Articles | Volume 20, issue 5
Atmos. Chem. Phys., 20, 2911–2925, 2020
https://doi.org/10.5194/acp-20-2911-2020
Atmos. Chem. Phys., 20, 2911–2925, 2020
https://doi.org/10.5194/acp-20-2911-2020

Research article 11 Mar 2020

Research article | 11 Mar 2020

How much does traffic contribute to benzene and polycyclic aromatic hydrocarbon air pollution? Results from a high-resolution North American air quality model centred on Toronto, Canada

Cynthia H. Whaley et al.

Related authors

Present and future aerosol impacts on Arctic climate change in the GISS-E2.1 Earth system model
Ulas Im, Kostas Tsigaridis, Gregory Faluvegi, Peter L. Langen, Joshua P. French, Rashed Mahmood, Thomas Manu, Knut von Salzen, Daniel C. Thomas, Cynthia H. Whaley, Zbigniew Klimont, Henrik Skov, and Jørgen Brandt
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1296,https://doi.org/10.5194/acp-2020-1296, 2021
Preprint under review for ACP
Short summary
GEM-MACH-PAH (rev2488): a new high-resolution chemical transport model for North American polycyclic aromatic hydrocarbons and benzene
Cynthia H. Whaley, Elisabeth Galarneau, Paul A. Makar, Ayodeji Akingunola, Wanmin Gong, Sylvie Gravel, Michael D. Moran, Craig Stroud, Junhua Zhang, and Qiong Zheng
Geosci. Model Dev., 11, 2609–2632, https://doi.org/10.5194/gmd-11-2609-2018,https://doi.org/10.5194/gmd-11-2609-2018, 2018
Short summary
Contributions of natural and anthropogenic sources to ambient ammonia in the Athabasca Oil Sands and north-western Canada
Cynthia H. Whaley, Paul A. Makar, Mark W. Shephard, Leiming Zhang, Junhua Zhang, Qiong Zheng, Ayodeji Akingunola, Gregory R. Wentworth, Jennifer G. Murphy, Shailesh K. Kharol, and Karen E. Cady-Pereira
Atmos. Chem. Phys., 18, 2011–2034, https://doi.org/10.5194/acp-18-2011-2018,https://doi.org/10.5194/acp-18-2011-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Future changes in isoprene-epoxydiol-derived secondary organic aerosol (IEPOX SOA) under the Shared Socioeconomic Pathways: the importance of physicochemical dependency
Duseong S. Jo, Alma Hodzic, Louisa K. Emmons, Simone Tilmes, Rebecca H. Schwantes, Michael J. Mills, Pedro Campuzano-Jost, Weiwei Hu, Rahul A. Zaveri, Richard C. Easter, Balwinder Singh, Zheng Lu, Christiane Schulz, Johannes Schneider, John E. Shilling, Armin Wisthaler, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 3395–3425, https://doi.org/10.5194/acp-21-3395-2021,https://doi.org/10.5194/acp-21-3395-2021, 2021
Short summary
Improving regional air quality predictions in the Indo-Gangetic Plain – case study of an intensive pollution episode in November 2017
Behrooz Roozitalab, Gregory R. Carmichael, and Sarath K. Guttikunda
Atmos. Chem. Phys., 21, 2837–2860, https://doi.org/10.5194/acp-21-2837-2021,https://doi.org/10.5194/acp-21-2837-2021, 2021
Short summary
Recommendations on benchmarks for numerical air quality model applications in China – Part 1: PM2.5 and chemical species
Ling Huang, Yonghui Zhu, Hehe Zhai, Shuhui Xue, Tianyi Zhu, Yun Shao, Ziyi Liu, Chris Emery, Greg Yarwood, Yangjun Wang, Joshua Fu, Kun Zhang, and Li Li
Atmos. Chem. Phys., 21, 2725–2743, https://doi.org/10.5194/acp-21-2725-2021,https://doi.org/10.5194/acp-21-2725-2021, 2021
Short summary
Global modeling studies of composition and decadal trends of the Asian Tropopause Aerosol Layer
Adriana Bossolasco, Fabrice Jegou, Pasquale Sellitto, Gwenaël Berthet, Corinna Kloss, and Bernard Legras
Atmos. Chem. Phys., 21, 2745–2764, https://doi.org/10.5194/acp-21-2745-2021,https://doi.org/10.5194/acp-21-2745-2021, 2021
Short summary
Comparison of chemical lateral boundary conditions for air quality predictions over the contiguous United States during pollutant intrusion events
Youhua Tang, Huisheng Bian, Zhining Tao, Luke D. Oman, Daniel Tong, Pius Lee, Patrick C. Campbell, Barry Baker, Cheng-Hsuan Lu, Li Pan, Jun Wang, Jeffery McQueen, and Ivanka Stajner
Atmos. Chem. Phys., 21, 2527–2550, https://doi.org/10.5194/acp-21-2527-2021,https://doi.org/10.5194/acp-21-2527-2021, 2021
Short summary

Cited articles

Anastasopoulos, A. T., Wheeler, A. J., Karman, D., and Kulka, R. H.: Intraurban concentrations, spatial variability, and correlation of ambient polycyclic aromatic hydrocarbons (PAH) and PM2.5, Atmos. Environ., 59, 272–283, https://doi.org/10.1016/j.atmosenv.2012.05.004, 2012. a, b
Aulinger, A., Matthias, V., and Quante, M.: Introducing a partitioning mechanism for PAHs into the Community Multiscale Air Quality modeling system and its application to simulating the transport of benzo(a)pyrene over Europe, J. Appl. Meteorol. Clim., 46, 1718–1730, https://doi.org/10.1175/2007JAMC1395.1, 2007. a
Bidleman, T. F. and Foreman, W. T.: Vapor-particle partitioning of semivolatile organic compounds, in: Sources and Fates of Aquatic Pollutants, 27–56, American Chemical Society, 1987. a
Boulton, J. W.: Emissions, air quality and health impacts of widespread electric vehicle use: literature review and relevance to the Canadian situation, Technical report, 75 Albert St, Ottawa, ON, Canada, K1P 5E7, 2016. a
Center for climate and energy solutions: U.S. state clean vehicle policies, url, Center for climate and energy solutions, United States, available at: https://www.c2es.org/document/us-state-clean-vehicle-policies-and-incentives/ (last access: 27 January 2020), 2019. a
Download
Short summary
Benzene and polycyclic aromatic compounds are toxic air pollutants and ubiquitous in the environment. Using a chemical transport model, we have determined the net impact of vehicle emissions on ambient concentrations of these species. Traffic emissions were found to be a significant fraction of ambient pollution in the densely populated modelled region of North America. Our simulations demonstrate the air quality benefits that would result from transitioning to a zero-emission vehicle fleet.
Altmetrics
Final-revised paper
Preprint