15-465-2023, 2023
Short summary
Short summary
One of the novel ways EUREC4A set out to investigate trade wind clouds and their coupling to the large-scale circulation was through an extensive network of isotopic measurements in water vapor, precipitation, and seawater. Samples were taken from the island of Barbados, from aboard two aircraft, and from aboard four ships. This paper describes the full collection of EUREC4A isotopic in situ data and guides readers to complementary remotely sensed water vapor isotope ratios.
Alexander Scherrmann, Heini Wernli, and Emmanouil Flaounas
Weather Clim. Dynam., 4, 157–173, https://doi.org/10.5194/wcd-4-157-2023, https://doi.org/10.5194/wcd-4-157-2023, 2023
Short summary
Short summary
We investigate the dynamical origin of the lower-atmospheric potential vorticity (PV; linked to the intensity of cyclones) in Mediterranean cyclones. We quantify the contribution of the cyclone and the environment by tracing PV backward in time and space and linking it to the track of the cyclone. We find that the lower-tropospheric PV is produced shortly before the cyclone's stage of highest intensity. We investigate the driving processes and use a global dataset and a process-resolving one.
Hanna Joos, Michael Sprenger, Hanin Binder, Urs Beyerle, and Heini Wernli
Weather Clim. Dynam., 4, 133–155, https://doi.org/10.5194/wcd-4-133-2023, https://doi.org/10.5194/wcd-4-133-2023, 2023
Short summary
Short summary
Warm conveyor belts (WCBs) are strongly ascending, cloud- and precipitation-forming airstreams in extratropical cyclones. In this study we assess their representation in a climate simulation and their changes under global warming. They become moister, become more intense, and reach higher altitudes in a future climate, implying that they potentially have an increased impact on the mid-latitude flow.
Andreas Schäfler, Michael Sprenger, Heini Wernli, Andreas Fix, and Martin Wirth
Atmos. Chem. Phys., 23, 999–1018, https://doi.org/10.5194/acp-23-999-2023, https://doi.org/10.5194/acp-23-999-2023, 2023
Short summary
Short summary
In this study, airborne lidar profile measurements of H2O and O3 across a midlatitude jet stream are combined with analyses in tracer–trace space and backward trajectories. We highlight that transport and mixing processes in the history of the observed air masses are governed by interacting tropospheric weather systems on synoptic timescales. We show that these weather systems play a key role in the high variability of the paired H2O and O3 distributions near the tropopause.
Matthew Boyer, Diego Aliaga, Jakob Boyd Pernov, Hélène Angot, Lauriane L. J. Quéléver, Lubna Dada, Benjamin Heutte, Manuel Dall'Osto, David C. S. Beddows, Zoé Brasseur, Ivo Beck, Silvia Bucci, Marina Duetsch, Andreas Stohl, Tiia Laurila, Eija Asmi, Andreas Massling, Daniel Charles Thomas, Jakob Klenø Nøjgaard, Tak Chan, Sangeeta Sharma, Peter Tunved, Radovan Krejci, Hans Christen Hansson, Federico Bianchi, Katrianne Lehtipalo, Alfred Wiedensohler, Kay Weinhold, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 23, 389–415, https://doi.org/10.5194/acp-23-389-2023, https://doi.org/10.5194/acp-23-389-2023, 2023
Short summary
Short summary
The Arctic is a unique environment that is warming faster than other locations on Earth. We evaluate measurements of aerosol particles, which can influence climate, over the central Arctic Ocean for a full year and compare the data to land-based measurement stations across the Arctic. Our measurements show that the central Arctic has similarities to but also distinct differences from the stations further south. We note that this may change as the Arctic warms and sea ice continues to decline.
Hanin Binder, Hanna Joos, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 4, 19–37, https://doi.org/10.5194/wcd-4-19-2023, https://doi.org/10.5194/wcd-4-19-2023, 2023
Short summary
Short summary
Warm conveyor belts (WCBs) are the main cloud- and precipitation-producing airstreams in extratropical cyclones. The latent heat release that occurs during cloud formation often contributes to the intensification of the associated cyclone. Based on the Community Earth System Model Large Ensemble coupled climate simulations, we show that WCBs and associated latent heating will become stronger in a future climate and be even more important for explosive cyclone intensification than in the present.
Lisa Schielicke and Stephan Pfahl
Weather Clim. Dynam., 3, 1439–1459, https://doi.org/10.5194/wcd-3-1439-2022, https://doi.org/10.5194/wcd-3-1439-2022, 2022
Short summary
Short summary
Projected future heatwaves in many European regions will be even warmer than the mean increase in summer temperature suggests. To identify the underlying thermodynamic and dynamic processes, we compare Lagrangian backward trajectories of airstreams associated with heatwaves in two time slices (1991–2000 and 2091–2100) in a large single-model ensemble (CEMS-LE). We find stronger future descent associated with adiabatic warming in some regions and increased future diabatic heating in most regions.
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022, https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
Short summary
In a warming climate, extreme precipitation events are becoming more frequent. To advance our knowledge on such phenomena, we present a multidisciplinary analysis of a selected case study that took place on 29 June 2017 in the Berlin metropolitan area. Our analysis provides evidence of the extremeness of the case from the atmospheric and the impacts perspectives as well as new insights on the physical mechanisms of the event at the meteorological and climate scales.
Julia Chizhova, Maria Kireeva, Ekaterina Rets, Alexey Ekaykin, Anna Kozachek, Arina Veres, Olga Zolina, Natalia Varentsova, Artem Gorbarenko, Nikita Povalyaev, Valentina Plotnikova, Timofey Samsonov, and Maxim Kharlamov
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-377, https://doi.org/10.5194/essd-2022-377, 2022
Manuscript not accepted for further review
Short summary
Short summary
Empirical study of the isotopic features of river runoff were conducted at three hydrological posts in three different river basins: the Zakza river in the center of East European Plane (southwest of Moscow), the Dubna river (north of Moscow) and the Sosna Bystraya river in the south of central region.
Antoine Grisart, Mathieu Casado, Vasileios Gkinis, Bo Vinther, Philippe Naveau, Mathieu Vrac, Thomas Laepple, Bénédicte Minster, Frederic Prié, Barbara Stenni, Elise Fourré, Hans Christian Steen-Larsen, Jean Jouzel, Martin Werner, Katy Pol, Valérie Masson-Delmotte, Maria Hoerhold, Trevor Popp, and Amaelle Landais
Clim. Past, 18, 2289–2301, https://doi.org/10.5194/cp-18-2289-2022, https://doi.org/10.5194/cp-18-2289-2022, 2022
Short summary
Short summary
This paper presents a compilation of high-resolution (11 cm) water isotopic records, including published and new measurements, for the last 800 000 years from the EPICA Dome C ice core, Antarctica. Using this new combined water isotopes (δ18O and δD) dataset, we study the variability and possible influence of diffusion at the multi-decadal to multi-centennial scale. We observe a stronger variability at the onset of the interglacial interval corresponding to a warm period.
Iris Thurnherr and Franziska Aemisegger
Atmos. Chem. Phys., 22, 10353–10373, https://doi.org/10.5194/acp-22-10353-2022, https://doi.org/10.5194/acp-22-10353-2022, 2022
Short summary
Short summary
Stable water isotopes in marine boundary layer vapour are strongly influenced by the strength of air–sea fluxes. Here, we investigate a distinct vapour isotope signal observed in the warm sector of Southern Ocean cyclones. Single-process air parcel models are used together with high-resolution isotope-enabled simulations with the weather prediction model COSMOiso to improve our understanding of the importance of air–sea fluxes for the moisture cycling in the context of extratropical cyclones.
Julia Chizhova, Maria Kireeva, Ekaterina Rets, Alexey Ekaykin, Anna Kozachek, Arina Veres, Olga Zolina, Natalia Varentsova, Artem Gorbarenko, Nikita Povalyaev, Valentina Plotnikova, Timofey Samsonov, and Maxim Kharlamov
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-145, https://doi.org/10.5194/essd-2022-145, 2022
Revised manuscript not accepted
Short summary
Short summary
Empirical study of the isotopic features of river runoff were carried out at three hydrological posts in 3 different river basins Eastern Europe. Samples of river water, groundwater and precipitation for the October 2019–October 2021 were collected at weekly intervals. A significant supply of melted snow during spring freshet was the key factor influencing water regimes for these three river basins; varying degrees of anthropogenic flow regulation are also presented.
Christian Tatzelt, Silvia Henning, André Welti, Andrea Baccarini, Markus Hartmann, Martin Gysel-Beer, Manuela van Pinxteren, Robin L. Modini, Julia Schmale, and Frank Stratmann
Atmos. Chem. Phys., 22, 9721–9745, https://doi.org/10.5194/acp-22-9721-2022, https://doi.org/10.5194/acp-22-9721-2022, 2022
Short summary
Short summary
We present the abundance and origin of cloud-relevant aerosol particles in the preindustral-like conditions of the Southern Ocean (SO) during austral summer. Cloud condensation nuclei (CCN) and ice-nucleating particles (INP) were measured during a circum-Antarctic scientific cruise with in situ instrumentation and offline filter measurements, respectively. Transport processes were found to play an equally important role as local sources for both the CCN and INP population of the SO.
Ivo Beck, Hélène Angot, Andrea Baccarini, Lubna Dada, Lauriane Quéléver, Tuija Jokinen, Tiia Laurila, Markus Lampimäki, Nicolas Bukowiecki, Matthew Boyer, Xianda Gong, Martin Gysel-Beer, Tuukka Petäjä, Jian Wang, and Julia Schmale
Atmos. Meas. Tech., 15, 4195–4224, https://doi.org/10.5194/amt-15-4195-2022, https://doi.org/10.5194/amt-15-4195-2022, 2022
Short summary
Short summary
We present the pollution detection algorithm (PDA), a new method to identify local primary pollution in remote atmospheric aerosol and trace gas time series. The PDA identifies periods of contaminated data and relies only on the target dataset itself; i.e., it is independent of ancillary data such as meteorological variables. The parameters of all pollution identification steps are adjustable so that the PDA can be tuned to different locations and situations. It is available as open-access code.
Andries Jan de Vries, Franziska Aemisegger, Stephan Pfahl, and Heini Wernli
Atmos. Chem. Phys., 22, 8863–8895, https://doi.org/10.5194/acp-22-8863-2022, https://doi.org/10.5194/acp-22-8863-2022, 2022
Short summary
Short summary
The Earth's water cycle contains the common H2O molecule but also the less abundant, heavier HDO. We use their different physical properties to study tropical ice clouds in model simulations of the West African monsoon. Isotope signals reveal different processes through which ice clouds form and decay in deep-convective and widespread cirrus. Previously observed variations in upper-tropospheric vapour isotopes are explained by microphysical processes in convective updraughts and downdraughts.
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Sandrine Bony, Marie Lothon, Julien Delanoë, Pierre Coutris, Jean-Claude Etienne, Franziska Aemisegger, Anna Lea Albright, Thierry André, Hubert Bellec, Alexandre Baron, Jean-François Bourdinot, Pierre-Etienne Brilouet, Aurélien Bourdon, Jean-Christophe Canonici, Christophe Caudoux, Patrick Chazette, Michel Cluzeau, Céline Cornet, Jean-Philippe Desbios, Dominique Duchanoy, Cyrille Flamant, Benjamin Fildier, Christophe Gourbeyre, Laurent Guiraud, Tetyana Jiang, Claude Lainard, Christophe Le Gac, Christian Lendroit, Julien Lernould, Thierry Perrin, Frédéric Pouvesle, Pascal Richard, Nicolas Rochetin, Kevin Salaün, Alfons Schwarzenboeck, Guillaume Seurat, Bjorn Stevens, Julien Totems, Ludovic Touzé-Peiffer, Gilles Vergez, Jessica Vial, Leonie Villiger, and Raphaela Vogel
Earth Syst. Sci. Data, 14, 2021–2064, https://doi.org/10.5194/essd-14-2021-2022, https://doi.org/10.5194/essd-14-2021-2022, 2022
Short summary
Short summary
The French ATR42 research aircraft participated in the EUREC4A international field campaign that took place in 2020 over the tropical Atlantic, east of Barbados. We present the extensive instrumentation of the aircraft, the research flights and the different measurements. We show that the ATR measurements of humidity, wind, aerosols and cloudiness in the lower atmosphere are robust and consistent with each other. They will make it possible to advance understanding of cloud–climate interactions.
Andreas Schneider, Tobias Borsdorff, Joost aan de Brugh, Alba Lorente, Franziska Aemisegger, David Noone, Dean Henze, Rigel Kivi, and Jochen Landgraf
Atmos. Meas. Tech., 15, 2251–2275, https://doi.org/10.5194/amt-15-2251-2022, https://doi.org/10.5194/amt-15-2251-2022, 2022
Short summary
Short summary
This paper presents an extended H₂O/HDO total column dataset from short-wave infrared measurements by TROPOMI including cloudy and clear-sky scenes. Coverage is tremendously increased compared to previous TROPOMI HDO datasets. The new dataset is validated against recent ground-based FTIR measurements from TCCON and against aircraft measurements over the ocean. The use of the new dataset is demonstrated with a case study of a cold air outbreak in January 2020.
Edgar Dolores-Tesillos, Franziska Teubler, and Stephan Pfahl
Weather Clim. Dynam., 3, 429–448, https://doi.org/10.5194/wcd-3-429-2022, https://doi.org/10.5194/wcd-3-429-2022, 2022
Short summary
Short summary
Strong winds caused by extratropical cyclones represent a costly hazard for European countries. Here, based on CESM-LENS coupled climate simulations, we show that future changes of such strong winds are characterized by an increased magnitude and extended footprint southeast of the cyclone center. This intensification is related to a combination of increased diabatic heating and changes in upper-level wave dynamics.
Philipp Zschenderlein and Heini Wernli
Weather Clim. Dynam., 3, 391–411, https://doi.org/10.5194/wcd-3-391-2022, https://doi.org/10.5194/wcd-3-391-2022, 2022
Short summary
Short summary
Precipitation and temperature are two of the most important variables describing our weather and climate. The relationship between these variables has been studied extensively; however, the role of specific weather systems in shaping this relationship has not been analysed yet. We therefore analyse whether intense precipitation occurs on warmer or on colder days and identify the relevant weather systems. In general, weather systems strongly influence this relationship, especially in winter.
Lisa-Ann Kautz, Olivia Martius, Stephan Pfahl, Joaquim G. Pinto, Alexandre M. Ramos, Pedro M. Sousa, and Tim Woollings
Weather Clim. Dynam., 3, 305–336, https://doi.org/10.5194/wcd-3-305-2022, https://doi.org/10.5194/wcd-3-305-2022, 2022
Short summary
Short summary
Atmospheric blocking is associated with stationary, self-sustaining and long-lasting high-pressure systems. They can cause or at least influence surface weather extremes, such as heat waves, cold spells, heavy precipitation events, droughts or wind extremes. The location of the blocking determines where and what type of extreme event will occur. These relationships are also important for weather prediction and may change due to global warming.
Jan Clemens, Felix Ploeger, Paul Konopka, Raphael Portmann, Michael Sprenger, and Heini Wernli
Atmos. Chem. Phys., 22, 3841–3860, https://doi.org/10.5194/acp-22-3841-2022, https://doi.org/10.5194/acp-22-3841-2022, 2022
Short summary
Short summary
Highly polluted air flows from the surface to higher levels of the atmosphere during the Asian summer monsoon. At high levels, the air is trapped within eddies. Here, we study how air masses can leave the eddy within its cutoff, how they distribute, and how their chemical composition changes. We found evidence for transport from the eddy to higher latitudes over the North Pacific and even Alaska. During transport, trace gas concentrations within cutoffs changed gradually, showing steady mixing.
Julia Schmale, Sangeeta Sharma, Stefano Decesari, Jakob Pernov, Andreas Massling, Hans-Christen Hansson, Knut von Salzen, Henrik Skov, Elisabeth Andrews, Patricia K. Quinn, Lucia M. Upchurch, Konstantinos Eleftheriadis, Rita Traversi, Stefania Gilardoni, Mauro Mazzola, James Laing, and Philip Hopke
Atmos. Chem. Phys., 22, 3067–3096, https://doi.org/10.5194/acp-22-3067-2022, https://doi.org/10.5194/acp-22-3067-2022, 2022
Short summary
Short summary
Long-term data sets of Arctic aerosol properties from 10 stations across the Arctic provide evidence that anthropogenic influence on the Arctic atmospheric chemical composition has declined in winter, a season which is typically dominated by mid-latitude emissions. The number of significant trends in summer is smaller than in winter, and overall the pattern is ambiguous with some significant positive and negative trends. This reflects the mixed influence of natural and anthropogenic emissions.
Katharina Hartmuth, Maxi Boettcher, Heini Wernli, and Lukas Papritz
Weather Clim. Dynam., 3, 89–111, https://doi.org/10.5194/wcd-3-89-2022, https://doi.org/10.5194/wcd-3-89-2022, 2022
Short summary
Short summary
In this study, we introduce a novel method to objectively define and identify extreme Arctic seasons based on different surface variables. We find that such seasons are resulting from various combinations of unusual seasonal conditions. The occurrence or absence of different atmospheric processes strongly affects the character of extreme Arctic seasons. Further, changes in sea ice and sea surface temperature can strongly influence the formation of such a season in distinct regions.
Leonie Villiger, Heini Wernli, Maxi Boettcher, Martin Hagen, and Franziska Aemisegger
Weather Clim. Dynam., 3, 59–88, https://doi.org/10.5194/wcd-3-59-2022, https://doi.org/10.5194/wcd-3-59-2022, 2022
Short summary
Short summary
The coupling between the large-scale atmospheric circulation and the clouds in the trade-wind region is complex and not yet fully understood. In this study, the formation pathway of two anomalous cloud layers over Barbados during the field campaign EUREC4A is described. The two case studies highlight the influence of remote weather systems on the local environmental conditions in Barbados.
Philipp Zschenderlein and Heini Wernli
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-396, https://doi.org/10.5194/nhess-2021-396, 2022
Preprint withdrawn
Short summary
Short summary
In early January 2021, Spain was affected by two extreme events – an unusually long cold spell and a heavy snowfall event associated with extratropical cyclone Filomena. In the study, we analyse the synoptic-dynamic development of the two extreme events. Cold air from the north was advected towards Spain and between 07 and 10 January, cyclone Filomena was responsible for major parts of the snowfall event. During this event, temperature and moisture contrasts accross Spain were very high.
Sebastian Landwehr, Michele Volpi, F. Alexander Haumann, Charlotte M. Robinson, Iris Thurnherr, Valerio Ferracci, Andrea Baccarini, Jenny Thomas, Irina Gorodetskaya, Christian Tatzelt, Silvia Henning, Rob L. Modini, Heather J. Forrer, Yajuan Lin, Nicolas Cassar, Rafel Simó, Christel Hassler, Alireza Moallemi, Sarah E. Fawcett, Neil Harris, Ruth Airs, Marzieh H. Derkani, Alberto Alberello, Alessandro Toffoli, Gang Chen, Pablo Rodríguez-Ros, Marina Zamanillo, Pau Cortés-Greus, Lei Xue, Conor G. Bolas, Katherine C. Leonard, Fernando Perez-Cruz, David Walton, and Julia Schmale
Earth Syst. Dynam., 12, 1295–1369, https://doi.org/10.5194/esd-12-1295-2021, https://doi.org/10.5194/esd-12-1295-2021, 2021
Short summary
Short summary
The Antarctic Circumnavigation Expedition surveyed a large number of variables describing the dynamic state of ocean and atmosphere, freshwater cycle, atmospheric chemistry, ocean biogeochemistry, and microbiology in the Southern Ocean. To reduce the dimensionality of the dataset, we apply a sparse principal component analysis and identify temporal patterns from diurnal to seasonal cycles, as well as geographical gradients and
hotspotsof interaction. Code and data are open access.
Kevin S. Rozmiarek, Bruce H. Vaughn, Tyler R. Jones, Valerie Morris, William B. Skorski, Abigail G. Hughes, Jack Elston, Sonja Wahl, Anne-Katrine Faber, and Hans Christian Steen-Larsen
Atmos. Meas. Tech., 14, 7045–7067, https://doi.org/10.5194/amt-14-7045-2021, https://doi.org/10.5194/amt-14-7045-2021, 2021
Short summary
Short summary
We have designed an unmanned aerial vehicle (UAV) sampling platform for operation in extreme polar environments that is capable of sampling atmospheric water vapor for subsequent measurement of water isotopes. During flight, we measure location, temperature, humidity, and pressure to determine the height of the planetary boundary layer (PBL) using algorithms, allowing for strategic decision-making by the pilot to collect samples in glass flasks contained in the nose cone of the UAV.
Roman Attinger, Elisa Spreitzer, Maxi Boettcher, Heini Wernli, and Hanna Joos
Weather Clim. Dynam., 2, 1073–1091, https://doi.org/10.5194/wcd-2-1073-2021, https://doi.org/10.5194/wcd-2-1073-2021, 2021
Short summary
Short summary
Diabatic processes affect the development of extratropical cyclones. This work provides a systematic assessment of the diabatic processes that modify potential vorticity (PV) in model simulations. PV is primarily produced by condensation and convection. Given favorable environmental conditions, long-wave radiative cooling and turbulence become the primary process at the cold and warm fronts, respectively. Turbulence and long-wave radiative heating produce negative PV anomalies at the fronts.
Fabienne Dahinden, Franziska Aemisegger, Heini Wernli, Matthias Schneider, Christopher J. Diekmann, Benjamin Ertl, Peter Knippertz, Martin Werner, and Stephan Pfahl
Atmos. Chem. Phys., 21, 16319–16347, https://doi.org/10.5194/acp-21-16319-2021, https://doi.org/10.5194/acp-21-16319-2021, 2021
Short summary
Short summary
We use high-resolution numerical isotope modelling and Lagrangian backward trajectories to identify moisture transport pathways and governing physical and dynamical processes that affect the free-tropospheric humidity and isotopic variability over the eastern subtropical North Atlantic. Furthermore, we conduct a thorough isotope modelling validation with aircraft and remote-sensing observations of water vapour isotopes.
Dongyu S. Wang, Chuan Ping Lee, Jordan E. Krechmer, Francesca Majluf, Yandong Tong, Manjula R. Canagaratna, Julia Schmale, André S. H. Prévôt, Urs Baltensperger, Josef Dommen, Imad El Haddad, Jay G. Slowik, and David M. Bell
Atmos. Meas. Tech., 14, 6955–6972, https://doi.org/10.5194/amt-14-6955-2021, https://doi.org/10.5194/amt-14-6955-2021, 2021
Short summary
Short summary
To understand the sources and fate of particulate matter in the atmosphere, the ability to quantitatively describe its chemical composition is essential. In this work, we developed a calibration method for a state-of-the-art measurement technique without the need for chemical standards. Statistical analyses identified the driving factors behind instrument sensitivity variability towards individual components of particulate matter.
Abigail G. Hughes, Sonja Wahl, Tyler R. Jones, Alexandra Zuhr, Maria Hörhold, James W. C. White, and Hans Christian Steen-Larsen
The Cryosphere, 15, 4949–4974, https://doi.org/10.5194/tc-15-4949-2021, https://doi.org/10.5194/tc-15-4949-2021, 2021
Short summary
Short summary
Water isotope records in Greenland and Antarctic ice cores are a valuable proxy for paleoclimate reconstruction and are traditionally thought to primarily reflect precipitation input. However,
post-depositional processes are hypothesized to contribute to the isotope climate signal. In this study we use laboratory experiments, field experiments, and modeling to show that sublimation and vapor–snow isotope exchange can rapidly influence the isotopic composition of the snowpack.
Alexandra M. Zuhr, Thomas Münch, Hans Christian Steen-Larsen, Maria Hörhold, and Thomas Laepple
The Cryosphere, 15, 4873–4900, https://doi.org/10.5194/tc-15-4873-2021, https://doi.org/10.5194/tc-15-4873-2021, 2021
Short summary
Short summary
Firn and ice cores are used to infer past temperatures. However, the imprint of the climatic signal in stable water isotopes is influenced by depositional modifications. We present and use a photogrammetry structure-from-motion approach and find variability in the amount, the timing, and the location of snowfall. Depositional modifications of the surface are observed, leading to mixing of snow from different snowfall events and spatial locations and thus creating noise in the proxy record.
Jonas Hamperl, Clément Capitaine, Jean-Baptiste Dherbecourt, Myriam Raybaut, Patrick Chazette, Julien Totems, Bruno Grouiez, Laurence Régalia, Rosa Santagata, Corinne Evesque, Jean-Michel Melkonian, Antoine Godard, Andrew Seidl, Harald Sodemann, and Cyrille Flamant
Atmos. Meas. Tech., 14, 6675–6693, https://doi.org/10.5194/amt-14-6675-2021, https://doi.org/10.5194/amt-14-6675-2021, 2021
Short summary
Short summary
Laser active remote sensing of tropospheric water vapor is a promising technology for enhancing our understanding of processes governing the global hydrological cycle. We investigate the potential of a ground-based lidar to monitor the main water vapor isotopes at high spatio-temporal resolutions in the lower troposphere. Using a realistic end-to-end simulator, we show that high-precision measurements can be achieved within a range of 1.5 km, in mid-latitude or tropical environments.
Zhihong Zhuo, Ingo Kirchner, Stephan Pfahl, and Ulrich Cubasch
Atmos. Chem. Phys., 21, 13425–13442, https://doi.org/10.5194/acp-21-13425-2021, https://doi.org/10.5194/acp-21-13425-2021, 2021
Short summary
Short summary
The impact of volcanic eruptions varies with eruption season and latitude. This study simulated eruptions at different latitudes and in different seasons with a fully coupled climate model. The climate impacts of northern and southern hemispheric eruptions are reversed but are insensitive to eruption season. Results suggest that the regional climate impacts are due to the dynamical response of the climate system to radiative effects of volcanic aerosols and the subsequent regional feedbacks.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Yongbiao Weng, Aina Johannessen, and Harald Sodemann
Weather Clim. Dynam., 2, 713–737, https://doi.org/10.5194/wcd-2-713-2021, https://doi.org/10.5194/wcd-2-713-2021, 2021
Short summary
Short summary
High-resolution measurements of stable isotopes in near-surface vapour and precipitation show a
W-shaped evolution during a 24 h land-falling atmospheric river event in southern Norway. We distinguish contributions from below-cloud processes, weather system characteristics, and moisture source conditions during different stages of the event. Rayleigh distillation models need to be expanded by additional processes to accurately predict isotopes in surface precipitation from stratiform clouds.
Congbo Song, Manuel Dall'Osto, Angelo Lupi, Mauro Mazzola, Rita Traversi, Silvia Becagli, Stefania Gilardoni, Stergios Vratolis, Karl Espen Yttri, David C. S. Beddows, Julia Schmale, James Brean, Agung Ghani Kramawijaya, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 21, 11317–11335, https://doi.org/10.5194/acp-21-11317-2021, https://doi.org/10.5194/acp-21-11317-2021, 2021
Short summary
Short summary
We present a cluster analysis of relatively long-term (2015–2019) aerosol aerodynamic volume size distributions up to 20 μm in the Arctic for the first time. The study found that anthropogenic and natural aerosols comprised 27 % and 73 % of the occurrence of the coarse-mode aerosols, respectively. Our study shows that about two-thirds of the coarse-mode aerosols are related to two sea-spray-related aerosol clusters, indicating that sea spray aerosol may more complex in the Arctic environment.
Patrick Chazette, Cyrille Flamant, Harald Sodemann, Julien Totems, Anne Monod, Elsa Dieudonné, Alexandre Baron, Andrew Seidl, Hans Christian Steen-Larsen, Pascal Doira, Amandine Durand, and Sylvain Ravier
Atmos. Chem. Phys., 21, 10911–10937, https://doi.org/10.5194/acp-21-10911-2021, https://doi.org/10.5194/acp-21-10911-2021, 2021
Short summary
Short summary
To gain understanding on the vertical structure of atmospheric water vapour above mountain lakes and to assess its link to the isotopic composition of the lake water and small-scale dynamics, the L-WAIVE field campaign was conducted in the Annecy valley in the French Alps in June 2019. Based on a synergy between ground-based, boat-borne, and airborne measuring platforms, significant gradients of isotopic content have been revealed at the transitions to the lake and to the free troposphere.
Raphael Portmann, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 2, 507–534, https://doi.org/10.5194/wcd-2-507-2021, https://doi.org/10.5194/wcd-2-507-2021, 2021
Short summary
Short summary
We explore the three-dimensional life cycle of cyclonic structures
(so-called PV cutoffs) near the tropopause. PV cutoffs are frequent weather systems in the extratropics that lead to high-impact weather. However, many unknowns exist regarding their evolution. We present a new method to track PV cutoffs as 3D objects in reanalysis data by following air parcels along the flow. We study the climatological life cycles of PV cutoffs in detail and propose a classification into three types.
Yafei Li, Franziska Aemisegger, Andreas Riedl, Nina Buchmann, and Werner Eugster
Hydrol. Earth Syst. Sci., 25, 2617–2648, https://doi.org/10.5194/hess-25-2617-2021, https://doi.org/10.5194/hess-25-2617-2021, 2021
Short summary
Short summary
During dry spells, dew and fog potentially play an increasingly important role in temperate grasslands. Research on the combined mechanisms of dew and fog inputs to ecosystems and distillation of water vapor from soil to plant surfaces is rare. Our results using stable water isotopes highlight the importance of dew and fog inputs to temperate grasslands during dry spells and reveal the complexity of the local water cycling in such conditions, including different pathways of dew and fog inputs.
Iris Thurnherr, Katharina Hartmuth, Lukas Jansing, Josué Gehring, Maxi Boettcher, Irina Gorodetskaya, Martin Werner, Heini Wernli, and Franziska Aemisegger
Weather Clim. Dynam., 2, 331–357, https://doi.org/10.5194/wcd-2-331-2021, https://doi.org/10.5194/wcd-2-331-2021, 2021
Short summary
Short summary
Extratropical cyclones are important for the transport of moisture from low to high latitudes. In this study, we investigate how the isotopic composition of water vapour is affected by horizontal temperature advection associated with extratropical cyclones using measurements and modelling. It is shown that air–sea moisture fluxes induced by this horizontal temperature advection lead to the strong variability observed in the isotopic composition of water vapour in the marine boundary layer.
Maxi Boettcher, Andreas Schäfler, Michael Sprenger, Harald Sodemann, Stefan Kaufmann, Christiane Voigt, Hans Schlager, Donato Summa, Paolo Di Girolamo, Daniele Nerini, Urs Germann, and Heini Wernli
Atmos. Chem. Phys., 21, 5477–5498, https://doi.org/10.5194/acp-21-5477-2021, https://doi.org/10.5194/acp-21-5477-2021, 2021
Short summary
Short summary
Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones, often leading to the formation of intense precipitation. We present a case study that involves aircraft, lidar and radar observations of water and clouds in a WCB ascending from western Europe across the Alps towards the Baltic Sea during the field campaigns HyMeX and T-NAWDEX-Falcon in October 2012. A probabilistic trajectory measure and an airborne tracer experiment were used to confirm the long pathway of the WCB.
Franziska Aemisegger, Raphaela Vogel, Pascal Graf, Fabienne Dahinden, Leonie Villiger, Friedhelm Jansen, Sandrine Bony, Bjorn Stevens, and Heini Wernli
Weather Clim. Dynam., 2, 281–309, https://doi.org/10.5194/wcd-2-281-2021, https://doi.org/10.5194/wcd-2-281-2021, 2021
Short summary
Short summary
The interaction of clouds in the trade wind region with the atmospheric flow is complex and at the heart of uncertainties associated with climate projections. In this study, a natural tracer of atmospheric circulation is used to establish a link between air originating from dry regions of the midlatitudes and the occurrence of specific cloud patterns. Two pathways involving transport within midlatitude weather systems are identified, by which air is brought into the trades within 5–10 d.
Annika Oertel, Michael Sprenger, Hanna Joos, Maxi Boettcher, Heike Konow, Martin Hagen, and Heini Wernli
Weather Clim. Dynam., 2, 89–110, https://doi.org/10.5194/wcd-2-89-2021, https://doi.org/10.5194/wcd-2-89-2021, 2021
Short summary
Short summary
Convection embedded in the stratiform cloud band of strongly ascending airstreams in extratropical cyclones (so-called warm conveyor belts) can influence not only surface precipitation but also the
upper-tropospheric potential vorticity (PV) and waveguide. The comparison of intense vs. moderate embedded convection shows that its strength alone is not a reliable measure for upper-tropospheric PV modification. Instead, characteristics of the ambient flow co-determine its dynamical significance.
Emmanouil Flaounas, Matthias Röthlisberger, Maxi Boettcher, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 2, 71–88, https://doi.org/10.5194/wcd-2-71-2021, https://doi.org/10.5194/wcd-2-71-2021, 2021
Short summary
Short summary
In this study we identify the wettest seasons globally and address their meteorological characteristics. We show that in different regions the wettest seasons occur in different times of the year and result from either unusually high frequencies of wet days and/or daily extremes. These high frequencies can be largely attributed to four specific weather systems, especially cyclones. Our analysis uses a thoroughly explained, novel methodology that could also be applied to climate models.
Sebastian Schemm, Heini Wernli, and Hanin Binder
Weather Clim. Dynam., 2, 55–69, https://doi.org/10.5194/wcd-2-55-2021, https://doi.org/10.5194/wcd-2-55-2021, 2021
Short summary
Short summary
North Pacific cyclone intensities are reduced in winter, which is in contrast to North Atlantic cyclones and unexpected from the high available growth potential in winter. We investigate this intensity suppression from a cyclone life-cycle perspective and show that in winter Kuroshio cyclones propagate away from the region where they can grow more quickly, East China Sea cyclones are not relevant before spring, and Kamchatka cyclones grow in a region of reduced growth potential.
André Welti, E. Keith Bigg, Paul J. DeMott, Xianda Gong, Markus Hartmann, Mike Harvey, Silvia Henning, Paul Herenz, Thomas C. J. Hill, Blake Hornblow, Caroline Leck, Mareike Löffler, Christina S. McCluskey, Anne Marie Rauker, Julia Schmale, Christian Tatzelt, Manuela van Pinxteren, and Frank Stratmann
Atmos. Chem. Phys., 20, 15191–15206, https://doi.org/10.5194/acp-20-15191-2020, https://doi.org/10.5194/acp-20-15191-2020, 2020
Short summary
Short summary
Ship-based measurements of maritime ice nuclei concentrations encompassing all oceans are compiled. From this overview it is found that maritime ice nuclei concentrations are typically 10–100 times lower than over continents, while concentrations are surprisingly similar in different oceanic regions. The analysis of the influence of ship emissions shows no effect on the data, making ship-based measurements an efficient strategy for the large-scale exploration of ice nuclei concentrations.
Stefan Rüdisühli, Michael Sprenger, David Leutwyler, Christoph Schär, and Heini Wernli
Weather Clim. Dynam., 1, 675–699, https://doi.org/10.5194/wcd-1-675-2020, https://doi.org/10.5194/wcd-1-675-2020, 2020
Short summary
Short summary
Most precipitation over Europe is linked to low-pressure systems, cold fronts, warm fronts, or high-pressure systems. Based on a massive computer simulation able to resolve thunderstorms, we quantify in detail how much precipitation these weather systems produced during 2000–2008. We find distinct seasonal and regional differences, such as fronts precipitating a lot in fall and winter over the North Atlantic but high-pressure systems mostly in summer over the continent by way of thunderstorms.
Raphael Portmann, Juan Jesús González-Alemán, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 1, 597–615, https://doi.org/10.5194/wcd-1-597-2020, https://doi.org/10.5194/wcd-1-597-2020, 2020
Short summary
Short summary
In September 2018 an intense Mediterranean cyclone with structural similarities to a hurricane, a so-called medicane, caused severe damage in Greece. Its development was uncertain, even just a few days in advance. The reason for this was uncertainties in the jet stream over the North Atlantic 3 d prior to cyclogenesis that propagated into the Mediterranean. They led to an uncertain position of the upper-level disturbance and, as a result, of the position and thermal structure of the cyclone.
Hanin Binder, Maxi Boettcher, Hanna Joos, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 1, 577–595, https://doi.org/10.5194/wcd-1-577-2020, https://doi.org/10.5194/wcd-1-577-2020, 2020
Short summary
Short summary
Warm conveyor belts (WCBs) are important cloud- and
precipitation-producing airstreams in extratropical cyclones. By combining satellite observations with model data from a new reanalysis dataset, this study provides detailed observational insight into the vertical cloud structure of WCBs. We find that the reanalyses essentially capture the observed cloud pattern, but the observations reveal mesoscale structures not resolved by the temporally and spatially much coarser-resolution model data.
Mauro Hermann, Lukas Papritz, and Heini Wernli
Weather Clim. Dynam., 1, 497–518, https://doi.org/10.5194/wcd-1-497-2020, https://doi.org/10.5194/wcd-1-497-2020, 2020
Short summary
Short summary
We find, by tracing backward in time, that air masses causing extensive melt of the Greenland Ice Sheet originate from further south and lower altitudes than usual. Their exceptional warmth further arises due to ascent and cloud formation, which is special compared to near-surface heat waves in the midlatitudes or the central Arctic. The atmospheric systems and transport pathways identified here are crucial in understanding and simulating the atmospheric control of the ice sheet in the future.
Jean-Louis Bonne, Hanno Meyer, Melanie Behrens, Julia Boike, Sepp Kipfstuhl, Benjamin Rabe, Toni Schmidt, Lutz Schönicke, Hans Christian Steen-Larsen, and Martin Werner
Atmos. Chem. Phys., 20, 10493–10511, https://doi.org/10.5194/acp-20-10493-2020, https://doi.org/10.5194/acp-20-10493-2020, 2020
Short summary
Short summary
This study introduces 2 years of continuous near-surface in situ observations of the stable isotopic composition of water vapour in parallel with precipitation in north-eastern Siberia. We evaluate the atmospheric transport of moisture towards the region of our observations with simulations constrained by meteorological reanalyses and use this information to interpret the temporal variations of the vapour isotopic composition from seasonal to synoptic timescales.
Leighton A. Regayre, Julia Schmale, Jill S. Johnson, Christian Tatzelt, Andrea Baccarini, Silvia Henning, Masaru Yoshioka, Frank Stratmann, Martin Gysel-Beer, Daniel P. Grosvenor, and Ken S. Carslaw
Atmos. Chem. Phys., 20, 10063–10072, https://doi.org/10.5194/acp-20-10063-2020, https://doi.org/10.5194/acp-20-10063-2020, 2020
Short summary
Short summary
The amount of energy reflected back into space because of man-made particles is highly uncertain. Processes related to naturally occurring particles cause most of the uncertainty, but these processes are poorly constrained by present-day measurements. We show that measurements over the Southern Ocean, far from pollution sources, efficiently reduce climate model uncertainties. Our results pave the way to designing experiments and measurement campaigns that reduce this uncertainty even further.
Daniel Steinfeld, Maxi Boettcher, Richard Forbes, and Stephan Pfahl
Weather Clim. Dynam., 1, 405–426, https://doi.org/10.5194/wcd-1-405-2020, https://doi.org/10.5194/wcd-1-405-2020, 2020
Short summary
Short summary
The effect of latent heating on atmospheric blocking is investigated using numerical sensitivity experiments. The modification of latent heating in the upstream cyclone has substantial effects on the upper-tropospheric circulation, demonstrating that some blocking systems do not develop at all without upstream latent heating. The results highlight the importance of moist-diabatic processes for the dynamics of prolonged anticyclonic circulation anomalies.
Tuukka Petäjä, Ella-Maria Duplissy, Ksenia Tabakova, Julia Schmale, Barbara Altstädter, Gerard Ancellet, Mikhail Arshinov, Yurii Balin, Urs Baltensperger, Jens Bange, Alison Beamish, Boris Belan, Antoine Berchet, Rossana Bossi, Warren R. L. Cairns, Ralf Ebinghaus, Imad El Haddad, Beatriz Ferreira-Araujo, Anna Franck, Lin Huang, Antti Hyvärinen, Angelika Humbert, Athina-Cerise Kalogridis, Pavel Konstantinov, Astrid Lampert, Matthew MacLeod, Olivier Magand, Alexander Mahura, Louis Marelle, Vladimir Masloboev, Dmitri Moisseev, Vaios Moschos, Niklas Neckel, Tatsuo Onishi, Stefan Osterwalder, Aino Ovaska, Pauli Paasonen, Mikhail Panchenko, Fidel Pankratov, Jakob B. Pernov, Andreas Platis, Olga Popovicheva, Jean-Christophe Raut, Aurélie Riandet, Torsten Sachs, Rosamaria Salvatori, Roberto Salzano, Ludwig Schröder, Martin Schön, Vladimir Shevchenko, Henrik Skov, Jeroen E. Sonke, Andrea Spolaor, Vasileios K. Stathopoulos, Mikko Strahlendorff, Jennie L. Thomas, Vito Vitale, Sterios Vratolis, Carlo Barbante, Sabine Chabrillat, Aurélien Dommergue, Konstantinos Eleftheriadis, Jyri Heilimo, Kathy S. Law, Andreas Massling, Steffen M. Noe, Jean-Daniel Paris, André S. H. Prévôt, Ilona Riipinen, Birgit Wehner, Zhiyong Xie, and Hanna K. Lappalainen
Atmos. Chem. Phys., 20, 8551–8592, https://doi.org/10.5194/acp-20-8551-2020, https://doi.org/10.5194/acp-20-8551-2020, 2020
Short summary
Short summary
The role of polar regions is increasing in terms of megatrends such as globalization, new transport routes, demography, and the use of natural resources with consequent effects on regional and transported pollutant concentrations. Here we summarize initial results from our integrative project exploring the Arctic environment and pollution to deliver data products, metrics, and indicators for stakeholders.
Sebastian Landwehr, Iris Thurnherr, Nicolas Cassar, Martin Gysel-Beer, and Julia Schmale
Atmos. Meas. Tech., 13, 3487–3506, https://doi.org/10.5194/amt-13-3487-2020, https://doi.org/10.5194/amt-13-3487-2020, 2020
Short summary
Short summary
Shipborne wind speed measurements are relevant for field studies of air–sea interaction processes. Distortion of the airflow by the ship’s structure can, however, lead to errors. We estimate the flow distortion bias by comparing the observations to ERA-5 reanalysis data. The underlying assumptions are that the bias depends only on the relative orientation of the ship to the wind direction and that the ERA-5 wind speeds are (on average) representative of the true wind speed.
Yongbiao Weng, Alexandra Touzeau, and Harald Sodemann
Atmos. Meas. Tech., 13, 3167–3190, https://doi.org/10.5194/amt-13-3167-2020, https://doi.org/10.5194/amt-13-3167-2020, 2020
Short summary
Short summary
We find that the known mixing ratio dependence of laser spectrometers for water vapour isotope measurements varies with isotope composition. We have developed a scheme to correct for this isotope-composition-dependent bias. The correction is most substantial at low mixing ratios. Stability tests indicate that the first-order dependency is a constant instrument characteristic. Water vapour isotope measurements at low mixing ratios can now be corrected by following our proposed procedure.
Nicolas Jullien, Étienne Vignon, Michael Sprenger, Franziska Aemisegger, and Alexis Berne
The Cryosphere, 14, 1685–1702, https://doi.org/10.5194/tc-14-1685-2020, https://doi.org/10.5194/tc-14-1685-2020, 2020
Short summary
Short summary
Although snowfall is the main input of water to the Antarctic ice sheet, snowflakes are often evaporated by dry and fierce winds near the surface of the continent. The amount of snow that actually reaches the ground is therefore considerably reduced. By analyzing the position of cyclones and fronts as well as by back-tracing the atmospheric moisture pathway towards Antarctica, this study explains in which meteorological conditions snowfall is either completely evaporated or reaches the ground.
Philipp Zschenderlein, Stephan Pfahl, Heini Wernli, and Andreas H. Fink
Weather Clim. Dynam., 1, 191–206, https://doi.org/10.5194/wcd-1-191-2020, https://doi.org/10.5194/wcd-1-191-2020, 2020
Short summary
Short summary
We analyse the formation of upper-tropospheric anticyclones connected to European surface heat waves. Tracing air masses backwards from these anticyclones, we found that trajectories are diabatically heated in two branches, either by North Atlantic cyclones or by convection closer to the heat wave anticyclone. The first branch primarily affects the onset of the anticyclone, while the second branch is more relevant for the maintenance. Our results are relevant for heat wave predictions.
Annika Oertel, Maxi Boettcher, Hanna Joos, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 1, 127–153, https://doi.org/10.5194/wcd-1-127-2020, https://doi.org/10.5194/wcd-1-127-2020, 2020
Short summary
Short summary
Warm conveyor belts (WCBs) are important, mainly stratiform cloud forming airstreams in extratropical cyclones that can include embedded convection. This WCB case study systematically compares the characteristics of convective vs. slantwise ascent of the WCB. We find that embedded convection leads to regions of significantly stronger precipitation. Moreover, it strongly modifies the potential vorticity distribution in the lower and upper troposphere, where its also influences the waveguide.
Matthias Röthlisberger, Michael Sprenger, Emmanouil Flaounas, Urs Beyerle, and Heini Wernli
Weather Clim. Dynam., 1, 45–62, https://doi.org/10.5194/wcd-1-45-2020, https://doi.org/10.5194/wcd-1-45-2020, 2020
Short summary
Short summary
In this study we quantify how much the coldest, middle and hottest third of all days during extremely hot summers contribute to their respective seasonal mean anomaly. This
extreme-summer substructurevaries substantially across the Northern Hemisphere and is directly related to the local physical drivers of extreme summers. Furthermore, comparing re-analysis (i.e. measurement-based) and climate model extreme-summer substructures reveals a remarkable level of agreement.
Andreas Schneider, Tobias Borsdorff, Joost aan de Brugh, Franziska Aemisegger, Dietrich G. Feist, Rigel Kivi, Frank Hase, Matthias Schneider, and Jochen Landgraf
Atmos. Meas. Tech., 13, 85–100, https://doi.org/10.5194/amt-13-85-2020, https://doi.org/10.5194/amt-13-85-2020, 2020
Short summary
Short summary
This paper presents a new H2O/HDO data set from TROPOMI short-wave infrared measurements. It is validated against recent ground-based FTIR measurements from the TCCON network. A bias in TCCON HDO (which is not verified) is corrected by fitting a correction factor for the HDO column to match MUSICA δD for common observations. The use of the new TROPOMI data set is demonstrated using a case study of a blocking anticyclone over Europe in July 2018.
Mareike Schuster, Jens Grieger, Andy Richling, Thomas Schartner, Sebastian Illing, Christopher Kadow, Wolfgang A. Müller, Holger Pohlmann, Stephan Pfahl, and Uwe Ulbrich
Earth Syst. Dynam., 10, 901–917, https://doi.org/10.5194/esd-10-901-2019, https://doi.org/10.5194/esd-10-901-2019, 2019
Short summary
Short summary
Decadal climate predictions are valuable to society as they allow us to estimate climate conditions several years in advance. We analyze the latest version of the German MiKlip prediction system (https://www.fona-miklip.de) and assess the effect of the model resolution on the skill of the system. The increase in the resolution of the system reduces the bias and significantly improves the forecast skill for North Atlantic extratropical winter dynamics for lead times of two to five winters.
Emmanuele Russo, Ingo Kirchner, Stephan Pfahl, Martijn Schaap, and Ulrich Cubasch
Geosci. Model Dev., 12, 5229–5249, https://doi.org/10.5194/gmd-12-5229-2019, https://doi.org/10.5194/gmd-12-5229-2019, 2019
Short summary
Short summary
This is an investigation of COSMO-CLM 5.0 sensitivity for the CORDEX Central Asia domain, with the main goal of evaluating general model performances for the area, proposing a model optimal configuration to be used in projection studies.
Results show that the model seems to be particularly sensitive to those parameterizations that deal with soil and surface features and that could positively affect the repartition of incoming radiation.
Ignacio Pisso, Espen Sollum, Henrik Grythe, Nina I. Kristiansen, Massimo Cassiani, Sabine Eckhardt, Delia Arnold, Don Morton, Rona L. Thompson, Christine D. Groot Zwaaftink, Nikolaos Evangeliou, Harald Sodemann, Leopold Haimberger, Stephan Henne, Dominik Brunner, John F. Burkhart, Anne Fouilloux, Jerome Brioude, Anne Philipp, Petra Seibert, and Andreas Stohl
Geosci. Model Dev., 12, 4955–4997, https://doi.org/10.5194/gmd-12-4955-2019, https://doi.org/10.5194/gmd-12-4955-2019, 2019
Short summary
Short summary
We present the latest release of the Lagrangian transport model FLEXPART, which simulates the transport, diffusion, dry and wet deposition, radioactive decay, and 1st-order chemical reactions of atmospheric tracers. The model has been recently updated both technically and in the representation of physicochemical processes. We describe the changes, document the most recent input and output files, provide working examples, and introduce testing capabilities.
Ekaterina P. Rets, Viktor V. Popovnin, Pavel A. Toropov, Andrew M. Smirnov, Igor V. Tokarev, Julia N. Chizhova, Nadine A. Budantseva, Yurij K. Vasil'chuk, Maria B. Kireeva, Alexey A. Ekaykin, Arina N. Veres, Alexander A. Aleynikov, Natalia L. Frolova, Anatoly S. Tsyplenkov, Aleksei A. Poliukhov, Sergey R. Chalov, Maria A. Aleshina, and Ekaterina D. Kornilova
Earth Syst. Sci. Data, 11, 1463–1481, https://doi.org/10.5194/essd-11-1463-2019, https://doi.org/10.5194/essd-11-1463-2019, 2019
Short summary
Short summary
As climate change completely restructures hydrological processes and ecosystems in alpine areas, monitoring is fundamental to adaptation. Here we present a database on more than 10 years of hydrometeorological monitoring at the Djankuat station in the North Caucasus, which is one of 30 unique world reference sites with annual mass balance series longer than 50 years. We hope it will be useful for scientists studying various aspects of hydrological processes in mountain areas.
Hera Guðlaugsdóttir, Jesper Sjolte, Árný Erla Sveinbjörnsdóttir, and Hans Christian Steen-Larsen
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-99, https://doi.org/10.5194/cp-2019-99, 2019
Revised manuscript not accepted
Short summary
Short summary
In the North Atlantic four modes of climate variability dominate weather. Here we assess how these modes are affected after both equatorial and high latitude eruptions, known to influence temperature in the atmosphere. Main results show that the modes associated with extreme weather events tend to follow high latitude eruptions as opposed to equatorial eruptions. These modes have also become more frequent as a result of anthropogenic warming, providing an insight into the dominating mechanism.
George S. Fanourgakis, Maria Kanakidou, Athanasios Nenes, Susanne E. Bauer, Tommi Bergman, Ken S. Carslaw, Alf Grini, Douglas S. Hamilton, Jill S. Johnson, Vlassis A. Karydis, Alf Kirkevåg, John K. Kodros, Ulrike Lohmann, Gan Luo, Risto Makkonen, Hitoshi Matsui, David Neubauer, Jeffrey R. Pierce, Julia Schmale, Philip Stier, Kostas Tsigaridis, Twan van Noije, Hailong Wang, Duncan Watson-Parris, Daniel M. Westervelt, Yang Yang, Masaru Yoshioka, Nikos Daskalakis, Stefano Decesari, Martin Gysel-Beer, Nikos Kalivitis, Xiaohong Liu, Natalie M. Mahowald, Stelios Myriokefalitakis, Roland Schrödner, Maria Sfakianaki, Alexandra P. Tsimpidi, Mingxuan Wu, and Fangqun Yu
Atmos. Chem. Phys., 19, 8591–8617, https://doi.org/10.5194/acp-19-8591-2019, https://doi.org/10.5194/acp-19-8591-2019, 2019
Short summary
Short summary
Effects of aerosols on clouds are important for climate studies but are among the largest uncertainties in climate projections. This study evaluates the skill of global models to simulate aerosol, cloud condensation nuclei (CCN) and cloud droplet number concentrations (CDNCs). Model results show reduced spread in CDNC compared to CCN due to the negative correlation between the sensitivities of CDNC to aerosol number concentration (air pollution) and updraft velocity (atmospheric dynamics).
Andrew O. Hoffman, Hans Christian Steen-Larsen, Knut Christianson, and Christine Hvidberg
Geosci. Instrum. Method. Data Syst., 8, 149–159, https://doi.org/10.5194/gi-8-149-2019, https://doi.org/10.5194/gi-8-149-2019, 2019
Short summary
Short summary
We present the design considerations and deployment of an autonomous modular terrestrial rover for ice-sheet exploration that is inexpensive, easy to construct, and allows for instrumentation customization. The rover proved capable of driving over 20 km on a single charge with a drawbar pull of 250 N, which is sufficient to tow commercial ground-penetrating radars. Due to its low cost, low power requirements, and simple modular design, mass deployments of this rover design are practicable.
Keun-Ok Lee, Franziska Aemisegger, Stephan Pfahl, Cyrille Flamant, Jean-Lionel Lacour, and Jean-Pierre Chaboureau
Atmos. Chem. Phys., 19, 7487–7506, https://doi.org/10.5194/acp-19-7487-2019, https://doi.org/10.5194/acp-19-7487-2019, 2019
Short summary
Short summary
Our study is the first study to investigate the potential benefit of stable water isotopes (SWIs) in the context of a heavy precipitation event in the Mediterranean. As such, our study provides a proof of concept of the usefulness of SWI data to understand the variety of origins and moisture processes associated with air masses feeding the convection over southern Italy.
Astrid Fremme and Harald Sodemann
Hydrol. Earth Syst. Sci., 23, 2525–2540, https://doi.org/10.5194/hess-23-2525-2019, https://doi.org/10.5194/hess-23-2525-2019, 2019
Short summary
Short summary
This study examines the evaporation sources of precipitation falling over the Yangtze River valley on China's east coast. The summer monsoon rainfall causes large seasonal and interannual variations which affect a large population. We found that evaporation from surrounding land regions is important, supplying more than half of the summertime precipitation. Extreme dry and wet summers are connected to contributions from specific land and ocean regions.
Bojan Škerlak, Stephan Pfahl, Michael Sprenger, and Heini Wernli
Atmos. Chem. Phys., 19, 6535–6549, https://doi.org/10.5194/acp-19-6535-2019, https://doi.org/10.5194/acp-19-6535-2019, 2019
Short summary
Short summary
Upper-level fronts are often associated with the rapid transport of stratospheric air to the lower troposphere, leading to significantly enhanced ozone concentrations. This paper considers the multi-scale nature that is needed to bring stratospheric air down to the surface. The final transport step to the surface can be related to frontal zones and the associated vertical winds or to near-horizontal tracer transport followed by entrainment into a growing planetary boundary layer.
Ghislain Motos, Julia Schmale, Joel C. Corbin, Rob. L. Modini, Nadine Karlen, Michele Bertò, Urs Baltensperger, and Martin Gysel-Beer
Atmos. Chem. Phys., 19, 3833–3855, https://doi.org/10.5194/acp-19-3833-2019, https://doi.org/10.5194/acp-19-3833-2019, 2019
Short summary
Short summary
Atmospheric black carbon (BC) particles are strong light absorbers that contribute to global warming. In situ cloud measurements performed at a high-altitude site showed that cloud supersaturation mainly drives the activation of BC to cloud droplets. It was further shown how BC particle size and mixing state modulate this nucleation scavenging in agreement with simplified theoretical predictions. These findings can inform model simulations towards a better representation of the BC life cycle.
Julia Boike, Jan Nitzbon, Katharina Anders, Mikhail Grigoriev, Dmitry Bolshiyanov, Moritz Langer, Stephan Lange, Niko Bornemann, Anne Morgenstern, Peter Schreiber, Christian Wille, Sarah Chadburn, Isabelle Gouttevin, Eleanor Burke, and Lars Kutzbach
Earth Syst. Sci. Data, 11, 261–299, https://doi.org/10.5194/essd-11-261-2019, https://doi.org/10.5194/essd-11-261-2019, 2019
Short summary
Short summary
Long-term observational data are available from the Samoylov research site in northern Siberia, where meteorological parameters, energy balance, and subsurface observations have been recorded since 1998. This paper presents the temporal data set produced between 2002 and 2017, explaining the instrumentation, calibration, processing, and data quality control. Furthermore, we present a merged dataset of the parameters, which were measured from 1998 onwards.
Ghislain Motos, Julia Schmale, Joel C. Corbin, Marco Zanatta, Urs Baltensperger, and Martin Gysel-Beer
Atmos. Chem. Phys., 19, 2183–2207, https://doi.org/10.5194/acp-19-2183-2019, https://doi.org/10.5194/acp-19-2183-2019, 2019
Short summary
Short summary
Clouds form by condensation of water vapour on aerosol particles. We showed that black carbon, a subset of particles responsible for a climate warming due to their strong light absorption and known to be insoluble in water, were able to form droplets when the humidity of the air is very slightly over 100 %. This is made possible by their acquisition of a
coatingmade of hydrophilic material during atmospheric aging. The predictability of this process using theory was successfully tested.
David Holl, Christian Wille, Torsten Sachs, Peter Schreiber, Benjamin R. K. Runkle, Lutz Beckebanze, Moritz Langer, Julia Boike, Eva-Maria Pfeiffer, Irina Fedorova, Dimitry Y. Bolshianov, Mikhail N. Grigoriev, and Lars Kutzbach
Earth Syst. Sci. Data, 11, 221–240, https://doi.org/10.5194/essd-11-221-2019, https://doi.org/10.5194/essd-11-221-2019, 2019
Short summary
Short summary
We present a multi-annual time series of land–atmosphere carbon dioxide fluxes measured in situ with the eddy covariance technique in the Siberian Arctic. In arctic permafrost regions, climate–carbon feedbacks are amplified. Therefore, increased efforts to better represent these regions in global climate models have been made in recent years. Up to now, the available database of in situ measurements from the Arctic was biased towards Alaska and records from the Eurasian Arctic were scarce.
Pascal Graf, Heini Wernli, Stephan Pfahl, and Harald Sodemann
Atmos. Chem. Phys., 19, 747–765, https://doi.org/10.5194/acp-19-747-2019, https://doi.org/10.5194/acp-19-747-2019, 2019
Short summary
Short summary
This article studies the interaction between falling rain and vapour with stable water isotopes. In particular, rain evaporation is relevant for several atmospheric processes, but remains difficult to quantify. A novel framework is introduced to facilitate the interpretation of stable water isotope observations in near-surface vapour and rain. The usefulness of this concept is demonstrated using observations at high time resolution from a cold front. Sensitivities are tested with a simple model.
Johannes Eckstein, Roland Ruhnke, Stephan Pfahl, Emanuel Christner, Christopher Diekmann, Christoph Dyroff, Daniel Reinert, Daniel Rieger, Matthias Schneider, Jennifer Schröter, Andreas Zahn, and Peter Braesicke
Geosci. Model Dev., 11, 5113–5133, https://doi.org/10.5194/gmd-11-5113-2018, https://doi.org/10.5194/gmd-11-5113-2018, 2018
Short summary
Short summary
We present ICON-ART-Iso, an extension to the global circulation model ICON, which allows for the simulation of the stable isotopologues of water. The main advantage over other isotope-enabled models is its flexible design with respect to the number of tracers simulated. We compare the results of several simulations to measurements of different scale. ICON-ART-Iso is able to reasonably reproduce the measurements. It is a promising tool to aid in the investigation of the atmospheric water cycle.
Sebastian Landwehr, Scott D. Miller, Murray J. Smith, Thomas G. Bell, Eric S. Saltzman, and Brian Ward
Atmos. Chem. Phys., 18, 4297–4315, https://doi.org/10.5194/acp-18-4297-2018, https://doi.org/10.5194/acp-18-4297-2018, 2018
Short summary
Short summary
The ocean takes up about 25 % of emitted anthropogenic emitted carbon dioxide and thus plays a significant role in the regulation of climate. In order to accurately calculate this uptake, a quantity known as the air–sea gas transfer velocity needs to be determined. This is typically parameterised with mean wind speed, the most commonly used velocity scale for calculating air–sea transfer coefficients. In this article, we propose an alternative velocity scale known as the friction velocity.
Julia Schmale, Silvia Henning, Stefano Decesari, Bas Henzing, Helmi Keskinen, Karine Sellegri, Jurgita Ovadnevaite, Mira L. Pöhlker, Joel Brito, Aikaterini Bougiatioti, Adam Kristensson, Nikos Kalivitis, Iasonas Stavroulas, Samara Carbone, Anne Jefferson, Minsu Park, Patrick Schlag, Yoko Iwamoto, Pasi Aalto, Mikko Äijälä, Nicolas Bukowiecki, Mikael Ehn, Göran Frank, Roman Fröhlich, Arnoud Frumau, Erik Herrmann, Hartmut Herrmann, Rupert Holzinger, Gerard Kos, Markku Kulmala, Nikolaos Mihalopoulos, Athanasios Nenes, Colin O'Dowd, Tuukka Petäjä, David Picard, Christopher Pöhlker, Ulrich Pöschl, Laurent Poulain, André Stephan Henry Prévôt, Erik Swietlicki, Meinrat O. Andreae, Paulo Artaxo, Alfred Wiedensohler, John Ogren, Atsushi Matsuki, Seong Soo Yum, Frank Stratmann, Urs Baltensperger, and Martin Gysel
Atmos. Chem. Phys., 18, 2853–2881, https://doi.org/10.5194/acp-18-2853-2018, https://doi.org/10.5194/acp-18-2853-2018, 2018
Short summary
Short summary
Collocated long-term observations of cloud condensation nuclei (CCN) number concentrations, particle number size distributions and chemical composition from 12 sites are synthesized. Observations cover coastal environments, the Arctic, the Mediterranean, the boreal and rain forest, high alpine and continental background sites, and Monsoon-influenced areas. We interpret regional and seasonal variability. CCN concentrations are predicted with the κ–Köhler model and compared to the measurements.
Marina Dütsch, Stephan Pfahl, Miro Meyer, and Heini Wernli
Atmos. Chem. Phys., 18, 1653–1669, https://doi.org/10.5194/acp-18-1653-2018, https://doi.org/10.5194/acp-18-1653-2018, 2018
Short summary
Short summary
Atmospheric processes are imprinted in the concentrations of stable water isotopes. Therefore, isotopes can be used to gain insight into these processes and improve our understanding of the water cycle. In this study, we present a new method that quantitatively shows which atmospheric processes influence isotope concentrations in near-surface water vapour over Europe. We found that the most important processes are evaporation from the ocean, evapotranspiration from land, and turbulent mixing.
Thomas G. Bell, Sebastian Landwehr, Scott D. Miller, Warren J. de Bruyn, Adrian H. Callaghan, Brian Scanlon, Brian Ward, Mingxi Yang, and Eric S. Saltzman
Atmos. Chem. Phys., 17, 9019–9033, https://doi.org/10.5194/acp-17-9019-2017, https://doi.org/10.5194/acp-17-9019-2017, 2017
Short summary
Short summary
The mechanisms that determine the air–sea exchange of gases such as carbon dioxide are not well understood. During a research cruise in the North Atlantic, we simultaneously measured the air–sea transfer of two gases with contrasting solubility over a range in wind and wave conditions. We compare the transfer of these gases to improve understanding of how bubbles from breaking waves may mediate air–sea gas fluxes.
Hanna Joos, Erica Madonna, Kasja Witlox, Sylvaine Ferrachat, Heini Wernli, and Ulrike Lohmann
Atmos. Chem. Phys., 17, 6243–6255, https://doi.org/10.5194/acp-17-6243-2017, https://doi.org/10.5194/acp-17-6243-2017, 2017
Short summary
Short summary
The influence of pollution on the precipitation formation in warm conveyor belts (WCBs), the most rising air streams in low-pressure systems is investigated. We investigate in detail the cloud properties and resulting precipitation along these rising airstreams which are simulated with a global climate model. Overall, no big impact of aerosols on precipitation can be seen, however, when comparing the most polluted/cleanest WCBs, a suppression of precipitation by aerosols is observed.
Harald Sodemann, Franziska Aemisegger, Stephan Pfahl, Mark Bitter, Ulrich Corsmeier, Thomas Feuerle, Pascal Graf, Rolf Hankers, Gregor Hsiao, Helmut Schulz, Andreas Wieser, and Heini Wernli
Atmos. Chem. Phys., 17, 6125–6151, https://doi.org/10.5194/acp-17-6125-2017, https://doi.org/10.5194/acp-17-6125-2017, 2017
Short summary
Short summary
We report here the first survey of stable water isotope composition over the Mediterranean sea made from aircraft. The stable isotope composition of the atmospheric water vapour changed in response to evaporation conditions at the sea surface, elevation, and airmass transport history. Our data set will be valuable for testing how water is transported in weather prediction and climate models and for understanding processes in the Mediterranean water cycle.
Anna Kozachek, Vladimir Mikhalenko, Valérie Masson-Delmotte, Alexey Ekaykin, Patrick Ginot, Stanislav Kutuzov, Michel Legrand, Vladimir Lipenkov, and Susanne Preunkert
Clim. Past, 13, 473–489, https://doi.org/10.5194/cp-13-473-2017, https://doi.org/10.5194/cp-13-473-2017, 2017
Saehee Lim, Xavier Faïn, Patrick Ginot, Vladimir Mikhalenko, Stanislav Kutuzov, Jean-Daniel Paris, Anna Kozachek, and Paolo Laj
Atmos. Chem. Phys., 17, 3489–3505, https://doi.org/10.5194/acp-17-3489-2017, https://doi.org/10.5194/acp-17-3489-2017, 2017
Short summary
Short summary
A record of light-absorbing refractory black carbon (rBC), emitted by fossil fuel combustion and biomass burning, was reconstructed from the ice cores drilled at a high-altitude eastern European site in Mt. Elbrus. This record reports for the first time the high-resolution rBC mass concentrations in the European outflows over the past 189 years. Our study suggests that the past changes in BC emissions of eastern Europe need to be considered in assessing ongoing air quality regulations.
V. Mikhalenko, S. Sokratov, S. Kutuzov, P. Ginot, M. Legrand, S. Preunkert, I. Lavrentiev, A. Kozachek, A. Ekaykin, X. Faïn, S. Lim, U. Schotterer, V. Lipenkov, and P. Toropov
The Cryosphere, 9, 2253–2270, https://doi.org/10.5194/tc-9-2253-2015, https://doi.org/10.5194/tc-9-2253-2015, 2015
Short summary
Short summary
For the first time an ice core unaffected by melting was recovered from the western Elbrus plateau in the Caucasus. The preserved chemical and isotopic data are considered a source of paleo-climate information for southern/eastern Europe. Considerable snow accumulation (about 1500mm w.e.) and high sampling resolution allowed seasonal variability to be obtained in climate signals, covering a time period of about 200 years. Ice flow models suggest that the basal ice age can be more than 600 years.
P. Reutter, B. Škerlak, M. Sprenger, and H. Wernli
Atmos. Chem. Phys., 15, 10939–10953, https://doi.org/10.5194/acp-15-10939-2015, https://doi.org/10.5194/acp-15-10939-2015, 2015
Short summary
Short summary
In this manuscript, we investigate the exchange of air masses across the dynamical tropopause (stratosphere-troposphere exchange, STE) in the vicinity of North Atlantic cyclones. By using two 6-hourly resolved ERA-Interim climatologies of STE and cyclones from 1979 to 2011, we are able to directly compute the amount of STE in the vicinity of every individual cyclone in this time period. This enables us to provide a robust and consistent quantification of STE near North Atlantic cyclones.
M. Sprenger and H. Wernli
Geosci. Model Dev., 8, 2569–2586, https://doi.org/10.5194/gmd-8-2569-2015, https://doi.org/10.5194/gmd-8-2569-2015, 2015
C. L. Ryder, J. B. McQuaid, C. Flamant, P. D. Rosenberg, R. Washington, H. E. Brindley, E. J. Highwood, J. H. Marsham, D. J. Parker, M. C. Todd, J. R. Banks, J. K. Brooke, S. Engelstaedter, V. Estelles, P. Formenti, L. Garcia-Carreras, C. Kocha, F. Marenco, H. Sodemann, C. J. T. Allen, A. Bourdon, M. Bart, C. Cavazos-Guerra, S. Chevaillier, J. Crosier, E. Darbyshire, A. R. Dean, J. R. Dorsey, J. Kent, D. O'Sullivan, K. Schepanski, K. Szpek, J. Trembath, and A. Woolley
Atmos. Chem. Phys., 15, 8479–8520, https://doi.org/10.5194/acp-15-8479-2015, https://doi.org/10.5194/acp-15-8479-2015, 2015
Short summary
Short summary
Measurements of the Saharan atmosphere and of atmospheric mineral dust are lacking but are vital to our understanding of the climate of this region and their impacts further afield. Novel observations were made by the Fennec climate programme during June 2011 and 2012 using ground-based, remote sensing and airborne platforms. Here we describe the airborne observations and the contributions they have made to furthering our understanding of the Saharan climate system.
D. Bolshiyanov, A. Makarov, and L. Savelieva
Biogeosciences, 12, 579–593, https://doi.org/10.5194/bg-12-579-2015, https://doi.org/10.5194/bg-12-579-2015, 2015
I. Fedorova, A. Chetverova, D. Bolshiyanov, A. Makarov, J. Boike, B. Heim, A. Morgenstern, P. P. Overduin, C. Wegner, V. Kashina, A. Eulenburg, E. Dobrotina, and I. Sidorina
Biogeosciences, 12, 345–363, https://doi.org/10.5194/bg-12-345-2015, https://doi.org/10.5194/bg-12-345-2015, 2015
A. Kunz, N. Spelten, P. Konopka, R. Müller, R. M. Forbes, and H. Wernli
Atmos. Chem. Phys., 14, 10803–10822, https://doi.org/10.5194/acp-14-10803-2014, https://doi.org/10.5194/acp-14-10803-2014, 2014
P. Reutter, J. Trentmann, A. Seifert, P. Neis, H. Su, D. Chang, M. Herzog, H. Wernli, M. O. Andreae, and U. Pöschl
Atmos. Chem. Phys., 14, 7573–7583, https://doi.org/10.5194/acp-14-7573-2014, https://doi.org/10.5194/acp-14-7573-2014, 2014
C. M. Grams, H. Binder, S. Pfahl, N. Piaget, and H. Wernli
Nat. Hazards Earth Syst. Sci., 14, 1691–1702, https://doi.org/10.5194/nhess-14-1691-2014, https://doi.org/10.5194/nhess-14-1691-2014, 2014
A. Winschall, S. Pfahl, H. Sodemann, and H. Wernli
Atmos. Chem. Phys., 14, 6605–6619, https://doi.org/10.5194/acp-14-6605-2014, https://doi.org/10.5194/acp-14-6605-2014, 2014
S. Pfahl
Nat. Hazards Earth Syst. Sci., 14, 1461–1475, https://doi.org/10.5194/nhess-14-1461-2014, https://doi.org/10.5194/nhess-14-1461-2014, 2014
J.-L. Bonne, V. Masson-Delmotte, O. Cattani, M. Delmotte, C. Risi, H. Sodemann, and H. C. Steen-Larsen
Atmos. Chem. Phys., 14, 4419–4439, https://doi.org/10.5194/acp-14-4419-2014, https://doi.org/10.5194/acp-14-4419-2014, 2014
F. Aemisegger, S. Pfahl, H. Sodemann, I. Lehner, S. I. Seneviratne, and H. Wernli
Atmos. Chem. Phys., 14, 4029–4054, https://doi.org/10.5194/acp-14-4029-2014, https://doi.org/10.5194/acp-14-4029-2014, 2014
S. Pfahl and H. Sodemann
Clim. Past, 10, 771–781, https://doi.org/10.5194/cp-10-771-2014, https://doi.org/10.5194/cp-10-771-2014, 2014
S. Landwehr, S. D. Miller, M. J. Smith, E. S. Saltzman, and B. Ward
Atmos. Chem. Phys., 14, 3361–3372, https://doi.org/10.5194/acp-14-3361-2014, https://doi.org/10.5194/acp-14-3361-2014, 2014
B. Škerlak, M. Sprenger, and H. Wernli
Atmos. Chem. Phys., 14, 913–937, https://doi.org/10.5194/acp-14-913-2014, https://doi.org/10.5194/acp-14-913-2014, 2014
I. Antcibor, A. Eschenbach, S. Zubrzycki, L. Kutzbach, D. Bolshiyanov, and E.-M. Pfeiffer
Biogeosciences, 11, 1–15, https://doi.org/10.5194/bg-11-1-2014, https://doi.org/10.5194/bg-11-1-2014, 2014
A. K. Miltenberger, S. Pfahl, and H. Wernli
Geosci. Model Dev., 6, 1989–2004, https://doi.org/10.5194/gmd-6-1989-2013, https://doi.org/10.5194/gmd-6-1989-2013, 2013
C. Frick, A. Seifert, and H. Wernli
Geosci. Model Dev., 6, 1925–1939, https://doi.org/10.5194/gmd-6-1925-2013, https://doi.org/10.5194/gmd-6-1925-2013, 2013
J. Schmale, J. Schneider, E. Nemitz, Y. S. Tang, U. Dragosits, T. D. Blackall, P. N. Trathan, G. J. Phillips, M. Sutton, and C. F. Braban
Atmos. Chem. Phys., 13, 8669–8694, https://doi.org/10.5194/acp-13-8669-2013, https://doi.org/10.5194/acp-13-8669-2013, 2013
H. C. Steen-Larsen, S. J. Johnsen, V. Masson-Delmotte, B. Stenni, C. Risi, H. Sodemann, D. Balslev-Clausen, T. Blunier, D. Dahl-Jensen, M. D. Ellehøj, S. Falourd, A. Grindsted, V. Gkinis, J. Jouzel, T. Popp, S. Sheldon, S. B. Simonsen, J. Sjolte, J. P. Steffensen, P. Sperlich, A. E. Sveinbjörnsdóttir, B. M. Vinther, and J. W. C. White
Atmos. Chem. Phys., 13, 4815–4828, https://doi.org/10.5194/acp-13-4815-2013, https://doi.org/10.5194/acp-13-4815-2013, 2013
C. L. Ryder, E. J. Highwood, P. D. Rosenberg, J. Trembath, J. K. Brooke, M. Bart, A. Dean, J. Crosier, J. Dorsey, H. Brindley, J. Banks, J. H. Marsham, J. B. McQuaid, H. Sodemann, and R. Washington
Atmos. Chem. Phys., 13, 303–325, https://doi.org/10.5194/acp-13-303-2013, https://doi.org/10.5194/acp-13-303-2013, 2013
Related subject area
Subject: Isotopes | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Vehicle-based in situ observations of the water vapor isotopic composition across China: spatial and seasonal distributions and controls
Using carbon-14 and carbon-13 measurements for source attribution of atmospheric methane in the Athabasca oil sands region
Experimental investigation of the stable water isotope distribution in an Alpine lake environment (L-WAIVE)
Craig–Gordon model validation using stable isotope ratios in water vapor over the Southern Ocean
Moisture origin as a driver of temporal variabilities of the water vapour isotopic composition in the Lena River Delta, Siberia
Vertical profile observations of water vapor deuterium excess in the lower troposphere
A new interpretative framework for below-cloud effects on stable water isotopes in vapour and rain
Isotopic composition of daily precipitation along the southern foothills of the Himalayas: impact of marine and continental sources of atmospheric moisture
The stable isotopic composition of water vapour above Corsica during the HyMeX SOP1 campaign: insight into vertical mixing processes from lower-tropospheric survey flights
Annual variation in event-scale precipitation δ2H at Barrow, AK, reflects vapor source region
Interpreting the 13C ∕ 12C ratio of carbon dioxide in an urban airshed in the Yangtze River Delta, China
The influence of snow sublimation and meltwater evaporation on δD of water vapor in the atmospheric boundary layer of central Europe
Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau
Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer
Detecting moisture transport pathways to the subtropical North Atlantic free troposphere using paired H2O-δD in situ measurements
Toward consistency between trends in bottom-up CO2 emissions and top-down atmospheric measurements in the Los Angeles megacity
Isotopic signatures of production and uptake of H2 by soil
Simultaneous monitoring of stable oxygen isotope composition in water vapour and precipitation over the central Tibetan Plateau
Deuterium excess in the atmospheric water vapour of a Mediterranean coastal wetland: regional vs. local signatures
Factors controlling temporal variability of near-ground atmospheric 222Rn concentration over central Europe
The isotopic composition of water vapour and precipitation in Ivittuut, southern Greenland
Deuterium excess as a proxy for continental moisture recycling and plant transpiration
On the variability of atmospheric 222Rn activity concentrations measured at Neumayer, coastal Antarctica
Precipitation isoscape of high reliefs: interpolation scheme designed and tested for monthly resolved precipitation oxygen isotope records of an Alpine domain
Kinetic fractionation of gases by deep air convection in polar firn
Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet
Determining water sources in the boundary layer from tall tower profiles of water vapor and surface water isotope ratios after a snowstorm in Colorado
Temporal evolution of stable water isotopologues in cloud droplets in a hill cap cloud in central Europe (HCCT-2010)
Stable water isotopologue ratios in fog and cloud droplets of liquid clouds are not size-dependent
Change of the Asian dust source region deduced from the composition of anthropogenic radionuclides in surface soil in Mongolia
A map of radon flux at the Australian land surface
Di Wang, Lide Tian, Camille Risi, Xuejie Wang, Jiangpeng Cui, Gabriel J. Bowen, Kei Yoshimura, Zhongwang Wei, and Laurent Z. X. Li
Atmos. Chem. Phys., 23, 3409–3433, https://doi.org/10.5194/acp-23-3409-2023, https://doi.org/10.5194/acp-23-3409-2023, 2023
Short summary
Short summary
To better understand the spatial and temporal distribution of vapor isotopes, we present two vehicle-based spatially continuous snapshots of the near-surface vapor isotopes in China during the pre-monsoon and monsoon periods. These observations are explained well by different moisture sources and processes along the air mass trajectories. Our results suggest that proxy records need to be interpreted in the context of regional systems and sources of moisture.
Regina Gonzalez Moguel, Felix Vogel, Sébastien Ars, Hinrich Schaefer, Jocelyn C. Turnbull, and Peter M. J. Douglas
Atmos. Chem. Phys., 22, 2121–2133, https://doi.org/10.5194/acp-22-2121-2022, https://doi.org/10.5194/acp-22-2121-2022, 2022
Short summary
Short summary
Evaluating methane (CH4) sources in the Athabasca oil sands region (AOSR) is crucial to effectively mitigate CH4 emissions. We tested the use of carbon isotopes to estimate source contributions from key CH4 sources in the AOSR and found that 56 ± 18 % of CH4 emissions originated from surface mining and processing facilities, 34 ± 18 % from tailings ponds, and 10 ± < 1 % from wetlands, confirming previous findings and showing that this method can be successfully used to partition CH4 sources.
Patrick Chazette, Cyrille Flamant, Harald Sodemann, Julien Totems, Anne Monod, Elsa Dieudonné, Alexandre Baron, Andrew Seidl, Hans Christian Steen-Larsen, Pascal Doira, Amandine Durand, and Sylvain Ravier
Atmos. Chem. Phys., 21, 10911–10937, https://doi.org/10.5194/acp-21-10911-2021, https://doi.org/10.5194/acp-21-10911-2021, 2021
Short summary
Short summary
To gain understanding on the vertical structure of atmospheric water vapour above mountain lakes and to assess its link to the isotopic composition of the lake water and small-scale dynamics, the L-WAIVE field campaign was conducted in the Annecy valley in the French Alps in June 2019. Based on a synergy between ground-based, boat-borne, and airborne measuring platforms, significant gradients of isotopic content have been revealed at the transitions to the lake and to the free troposphere.
Shaakir Shabir Dar, Prosenjit Ghosh, Ankit Swaraj, and Anil Kumar
Atmos. Chem. Phys., 20, 11435–11449, https://doi.org/10.5194/acp-20-11435-2020, https://doi.org/10.5194/acp-20-11435-2020, 2020
Jean-Louis Bonne, Hanno Meyer, Melanie Behrens, Julia Boike, Sepp Kipfstuhl, Benjamin Rabe, Toni Schmidt, Lutz Schönicke, Hans Christian Steen-Larsen, and Martin Werner
Atmos. Chem. Phys., 20, 10493–10511, https://doi.org/10.5194/acp-20-10493-2020, https://doi.org/10.5194/acp-20-10493-2020, 2020
Short summary
Short summary
This study introduces 2 years of continuous near-surface in situ observations of the stable isotopic composition of water vapour in parallel with precipitation in north-eastern Siberia. We evaluate the atmospheric transport of moisture towards the region of our observations with simulations constrained by meteorological reanalyses and use this information to interpret the temporal variations of the vapour isotopic composition from seasonal to synoptic timescales.
Olivia E. Salmon, Lisa R. Welp, Michael E. Baldwin, Kristian D. Hajny, Brian H. Stirm, and Paul B. Shepson
Atmos. Chem. Phys., 19, 11525–11543, https://doi.org/10.5194/acp-19-11525-2019, https://doi.org/10.5194/acp-19-11525-2019, 2019
Short summary
Short summary
We conducted airborne vertical profile measurements of water vapor stable isotopes to examine how boundary layer, cloud, and mixing processes influence the vertical structure of deuterium excess in the lower troposphere. We discuss reasons our observations are consistent with water vapor isotope theory on some days and not others. Deuterium excess may be useful for understanding complex processes occurring at the top of the boundary layer, including cloud formation, evaporation, and air mixing.
Pascal Graf, Heini Wernli, Stephan Pfahl, and Harald Sodemann
Atmos. Chem. Phys., 19, 747–765, https://doi.org/10.5194/acp-19-747-2019, https://doi.org/10.5194/acp-19-747-2019, 2019
Short summary
Short summary
This article studies the interaction between falling rain and vapour with stable water isotopes. In particular, rain evaporation is relevant for several atmospheric processes, but remains difficult to quantify. A novel framework is introduced to facilitate the interpretation of stable water isotope observations in near-surface vapour and rain. The usefulness of this concept is demonstrated using observations at high time resolution from a cold front. Sensitivities are tested with a simple model.
Ghulam Jeelani, Rajendrakumar D. Deshpande, Michal Galkowski, and Kazimierz Rozanski
Atmos. Chem. Phys., 18, 8789–8805, https://doi.org/10.5194/acp-18-8789-2018, https://doi.org/10.5194/acp-18-8789-2018, 2018
Short summary
Short summary
Analysis of stable isotope composition of daily precipitation collected along the southern foothills of the Himalayas was used to gain deeper insight into the mechanisms controlling isotopic composition of precipitation. The results suggested that the decrease in isotopic composition in the course of ISM evolution stems from large-scale recycling of moisture-driven monsoonal circulation. High d-excess of rainfall is attributed to moisture of continental origin released into the atmosphere.
Harald Sodemann, Franziska Aemisegger, Stephan Pfahl, Mark Bitter, Ulrich Corsmeier, Thomas Feuerle, Pascal Graf, Rolf Hankers, Gregor Hsiao, Helmut Schulz, Andreas Wieser, and Heini Wernli
Atmos. Chem. Phys., 17, 6125–6151, https://doi.org/10.5194/acp-17-6125-2017, https://doi.org/10.5194/acp-17-6125-2017, 2017
Short summary
Short summary
We report here the first survey of stable water isotope composition over the Mediterranean sea made from aircraft. The stable isotope composition of the atmospheric water vapour changed in response to evaporation conditions at the sea surface, elevation, and airmass transport history. Our data set will be valuable for testing how water is transported in weather prediction and climate models and for understanding processes in the Mediterranean water cycle.
Annie L. Putman, Xiahong Feng, Leslie J. Sonder, and Eric S. Posmentier
Atmos. Chem. Phys., 17, 4627–4639, https://doi.org/10.5194/acp-17-4627-2017, https://doi.org/10.5194/acp-17-4627-2017, 2017
Short summary
Short summary
Water vapor source and transport are linked to the stable isotopes of precipitation of 70 storms at Barrow, AK, USA. Barrow's vapor came from the North Pacific in winter and the Arctic Ocean in summer. Half the isotopic variability was explained by the size of the temperature drop from the vapor source to Barrow, the evaporation conditions, and whether the vapor traveled over mountains. Because isotopes reflect the regional meteorology they may be early indicators of Arctic hydroclimatic change.
Jiaping Xu, Xuhui Lee, Wei Xiao, Chang Cao, Shoudong Liu, Xuefa Wen, Jingzheng Xu, Zhen Zhang, and Jiayu Zhao
Atmos. Chem. Phys., 17, 3385–3399, https://doi.org/10.5194/acp-17-3385-2017, https://doi.org/10.5194/acp-17-3385-2017, 2017
Short summary
Short summary
The Yangtze River Delta is one of the most industrialized regions in China. In situ optical isotopic measurement in Nanjing, a city located in the Delta, showed unusually high atmospheric δ13C signals in the summer (−7.44 ‰, July 2013 mean), which we attributed to the influence of cement production in the region. Flux partitioning calculations revealed that natural ecosystems in the region were a negligibly small source of atmospheric CO2.
Emanuel Christner, Martin Kohler, and Matthias Schneider
Atmos. Chem. Phys., 17, 1207–1225, https://doi.org/10.5194/acp-17-1207-2017, https://doi.org/10.5194/acp-17-1207-2017, 2017
Short summary
Short summary
Post-depositional fractionation of stable water isotopes due to fractioning surface evaporation introduces uncertainty to isotope applications such as the reconstruction of paleotemperatures, paleoaltimetry, and the investigation of ground water formation. In this paper we combine measurements of stable water isotopes in near-surface water vapor with a Lagrangian isotope model to investigate isotope fractionation during the evaporation of surface-layer snow in central Europe.
Mathieu Casado, Amaelle Landais, Valérie Masson-Delmotte, Christophe Genthon, Erik Kerstel, Samir Kassi, Laurent Arnaud, Ghislain Picard, Frederic Prie, Olivier Cattani, Hans-Christian Steen-Larsen, Etienne Vignon, and Peter Cermak
Atmos. Chem. Phys., 16, 8521–8538, https://doi.org/10.5194/acp-16-8521-2016, https://doi.org/10.5194/acp-16-8521-2016, 2016
Short summary
Short summary
Climatic conditions in Concordia are very cold (−55 °C in average) and very dry, imposing difficult conditions to measure the water vapour isotopic composition. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces (down to 20 ppmv). Here we present the results results of a first campaign of measurement of isotopic composition of water vapour in Concordia, the site where the 800 000 years long ice core was drilled.
Timothy J. Griffis, Jeffrey D. Wood, John M. Baker, Xuhui Lee, Ke Xiao, Zichong Chen, Lisa R. Welp, Natalie M. Schultz, Galen Gorski, Ming Chen, and John Nieber
Atmos. Chem. Phys., 16, 5139–5157, https://doi.org/10.5194/acp-16-5139-2016, https://doi.org/10.5194/acp-16-5139-2016, 2016
Short summary
Short summary
Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle. We present the first multi-annual isotope (oxygen and deuterium) water vapor observations from a very tall tower (185 m) in the upper Midwest, United States, to diagnose the sources, transport, and fractionation of water vapor in the atmosphere. The results show a relatively high degree of summertime water recycling within the region (~30 % mean and ~60 % maximum).
Yenny González, Matthias Schneider, Christoph Dyroff, Sergio Rodríguez, Emanuel Christner, Omaira Elena García, Emilio Cuevas, Juan Jose Bustos, Ramon Ramos, Carmen Guirado-Fuentes, Sabine Barthlott, Andreas Wiegele, and Eliezer Sepúlveda
Atmos. Chem. Phys., 16, 4251–4269, https://doi.org/10.5194/acp-16-4251-2016, https://doi.org/10.5194/acp-16-4251-2016, 2016
Short summary
Short summary
Measurements of water vapour isotopologues, dust, and a back trajectory model were used to identify moisture pathways in the subtropical North Atlantic. Dry air masses, from condensation at low temperatures, are transported from high altitudes and latitudes. The humid sources are related to the mixture, with lower and more humid air during transport. Rain re-evaporation was an occasional source of moisture. In summer, an important humidity source is the strong dry convection over the Sahara.
Sally Newman, Xiaomei Xu, Kevin R. Gurney, Ying Kuang Hsu, King Fai Li, Xun Jiang, Ralph Keeling, Sha Feng, Darragh O'Keefe, Risa Patarasuk, Kam Weng Wong, Preeti Rao, Marc L. Fischer, and Yuk L. Yung
Atmos. Chem. Phys., 16, 3843–3863, https://doi.org/10.5194/acp-16-3843-2016, https://doi.org/10.5194/acp-16-3843-2016, 2016
Short summary
Short summary
Combining 14C and 13C data from the Los Angeles, CA megacity with background data allows source attribution of CO2 emissions among biosphere, natural gas, and gasoline. The 8-year record of CO2 emissions from fossil fuel burning is consistent with "The Great Recession" of 2008–2010. The long-term trend and source attribution are consistent with government inventories. Seasonal patterns agree with the high-resolution Hestia-LA emission data product, when seasonal wind directions are considered.
Q. Chen, M. E. Popa, A. M. Batenburg, and T. Röckmann
Atmos. Chem. Phys., 15, 13003–13021, https://doi.org/10.5194/acp-15-13003-2015, https://doi.org/10.5194/acp-15-13003-2015, 2015
Short summary
Short summary
We investigated soil production and uptake of H2 and associated isotope effects. Uptake and emission of H2 occurred simultaneously at all sampling sites, with strongest emission where N2 fixing legume was present. The fractionation constant during soil uptake was about 0.945 and it did not show positive correlation with deposition velocity. The isotopic composition of H2 emitted from soil with legume was about -530‰, which is less deuterium-depleted than isotope equilibrium between H2O and H2.
W. Yu, L. Tian, Y. Ma, B. Xu, and D. Qu
Atmos. Chem. Phys., 15, 10251–10262, https://doi.org/10.5194/acp-15-10251-2015, https://doi.org/10.5194/acp-15-10251-2015, 2015
H. Delattre, C. Vallet-Coulomb, and C. Sonzogni
Atmos. Chem. Phys., 15, 10167–10181, https://doi.org/10.5194/acp-15-10167-2015, https://doi.org/10.5194/acp-15-10167-2015, 2015
Short summary
Short summary
Based on summer measurements of δ18O and δD in the atmospheric vapour of a Mediterranean coastal wetland exposed to high evaporation, this paper explores the main drivers of isotopic signal variability. After having classified the data according to the main regional air mass trajectories, average diurnal cycles are discussed with regards to the contribution of local evaporation to the ground level atmospheric vapour.
M. Zimnoch, P. Wach, L. Chmura, Z. Gorczyca, K. Rozanski, J. Godlowska, J. Mazur, K. Kozak, and A. Jeričević
Atmos. Chem. Phys., 14, 9567–9581, https://doi.org/10.5194/acp-14-9567-2014, https://doi.org/10.5194/acp-14-9567-2014, 2014
J.-L. Bonne, V. Masson-Delmotte, O. Cattani, M. Delmotte, C. Risi, H. Sodemann, and H. C. Steen-Larsen
Atmos. Chem. Phys., 14, 4419–4439, https://doi.org/10.5194/acp-14-4419-2014, https://doi.org/10.5194/acp-14-4419-2014, 2014
F. Aemisegger, S. Pfahl, H. Sodemann, I. Lehner, S. I. Seneviratne, and H. Wernli
Atmos. Chem. Phys., 14, 4029–4054, https://doi.org/10.5194/acp-14-4029-2014, https://doi.org/10.5194/acp-14-4029-2014, 2014
R. Weller, I. Levin, D. Schmithüsen, M. Nachbar, J. Asseng, and D. Wagenbach
Atmos. Chem. Phys., 14, 3843–3853, https://doi.org/10.5194/acp-14-3843-2014, https://doi.org/10.5194/acp-14-3843-2014, 2014
Z. Kern, B. Kohán, and M. Leuenberger
Atmos. Chem. Phys., 14, 1897–1907, https://doi.org/10.5194/acp-14-1897-2014, https://doi.org/10.5194/acp-14-1897-2014, 2014
K. Kawamura, J. P. Severinghaus, M. R. Albert, Z. R. Courville, M. A. Fahnestock, T. Scambos, E. Shields, and C. A. Shuman
Atmos. Chem. Phys., 13, 11141–11155, https://doi.org/10.5194/acp-13-11141-2013, https://doi.org/10.5194/acp-13-11141-2013, 2013
H. C. Steen-Larsen, S. J. Johnsen, V. Masson-Delmotte, B. Stenni, C. Risi, H. Sodemann, D. Balslev-Clausen, T. Blunier, D. Dahl-Jensen, M. D. Ellehøj, S. Falourd, A. Grindsted, V. Gkinis, J. Jouzel, T. Popp, S. Sheldon, S. B. Simonsen, J. Sjolte, J. P. Steffensen, P. Sperlich, A. E. Sveinbjörnsdóttir, B. M. Vinther, and J. W. C. White
Atmos. Chem. Phys., 13, 4815–4828, https://doi.org/10.5194/acp-13-4815-2013, https://doi.org/10.5194/acp-13-4815-2013, 2013
D. Noone, C. Risi, A. Bailey, M. Berkelhammer, D. P. Brown, N. Buenning, S. Gregory, J. Nusbaumer, D. Schneider, J. Sykes, B. Vanderwende, J. Wong, Y. Meillier, and D. Wolfe
Atmos. Chem. Phys., 13, 1607–1623, https://doi.org/10.5194/acp-13-1607-2013, https://doi.org/10.5194/acp-13-1607-2013, 2013
J. K. Spiegel, F. Aemisegger, M. Scholl, F. G. Wienhold, J. L. Collett Jr., T. Lee, D. van Pinxteren, S. Mertes, A. Tilgner, H. Herrmann, R. A. Werner, N. Buchmann, and W. Eugster
Atmos. Chem. Phys., 12, 11679–11694, https://doi.org/10.5194/acp-12-11679-2012, https://doi.org/10.5194/acp-12-11679-2012, 2012
J. K. Spiegel, F. Aemisegger, M. Scholl, F. G. Wienhold, J. L. Collett Jr., T. Lee, D. van Pinxteren, S. Mertes, A. Tilgner, H. Herrmann, R. A. Werner, N. Buchmann, and W. Eugster
Atmos. Chem. Phys., 12, 9855–9863, https://doi.org/10.5194/acp-12-9855-2012, https://doi.org/10.5194/acp-12-9855-2012, 2012
Y. Igarashi, H. Fujiwara, and D. Jugder
Atmos. Chem. Phys., 11, 7069–7080, https://doi.org/10.5194/acp-11-7069-2011, https://doi.org/10.5194/acp-11-7069-2011, 2011
A. D. Griffiths, W. Zahorowski, A. Element, and S. Werczynski
Atmos. Chem. Phys., 10, 8969–8982, https://doi.org/10.5194/acp-10-8969-2010, https://doi.org/10.5194/acp-10-8969-2010, 2010
Cited articles
Aemisegger, F.: On the link between the North Atlantic storm track and
precipitation deuterium excess in Reykjavik, Atmos. Sci. Lett., 19, 19:e865,
https://doi.org/10.1002/asl.865, 2018. a
Aemisegger, F. and Papritz, L.: A climatology of strong large-scale
ocean evaporation events. Part I: Identification, global
distribution, and associated climate conditions, J. Climate, 31,
7287–7312, https://doi.org/10.1175/JCLI-D-17-0591.1, 2018. a
Aemisegger, F. and Sjolte, J.: A climatology of strong large-scale
ocean evaporation events. Part II: Relevance for the deuterium
excess signature of the evaporation flux, J. Climate, 31, 7313–7336,
https://doi.org/10.1175/JCLI-D-17-0592.1, 2018. a, b
Aemisegger, F., Sturm, P., Graf, P., Sodemann, H., Pfahl, S., Knohl, A., and Wernli, H.: Measuring variations of δ18O and δ2H in atmospheric water vapour using two commercial laser-based spectrometers: an instrument characterisation study, Atmos. Meas. Tech., 5, 1491–1511, https://doi.org/10.5194/amt-5-1491-2012, 2012. a, b, c, d, e
Aemisegger, F., Pfahl, S., Sodemann, H., Lehner, I., Seneviratne, S. I., and Wernli, H.: Deuterium excess as a proxy for continental moisture recycling and plant transpiration, Atmos. Chem. Phys., 14, 4029–4054, https://doi.org/10.5194/acp-14-4029-2014, 2014. a
Aemisegger, F., Spiegel, J. K., Pfahl, S., Sodemann, H., Eugster, W., and
Wernli, H.: Isotope meteorology of cold front passages: A case study
combining observations and modeling, Geophys. Res. Lett., 42, 5652–5660,
https://doi.org/10.1002/2015GL063988, 2015. a
Alberello, A., Bennetts, L., Toffoli, A., and Derkani, M. H.: Antarctic Circumnavigation Expedition 2016-2017: WAMOS data, Version 1, Australian Antarctic Data Centre, https://doi.org/10.4225/15/5a17923429cb7, 2019. a
Araguás-Araguás, L., Froehlich, K., and Rozanski, K.: Deuterium and oxygen-18
isotope composition of precipitation and atmospheric moisture, Hydrol.
Process., 14, 1341–1355,
https://doi.org/10.1002/1099-1085(20000615)14:8<1341::AID-HYP983>3.0.CO;2-Z, 2000. a
Bailey, A., Noone, D., Berkelhammer, M., Steen-Larsen, H. C., and Sato, P.: The stability and calibration of water vapor isotope ratio measurements during long-term deployments, Atmos. Meas. Tech., 8, 4521–4538, https://doi.org/10.5194/amt-8-4521-2015, 2015. a
Benetti, M., Reverdin, G., Pierre, C., Merlivat, L., Risi, C., Steen-Larsen,
H. C., and Vimeux, F.: Deuterium excess in marine water vapor: Dependency
on relative humidity and surface wind speed during evaporation, J. Geophys.
Res.-Atmos., 119, 584–593, https://doi.org/10.1002/2013JD020535, 2014. a, b
Benetti, M., Aloisi, G., Reverdin, G., Risi, C., and Sèze, G.: Importance of
boundary layer mixing for the isotopic composition of surface vapor over the
subtropical North Atlantic ocean, J. Geophys. Res.-Atmos., 120, 2190–2209, https://doi.org/10.1002/2014JD021947, 2015. a, b
Benetti, M., Lacour, J.-L., Sveinbjörnsdóttir, A. E., Aloisi, G., Reverdin,
G., Risi, C., Peters, A. J., and Steen‐Larsen, H. C.: A framework to
study mixing processes in the marine boundary layer using
water vapor isotope measurements, Geophys. Res. Lett., 45,
2524–2532, https://doi.org/10.1002/2018GL077167, 2018. a, b
Bony, S., Risi, C., and Vimeux, F.: Influence of convective processes on the
isotopic composition (δ18O and δ D) of
precipitation and water vapor in the tropics: 1. Radiative-convective
equilibrium and Tropical Ocean–Global Atmosphere–Coupled
Ocean-Atmosphere Response Experiment (TOGA-COARE) simulations, J.
Geophys. Res., 113, D19305, https://doi.org/10.1029/2008JD009942, 2008. a, b
Brown, D., Worden, J., and Noone, D.: Characteristics of tropical and
subtropical atmospheric moistening derived from Lagrangian mass balance
constrained by measurements of HDO and H2O, J. Geophys. Res.-Atmos.,
118, 54–72, https://doi.org/10.1029/2012JD018507, 2013. a
Brutsaert, W.: A model for evaporation as a molecular diffusion process into a
turbulent atmosphere, J. Geophys. Res., 70, 5017–5024,
https://doi.org/10.1029/JZ070i020p05017, 1965. a
Craig, H.: Isotopic variations in meteoric waters, Science, 133,
1702–1703, https://doi.org/10.1126/science.133.3465.1702, 1961. a, b, c
Dansgaard, W.: The O18-abundance in fresh water, Geochim. Cosmochim.
Ac., 6, 241–260, https://doi.org/10.1016/0016-7037(54)90003-4, 1954. a
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468,
https://doi.org/10.3402/tellusa.v16i4.8993, 1964. a, b, c
Dittmer, J.: Use of marine radars for real time wave field survey and speeding
up the transmission process, in: Proceedings of the WMO/IOC Workshop on
Operational Ocean Monitoring Using Surface Based Radars, no. 694 in WMO/TD,
133–137, WMO, 1995. a
Dütsch, M., Pfahl, S., and Wernli, H.: Drivers of δ2H
variations in an idealized extratropical cyclone., Geophys. Res. Lett., 43,
5401–5408, doi:10.1002/2016GL068600, 2016. a
Dütsch, M., Pfahl, S., and Sodemann, H.: The impact of nonequilibrium and
equilibrium fractionation on two different deuterium excess definitions, J.
Geophys. Res.-Atmos., 122, 12732–12746, https://doi.org/10.1002/2017JD027085, 2017. a
Epstein, S. and Mayeda, T.: Variation of O18 content of waters from
natural sources, Geochim. Cosmochim. Ac., 4, 213–224,
https://doi.org/10.1016/0016-7037(53)90051-9, 1953. a
Feng, X., Faiia, A. M., and Posmentier, E. S.: Seasonality of isotopes in
precipitation: A global perspective, J. Geophys. Res., 114, D08116,
https://doi.org/10.1029/2008JD011279, 2009. a
Feng, X., Posmentier, E. S., Sonder, L. J., and Fan, N.: Rethinking Craig and Gordon's approach to modeling isotopic compositions of marine boundary layer vapor, Atmos. Chem. Phys., 19, 4005–4024, https://doi.org/10.5194/acp-19-4005-2019, 2019. a
Galewsky, J., Steen-Larsen, H. C., Field, R. D., Worden, J., Risi, C., and
Schneider, M.: Stable isotopes in atmospheric water vapor and applications to
the hydrologic cycle, Rev. Geophys., 54, 809–865,
https://doi.org/10.1002/2015RG000512, 2016. a
Gat, J. R.: Oxygen and hydrogen isotopes in the hydrologic cycle, Annu. Rev.
Earth Planet. Sci., 24, 225–262, https://doi.org/10.1146/annurev.earth.24.1.225, 1996. a
Gat, J. R.: The isotopic composition of evaporating waters – review of the
historical evolution leading up to the Craig-Gordon model, Isotopes in
Environ. Health Stud., 44, 5–9, https://doi.org/10.1080/10256010801887067,
2008. a
Gat, J. R., Klein, B., Kushnir, Y., Roether, W., Wernli, H., Yam, R., and
Shemesh, A.: Isotope composition of air moisture over the Mediterranean
Sea: an index of the air–sea interaction pattern, Tellus B, 55, 953–965,
https://doi.org/10.1034/j.1600-0889.2003.00081.x, 2003. a, b, c, d
Gedzelman, S. D. and Lawrence, J. R.: The isotopic composition of
precipitation from two extratropical cyclones, Mon. Weather Rev.,
118, 495–509, https://doi.org/10.1175/1520-0493(1990)118<0495:TICOPF>2.0.CO;2, 1990. a
Graf, P., Wernli, H., Pfahl, S., and Sodemann, H.: A new interpretative framework for below-cloud effects on stable water isotopes in vapour and rain, Atmos. Chem. Phys., 19, 747–765, https://doi.org/10.5194/acp-19-747-2019, 2019. a
Horita, J., Rozanski, K., and Cohen, S.: Isotope effects in the evaporation of
water: a status report of the Craig–Gordon model, Isotopes Environ.
Health. Stud., 44, 23–49, https://doi.org/10.1080/10256010801887174, 2008. a
Jabouille, P., Redelsperger, J. L., and Lafore, J. P.: Modification of
surface fluxes by atmospheric convection in the TOGA COARE
region, Mon. Weather Rev., 124, 816–837,
https://doi.org/10.1175/1520-0493(1996)124<0816:MOSFBA>2.0.CO;2, 1996. a
Johnson, J. E. and Rella, C. W.: Effects of variation in background mixing ratios of N2, O2, and Ar on the measurement of δ18O–H2O and δ2H–H2O values by cavity ring-down spectroscopy, Atmos. Meas. Tech., 10, 3073–3091, https://doi.org/10.5194/amt-10-3073-2017, 2017. a
Kozachek, A.: Raw stable water isotope measurements in water vapour at 8 m a.s.l. on the port side of the ship, made in the austral summer of 2016/2017 during the Antarctic Circumnavigation Expedition (ACE), Zenodo, https://doi.org/10.5281/zenodo.3667507, 2020a. a
Kozachek, A.: Raw stable water isotope measurements in water vapour at 8 m a.s.l. on the starboard side of the ship, made in the austral summer of 2016/2017 during the Antarctic Circumnavigation Expedition (ACE), Zenodo, https://doi.org/10.5281/zenodo.3667535, 2020b. a
Kozachek, A. and Thurnherr, I.: Calibrated data of stable water isotope measurements in water vapour at 8 m a.s.l. on the port side of the ship, made in the austral summer of 2016/2017 around the Southern Ocean during the Antarctic Circumnavigation Expedition, Zenodo,
https://doi.org/10.5281/zenodo.3739354, 2020a. a
Kozachek, A. and Thurnherr, I.: Calibrated data of stable water isotope measurements in water vapour at 8 m a.s.l. on the starboard side of the ship, made in the austral summer of 2016/2017 around the Southern Ocean during the Antarctic Circumnavigation Expedition (ACE), Zenodo, https://doi.org/10.5281/zenodo.3739335, 2020b. a
Kurita, N.: Water isotopic variability in response to mesoscale convective
system over the tropical ocean, J. Geophys. Res.-Atmos., 118,
10376–10390, https://doi.org/10.1002/jgrd.50754, 2013. a, b
Kurita, N., Hirasawa, N., Koga, S., Matsushita, J., Steen-Larsen, H. C.,
Masson-Delmotte, V., and Fujiyoshi, Y.: Influence of large-scale atmospheric
circulation on marine air intrusion toward the East Antarctic coast,
Geophys. Res. Lett., 43, 9298–9305, https://doi.org/10.1002/2016GL070246, 2016. a, b
Läderach, A. and Sodemann, H.: A revised picture of the atmospheric moisture
residence time, Geophys. Res. Lett., 43, 924–933,
https://doi.org/10.1002/2015GL067449, 2016. a
Landwehr, S., Thurnherr, I., Cassar, N., Gysel-Beer, M., and Schmale, J.: Using global reanalysis data to quantify and correct airflow distortion bias in shipborne wind speed measurements, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-366, in review, 2019a. a
Landwehr, S., Thomas, J., Gorodetskaya, I., Thurnherr, I., Robinson, C., and Schmale, J.: Quality-checked meteorological data from the Southern Ocean collected during the Antarctic Circumnavigation Expedition from December 2016 to April 2017, Version 1.1, Zenodo, https://doi.org/10.5281/zenodo.3379590, 2019b. a
Lawrence, J. R., Gedzelman, S. D., Dexheimer, D., Cho, H.-K., Carrie, G. D.,
Gasparini, R., Anderson, C. R., Bowman, K. P., and Biggerstaff, M. I.: Stable
isotopic composition of water vapor in the tropics, J. Geophys. Res.-Atmos.,
109, D06115, https://doi.org/10.1029/2003JD004046, 2004. a, b, c
Lawrence, R. J. and Gedzelman, D. S.: Low stable isotope ratios of tropical
cyclone rains, Geophys. Res. Lett., 23, 527–530, https://doi.org/10.1029/96GL00425,
1996. a
Lee, J., Worden, J., Noone, D., Bowman, K., Eldering, A., LeGrande, A., Li, J.-L. F., Schmidt, G., and Sodemann, H.: Relating tropical ocean clouds to moist processes using water vapor isotope measurements, Atmos. Chem. Phys., 11, 741–752, https://doi.org/10.5194/acp-11-741-2011, 2011. a
Lewis, E. R. and Schwartz, S. E.: Fundamentals, in: Sea salt aerosol
production: Mechanisms, methods, measurements and models,
American Geophysical Union (AGU), 9–99,
2013. a
Liu, J., Xiao, C., Ding, M., and Ren, J.: Variations in stable hydrogen and
oxygen isotopes in atmospheric water vapor in the marine boundary layer
across a wide latitude range, J. Environ. Sci., 26, 2266–2276,
https://doi.org/10.1016/j.jes.2014.09.007, 2014. a
Merlivat, L. and Jouzel, J.: Global climatic interpretation of the
deuterium-oxygen 18 relationship for precipitation, J. Geophys. Res.-Oceans,
84, 5029–5033, https://doi.org/10.1029/JC084iC08p05029, 1979. a, b
Monahan, E. C., Spiel, D. E., and Davidson, K. L.: A model of marine
aerosol generation via whitecaps and wave disruption, in: Oceanic
whitecaps: And their role in air-sea exchange processes,
edited by Monahan, E. C. and Niocaill, G. M., Oceanographic Sciences
Library, Springer Netherlands, Dordrecht, 167–174,
https://doi.org/10.1007/978-94-009-4668-2_16, 1986. a
Noone, D., Galewsky, J., Sharp, Z. D., Worden, J., Barnes, J., Baer, D.,
Bailey, A., Brown, D. P., Christensen, L., Crosson, E., Dong, F., Hurley,
J. V., Johnson, L. R., Strong, M., Toohey, D., Van Pelt, A., and Wright,
J. S.: Properties of air mass mixing and humidity in the subtropics from
measurements of the D∕H isotope ratio of water vapor at the Mauna Loa
observatory, J. Geophys. Res.-Atmos., 116, D22113,
https://doi.org/10.1029/2011JD015773, 2011. a
Papritz, L., Pfahl, S., Rudeva, I., Simmonds, I., Sodemann, H., and Wernli, H.:
The role of extratropical cyclones and fronts for Southern Ocean
freshwater fluxes, J. Climate, 27, 6205–6224, https://doi.org/10.1175/JCLI-D-13-00409.1,
2014. a
Pfahl, S. and Sodemann, H.: What controls deuterium excess in global precipitation?, Clim. Past, 10, 771–781, https://doi.org/10.5194/cp-10-771-2014, 2014. a, b, c
Pfahl, S. and Wernli, H.: Air parcel trajectory analysis of stable isotopes in
water vapor in the eastern Mediterranean, J. Geophys. Res., 113, D20104,
https://doi.org/10.1029/2008JD009839, 2008. a, b, c
Pfahl, S. and Wernli, H.: Lagrangian simulations of stable isotopes in water
vapor: An evaluation of nonequilibrium fractionation in the
Craig-Gordon model, J. Geophys. Res.-Atmos., 114, D20108,
https://doi.org/10.1029/2009JD012054, 2009. a
Salmon, O. E., Welp, L. R., Baldwin, M. E., Hajny, K. D., Stirm, B. H., and Shepson, P. B.: Vertical profile observations of water vapor deuterium excess in the lower troposphere, Atmos. Chem. Phys., 19, 11525–11543, https://doi.org/10.5194/acp-19-11525-2019, 2019. a, b
Samuels‐Crow, K. E., Galewsky, J., Sharp, Z. D., and Dennis, K. J.: Deuterium
excess in subtropical free troposphere water vapor: Continuous measurements
from the Chajnantor Plateau, northern Chile, Geophys. Res. Lett., 41,
8652–8659, https://doi.org/10.1002/2014GL062302, 2014. a
Schmale, J., Baccarini, A., Thurnherr, I., Henning, S., Efraim, A., Regayre,
L., Bolas, C., Hartmann, M., Welti, A., Lehtipalo, K., Aemisegger, F.,
Tatzelt, C., Landwehr, S., Modini, R. L., Tummon, F., Johnson, J., Harris,
N., Schnaiter, M., Toffoli, A., Derkani, M., Bukowiecki, N., Stratmann, F.,
Dommen, J., Baltensperger, U., Wernli, H., Rosenfeld, D., Gysel-Beer, M., and
Carslaw, K.: Overview of the Antarctic Circumnavigation Expedition:
Study of Preindustrial-like Aerosols and their Climate Effects
(ACE-SPACE), B. Am. Meteorol. Soc., 100, 2260–2283, https://doi.org/10.1175/BAMS-D-18-0187.1,
2019. a, b, c
Schmidt, M., Maseyk, K., Lett, C., Biron, P., Richard, P., Bariac, T., and
Seibt, U.: Concentration effects on laser‐based δ18O and
δ2H measurements and implications for the calibration of
vapour measurements with liquid standards, Rapid Commun. Mass Sp., 24,
3553–3561, https://doi.org/10.1002/rcm.4813, 2010. a
Sherwood, S. C., Roca, R., Weckwerth, T. M., and Andronova, N. G.: Tropospheric
water vapor, convection, and climate, Rev. Geophys., 48, RG2001,
https://doi.org/10.1029/2009RG000301, 2010. a
Simmonds, I. and King, J. C.: Global and hemispheric climate variations
affecting the Southern Ocean, Antarct. Sci., 16, 401–413,
https://doi.org/10.1017/S0954102004002226, 2004. a
Smedman, A., Högström, U., Sahleé, E., Drennan, W. M., Kahma, K. K.,
Pettersson, H., and Zhang, F.: Observational study of marine
atmospheric boundary layer characteristics during swell, J. Atmos.
Sci., 66, 2747–2763, https://doi.org/10.1175/2009JAS2952.1, 2009. a
Sodemann, H., Schwierz, C., and Wernli, H.: Interannual variability of
Greenland winter precipitation sources: Lagrangian moisture diagnostic
and North Atlantic Oscillation influence, J. Geophys. Res., 113,
D03107, https://doi.org/10.1029/2007JD008503, 2008. a, b
Sodemann, H., Aemisegger, F., Pfahl, S., Bitter, M., Corsmeier, U., Feuerle, T., Graf, P., Hankers, R., Hsiao, G., Schulz, H., Wieser, A., and Wernli, H.: The stable isotopic composition of water vapour above Corsica during the HyMeX SOP1 campaign: insight into vertical mixing processes from lower-tropospheric survey flights, Atmos. Chem. Phys., 17, 6125–6151, https://doi.org/10.5194/acp-17-6125-2017, 2017. a, b, c, d, e
Sprenger, M. and Wernli, H.: The LAGRANTO Lagrangian analysis tool – version 2.0, Geosci. Model Dev., 8, 2569–2586, https://doi.org/10.5194/gmd-8-2569-2015, 2015. a
Sprenger, M., Fragkoulidis, G., Binder, H., Croci-Maspoli, M., Graf, P., Grams,
C. M., Knippertz, P., Madonna, E., Schemm, S., Škerlak, B., and Wernli, H.:
Global climatologies of Eulerian and Lagrangian flow features based
on ERA-Interim, B. Am. Meteorol. Soc., 98, 1739–1748,
https://doi.org/10.1175/BAMS-D-15-00299.1, 2017. a
Steen-Larsen, H. C., Johnsen, S. J., Masson-Delmotte, V., Stenni, B., Risi, C., Sodemann, H., Balslev-Clausen, D., Blunier, T., Dahl-Jensen, D., Ellehøj, M. D., Falourd, S., Grindsted, A., Gkinis, V., Jouzel, J., Popp, T., Sheldon, S., Simonsen, S. B., Sjolte, J., Steffensen, J. P., Sperlich, P., Sveinbjörnsdóttir, A. E., Vinther, B. M., and White, J. W. C.: Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet, Atmos. Chem. Phys., 13, 4815–4828, https://doi.org/10.5194/acp-13-4815-2013, 2013. a, b
Steen-Larsen, H. C., Sveinbjörnsdottir, A. E., Peters, A. J., Masson-Delmotte, V., Guishard, M. P., Hsiao, G., Jouzel, J., Noone, D., Warren, J. K., and White, J. W. C.: Climatic controls on water vapor deuterium excess in the marine boundary layer of the North Atlantic based on 500 days of in situ, continuous measurements, Atmos. Chem. Phys., 14, 7741–7756, https://doi.org/10.5194/acp-14-7741-2014, 2014. a, b
Steen-Larsen, H. C., Sveinbjörnsdottir, A. E., Jonsson, T., Ritter, F., Bonne,
J.-L., Masson-Delmotte, V., Sodemann, H., Blunier, T., Dahl-Jensen, D., and
Vinther, B. M.: Moisture sources and synoptic to seasonal variability of
North Atlantic water vapor isotopic composition, J. Geophys. Res.-Atmos.,
120, 5757–5774, https://doi.org/10.1002/2015JD023234, 2015. a, b
Suess, E., Aemisegger, F., Sonke, J. E., Sprenger, M., Wernli, H., and Winkel,
L. H. E.: Marine versus continental sources of iodine and selenium in
rainfall at two European high-atitude locations, Environ. Sci. Technol.,
53, 1905–1917, https://doi.org/10.1021/acs.est.8b05533, 2019.
a
Toffoli, A., Proment, D., Salman, H., Monbaliu, J., Frascoli, F., Dafilis, M.,
Stramignoni, E., Forza, R., Manfrin, M., and Onorato, M.: Wind generated
rogue waves in an annular wave flume, Phys. Rev. Lett., 118,
144503, https://doi.org/10.1103/PhysRevLett.118.144503, 2017. a
Torri, G., Ma, D., and Kuang, Z.: Stable water isotopes and large-scale
vertical motions in the tropics, J. Geophys. Res.-Atmos., 122, 3703–3717,
https://doi.org/10.1002/2016JD026154, 2017. a
Thomas, J.: ACE Zenodo Community Collection, Zenodo, available at: https://zenodo.org/communities/spi-ace/, last access: 29 April 2020. a
Thurnherr, I. and Aemisegger, F.: Raw stable water isotope measurements in water vapour at 13.5 m a.s.l., made in the austral summer of 2016/2017 during the Antarctic Circumnavigation Expedition (ACE), Zenodo, https://doi.org/10.5281/zenodo.3664177, 2020a. a
Thurnherr, I. and Aemisegger, F.:
Calibrated data of stable water isotope measurements in water vapour at 13.5 m a.s.l., made in the austral summer of 2016/2017 around the Southern Ocean during the Antarctic Circumnavigation Expedition (ACE), Zenodo, https://doi.org/10.5281/zenodo.3250790, 2020b. a
Thurnherr, I. and Aemisegger, F.: Python script to calibration stable water isotope measurements in water vapour measured during the Antarctic Circumnavigation Expedition (ACE) in 2016/2017, Zenodo, https://doi.org/10.5281/zenodo.3268642, 2020c. a
Uemura, R., Matsui, Y., Yoshimura, K., Motoyama, H., and Yoshida, N.: Evidence
of deuterium excess in water vapor as an indicator of ocean surface
conditions, J. Geophys. Res., 113, D19114, https://doi.org/10.1029/2008JD010209,
2008. a, b, c
Veron, F.: Ocean spray, Annu. Rev. Fluid Mech., 47, 507–538,
https://doi.org/10.1146/annurev-fluid-010814-014651, 2015. a
Walton, D. W. H. and Thomas, J.: Cruise Report – Antarctic Circumnavigation
Expedition (ACE) 20th December 2016–19th March 2017, Zenodo, Version 1,
https://doi.org/10.5281/zenodo.1443511, 2018. a
Wernli, H. and Davies, H. C.: A Lagrangian-based analysis of extratropical
cyclones. I: The method and some applications, Q. J. Roy. Meteorol. Soc.,
123, 467–489, https://doi.org/10.1002/qj.49712353811, 1997. a
Wernli, H. and Schwierz, C.: Surface cyclones in the ERA-40 dataset
(1958–2001). Part I: Novel identification method and global
climatology, J. Atmos. Sci., 63, 2486–2507, https://doi.org/10.1175/JAS3766.1, 2006. a
Young, I.: Wind generated ocean waves, vol. 2, Elsevier, 1999. a
Ziemer, F. and Günther, H.: A system to monitor ocean wave fields, in:
Proceedings of the Second International Conference on Air-Sea Interaction and
Meteorology and Oceanography of the Coastal Zone, 117–118, Amer. Meteor.
Soc., 1994. a
Short summary
Stable water isotopes (SWIs) are tracers of moist atmospheric processes. We analyse the impact of large- to small-scale atmospheric processes and various environmental conditions on the variability of SWIs using ship-based SWI measurement in water vapour from the Atlantic and Southern Ocean. Furthermore, simultaneous measurements of SWIs at two altitudes are used to illustrate the potential of such measurements for future research to estimate sea spray evaporation and turbulent moisture fluxes.
Stable water isotopes (SWIs) are tracers of moist atmospheric processes. We analyse the impact...
Altmetrics
Final-revised paper
Preprint