Research article 11 Mar 2020
Research article | 11 Mar 2020
How much does traffic contribute to benzene and polycyclic aromatic hydrocarbon air pollution? Results from a high-resolution North American air quality model centred on Toronto, Canada
Cynthia H. Whaley et al.
Related authors
Ulas Im, Kostas Tsigaridis, Gregory Faluvegi, Peter L. Langen, Joshua P. French, Rashed Mahmood, Thomas Manu, Knut von Salzen, Daniel C. Thomas, Cynthia H. Whaley, Zbigniew Klimont, Henrik Skov, and Jørgen Brandt
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1296, https://doi.org/10.5194/acp-2020-1296, 2021
Preprint under review for ACP
Short summary
Short summary
Future (2015–2050) simulations of the aerosol burdens and their climate impacts over the Arctic under various emission projections show that although the Arctic aerosol burdens are projected to decrease significantly, the Arctic surface air temperatures will continue to increase by up to 2.6 °C in 2050. Regardless of the magnitude of aerosol reductions, similar responses in surface air temperatures are calculated, while high mitigation of aerosols are still necessary to limit sea-ice loss.
Cynthia H. Whaley, Elisabeth Galarneau, Paul A. Makar, Ayodeji Akingunola, Wanmin Gong, Sylvie Gravel, Michael D. Moran, Craig Stroud, Junhua Zhang, and Qiong Zheng
Geosci. Model Dev., 11, 2609–2632, https://doi.org/10.5194/gmd-11-2609-2018, https://doi.org/10.5194/gmd-11-2609-2018, 2018
Short summary
Short summary
We present a new, high-resolution, North American model of PAHs and benzene, which are toxic air pollutants that cause a variety of negative health impacts. Our simulation in a densely populated region of Canada and the U.S. shows that the model is improved over a previous model. The new model is particularly refined regarding the gas–particle partitioning of these pollutants, which has impacts on deposition and inhalation. The simulation was sensitive to the selection of vehicle emissions.
Cynthia H. Whaley, Paul A. Makar, Mark W. Shephard, Leiming Zhang, Junhua Zhang, Qiong Zheng, Ayodeji Akingunola, Gregory R. Wentworth, Jennifer G. Murphy, Shailesh K. Kharol, and Karen E. Cady-Pereira
Atmos. Chem. Phys., 18, 2011–2034, https://doi.org/10.5194/acp-18-2011-2018, https://doi.org/10.5194/acp-18-2011-2018, 2018
Short summary
Short summary
Using a modified air quality forecasting model, we have found that a significant fraction (> 50 %) of ambient ammonia comes from re-emission from plants and soils in the broader Athabasca Oil Sands region and much of Alberta and Saskatchewan. We also found that about 20 % of ambient ammonia in Alberta and Saskatchewan came from forest fires in the summer of 2013. The addition of these two processes improved modelled ammonia, which was a motivating factor in undertaking this research.
Zhiyong Wu, Leiming Zhang, John T. Walker, Paul A. Makar, Judith A. Perlinger, and Xuemei Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-41, https://doi.org/10.5194/gmd-2021-41, 2021
Preprint under review for GMD
Short summary
Short summary
A community dry deposition algorithm for modeling gaseous dry deposition process in chemistry transport models was extended to include oxidized volatile organic compounds based on their physicochemical properties and was then evaluated using field flux measurements over a mixed forest. This study provides a useful tool that is needed in chemistry transport models with increasing complexity for simulating an important atmospheric process.
Katherine Hayden, Shao-Meng Li, Paul Makar, John Liggio, Samar G. Moussa, Ayodeji Akingunola, Robert McLaren, Ralf M. Staebler, Andrea Darlington, Jason O'Brien, Junhua Zhang, Mengistu Wolde, and Leiming Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1315, https://doi.org/10.5194/acp-2020-1315, 2021
Preprint under review for ACP
Ulas Im, Kostas Tsigaridis, Gregory Faluvegi, Peter L. Langen, Joshua P. French, Rashed Mahmood, Thomas Manu, Knut von Salzen, Daniel C. Thomas, Cynthia H. Whaley, Zbigniew Klimont, Henrik Skov, and Jørgen Brandt
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1296, https://doi.org/10.5194/acp-2020-1296, 2021
Preprint under review for ACP
Short summary
Short summary
Future (2015–2050) simulations of the aerosol burdens and their climate impacts over the Arctic under various emission projections show that although the Arctic aerosol burdens are projected to decrease significantly, the Arctic surface air temperatures will continue to increase by up to 2.6 °C in 2050. Regardless of the magnitude of aerosol reductions, similar responses in surface air temperatures are calculated, while high mitigation of aerosols are still necessary to limit sea-ice loss.
Paul A. Makar, Craig Stroud, Ayodeji Akingunola, Junhua Zhang, Shuzhan Ren, Philip Cheung, and Qiong Zheng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1243, https://doi.org/10.5194/acp-2020-1243, 2021
Preprint under review for ACP
Short summary
Short summary
Vehicle pollutant emissions occur in an environment where upward transport can be enhanced due to the turbulence created by the vehicles as they move through the atmosphere. An approach for including these effects into regional air pollution forecast models has been derived from theoretical, observation, and higher resolution modelling. The enhanced mixing, which occurs in the immediate vicinity of roadways, changes pollutant concentrations on the regional to continental scale.
Paul A. Makar, Ayodeji Akingunola, Jack Chen, Balbir Pabla, Wanmin Gong, Craig Stroud, Christopher Sioris, Kerry Anderson, Philip Cheung, Junhua Zhang, and Jason Milbrandt
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-938, https://doi.org/10.5194/acp-2020-938, 2020
Preprint under review for ACP
Short summary
Short summary
We have examined the effects of airborne particles on absorption and scattering of incoming sunlight by the particles themselves via cloud formation. We used an advanced, combined high-resolution weather forecast and chemical transport computer model, for western North America, and simulations with/without the connections between particles and weather enabled. Feedbacks improved weather and air pollution forecasts, and changed cloud behaviour and forest fire pollutant amount and height.
Debora Griffin, Christopher Sioris, Jack Chen, Nolan Dickson, Andrew Kovachik, Martin de Graaf, Swadhin Nanda, Pepijn Veefkind, Enrico Dammers, Chris A. McLinden, Paul Makar, and Ayodeji Akingunola
Atmos. Meas. Tech., 13, 1427–1445, https://doi.org/10.5194/amt-13-1427-2020, https://doi.org/10.5194/amt-13-1427-2020, 2020
Short summary
Short summary
This study looks into validating the aerosol layer height product from the recently launched TROPOspheric Monitoring Instrument (TROPOMI) for forest fire plume through comparisons with two other satellite products, and interpreting differences due to the individual measurement techniques. These satellite observations are compared to predicted plume heights from Environment and Climate Change's air quality forecast model.
Mark W. Shephard, Enrico Dammers, Karen E. Cady-Pereira, Shailesh K. Kharol, Jesse Thompson, Yonatan Gainariu-Matz, Junhua Zhang, Chris A. McLinden, Andrew Kovachik, Michael Moran, Shabtai Bittman, Christopher E. Sioris, Debora Griffin, Matthew J. Alvarado, Chantelle Lonsdale, Verica Savic-Jovcic, and Qiong Zheng
Atmos. Chem. Phys., 20, 2277–2302, https://doi.org/10.5194/acp-20-2277-2020, https://doi.org/10.5194/acp-20-2277-2020, 2020
Short summary
Short summary
Presented is a description and survey demonstrating the capabilities of the CrIS ammonia product for monitoring, air quality forecast model evaluation, dry deposition estimates, and emission estimates of an agricultural hotspot.
Xiaoyi Zhao, Debora Griffin, Vitali Fioletov, Chris McLinden, Jonathan Davies, Akira Ogyu, Sum Chi Lee, Alexandru Lupu, Michael D. Moran, Alexander Cede, Martin Tiefengraber, and Moritz Müller
Atmos. Chem. Phys., 19, 10619–10642, https://doi.org/10.5194/acp-19-10619-2019, https://doi.org/10.5194/acp-19-10619-2019, 2019
Short summary
Short summary
New nitrogen dioxide (NO2) retrieval algorithms are developed for Pandora zenith-sky measurements. A column-to-surface conversion look-up table was produced for the Pandora instruments; therefore, quick and practical Pandora-based surface NO2 concentration data can be obtained for air quality monitoring purposes. It is demonstrated that the surface NO2 concentration is controlled not only by the planetary boundary layer height but also by both boundary layer dynamics and photochemistry.
Jack Chen, Kerry Anderson, Radenko Pavlovic, Michael D. Moran, Peter Englefield, Dan K. Thompson, Rodrigo Munoz-Alpizar, and Hugo Landry
Geosci. Model Dev., 12, 3283–3310, https://doi.org/10.5194/gmd-12-3283-2019, https://doi.org/10.5194/gmd-12-3283-2019, 2019
Short summary
Short summary
Emissions from wildland fires can cause significant impacts on regional air quality. We introduce the Canadian Forest Fire Emissions Prediction System and demonstrate its integration with Canada's FireWork operational air quality forecast system with biomass burning emissions. The coupled system shows improved skill in providing short-term, 48 h forecasts of surface air pollutant concentrations (PM2.5, O3, and NO2) from the impacts of regional wildland fires across the North American domain.
Matthew Russell, Amir Hakami, Paul A. Makar, Ayodeji Akingunola, Junhua Zhang, Michael D. Moran, and Qiong Zheng
Atmos. Chem. Phys., 19, 4393–4417, https://doi.org/10.5194/acp-19-4393-2019, https://doi.org/10.5194/acp-19-4393-2019, 2019
Short summary
Short summary
High-resolution air-quality forecast modeling results are compared for two different grid spacings for the Environment and Climate Change Canada GEM-MACH model. While the higher-resolution simulations have worse formal error scores, we show that the higher-resolution model nevertheless has the ability to better resolve plume maxima and has better performance when the evaluation occurs using new scoring metrics which operate on an equal-representative-area basis.
Cristen Adams, Chris A. McLinden, Mark W. Shephard, Nolan Dickson, Enrico Dammers, Jack Chen, Paul Makar, Karen E. Cady-Pereira, Naomi Tam, Shailesh K. Kharol, Lok N. Lamsal, and Nickolay A. Krotkov
Atmos. Chem. Phys., 19, 2577–2599, https://doi.org/10.5194/acp-19-2577-2019, https://doi.org/10.5194/acp-19-2577-2019, 2019
Short summary
Short summary
We estimated how much carbon monoxide, ammonia, and nitrogen oxides were emitted in the smoke from the Fort McMurray Horse River wildfire using satellite data and air quality models. The fire emitted amounts of carbon monoxide that were similar to anthropogenic (human-caused) emissions for all of Alberta over a full year. We also estimated large amounts of ammonia and nitrogen oxides emitted from the fire. These results can be used to evaluate the performance of air quality forecasting models.
Wanmin Gong, Stephen R. Beagley, Sophie Cousineau, Mourad Sassi, Rodrigo Munoz-Alpizar, Sylvain Ménard, Jacinthe Racine, Junhua Zhang, Jack Chen, Heather Morrison, Sangeeta Sharma, Lin Huang, Pascal Bellavance, Jim Ly, Paul Izdebski, Lynn Lyons, and Richard Holt
Atmos. Chem. Phys., 18, 16653–16687, https://doi.org/10.5194/acp-18-16653-2018, https://doi.org/10.5194/acp-18-16653-2018, 2018
Short summary
Short summary
The navigability of the Arctic Ocean is increasing with the warming in recent years. Using model simulations at a much finer resolution than previous pan-Arctic studies, the impact of marine shipping emissions on air pollution in the Canadian Arctic is assessed for present (2010) and projected levels in 2030. The study found that shipping emissions have a local-to-regional impact in the Arctic at the current level; the impact will increase significantly in a projected business-as-usual scenario.
Mark Gordon, Paul A. Makar, Ralf M. Staebler, Junhua Zhang, Ayodeji Akingunola, Wanmin Gong, and Shao-Meng Li
Atmos. Chem. Phys., 18, 14695–14714, https://doi.org/10.5194/acp-18-14695-2018, https://doi.org/10.5194/acp-18-14695-2018, 2018
Short summary
Short summary
This work uses aircraft-based measurements of smokestack plumes carried out in northern Alberta in 2013. These measurements are used to test equations used to predict how high in the air smokestack plumes rise. It is important to predict plume rise height accurately as it tells us how far downwind pollutants are carried and what air quality can be expected at the surface. We found that the equations that are typically used significantly underestimate the plume rise at this location.
Craig A. Stroud, Paul A. Makar, Junhua Zhang, Michael D. Moran, Ayodeji Akingunola, Shao-Meng Li, Amy Leithead, Katherine Hayden, and May Siu
Atmos. Chem. Phys., 18, 13531–13545, https://doi.org/10.5194/acp-18-13531-2018, https://doi.org/10.5194/acp-18-13531-2018, 2018
Short summary
Short summary
It is shown that using measurement-derived volatile organic compound (VOC) and organic aerosol (OA) emissions in the GEM-MACH air quality model provides better overall predictions compared to using bottom-up emission inventories. This work was done to better constrain the fugitive organic emissions from the Athabasca oil sands region, which are a challenge to estimate with bottom-up emission approaches. We use observations from the 2013 Joint Oil Sands Monitoring study.
Junhua Zhang, Michael D. Moran, Qiong Zheng, Paul A. Makar, Pegah Baratzadeh, George Marson, Peter Liu, and Shao-Meng Li
Atmos. Chem. Phys., 18, 10459–10481, https://doi.org/10.5194/acp-18-10459-2018, https://doi.org/10.5194/acp-18-10459-2018, 2018
Short summary
Short summary
This paper discusses the development of new synthesized emissions inventories and the generation of air quality model-ready emissions files for the Athabasca Oil Sands Region of Alberta, Canada, using multiple emissions inventories, continuous emissions monitoring data, and inferred emission rates based on aircraft measurements. Novel facility-specific gridded spatial surrogate fields were generated to allocate emissions spatially within each huge mining facility.
Paul A. Makar, Ayodeji Akingunola, Julian Aherne, Amanda S. Cole, Yayne-abeba Aklilu, Junhua Zhang, Isaac Wong, Katherine Hayden, Shao-Meng Li, Jane Kirk, Ken Scott, Michael D. Moran, Alain Robichaud, Hazel Cathcart, Pegah Baratzedah, Balbir Pabla, Philip Cheung, Qiong Zheng, and Dean S. Jeffries
Atmos. Chem. Phys., 18, 9897–9927, https://doi.org/10.5194/acp-18-9897-2018, https://doi.org/10.5194/acp-18-9897-2018, 2018
Short summary
Short summary
Complex computer model output was compared to and fused with observation data, to estimate potential damage due to acidifying precipitation for ecosystems in the Canadian provinces of Alberta and Saskatchewan. Estimated deposition was compared to the maximum no-damage ecosystem capacity for sulfur and/or nitrogen uptake; these critical loads were exceeded, for areas between 10 000 and 330 000 square kilometres, depending on ecosystem type: ecosystem damage will occur at 2013 emission levels.
Cynthia H. Whaley, Elisabeth Galarneau, Paul A. Makar, Ayodeji Akingunola, Wanmin Gong, Sylvie Gravel, Michael D. Moran, Craig Stroud, Junhua Zhang, and Qiong Zheng
Geosci. Model Dev., 11, 2609–2632, https://doi.org/10.5194/gmd-11-2609-2018, https://doi.org/10.5194/gmd-11-2609-2018, 2018
Short summary
Short summary
We present a new, high-resolution, North American model of PAHs and benzene, which are toxic air pollutants that cause a variety of negative health impacts. Our simulation in a densely populated region of Canada and the U.S. shows that the model is improved over a previous model. The new model is particularly refined regarding the gas–particle partitioning of these pollutants, which has impacts on deposition and inhalation. The simulation was sensitive to the selection of vehicle emissions.
Ayodeji Akingunola, Paul A. Makar, Junhua Zhang, Andrea Darlington, Shao-Meng Li, Mark Gordon, Michael D. Moran, and Qiong Zheng
Atmos. Chem. Phys., 18, 8667–8688, https://doi.org/10.5194/acp-18-8667-2018, https://doi.org/10.5194/acp-18-8667-2018, 2018
Short summary
Short summary
We examine the manner in which air-quality models simulate lofting of buoyant plumes of emissions from stacks (plume rise) and the impact of the level of detail in algorithms simulating particles' variation in size (particle size distribution). The most commonly used plume rise algorithm underestimates the height of plumes compared to observations, while a revised algorithm has much better performance. A 12-bin size distribution reduced the forecast 2-bin size distribution bias error by 32 %.
Joana Soares, Paul Andrew Makar, Yayne Aklilu, and Ayodeji Akingunola
Atmos. Chem. Phys., 18, 6543–6566, https://doi.org/10.5194/acp-18-6543-2018, https://doi.org/10.5194/acp-18-6543-2018, 2018
Short summary
Short summary
Grouping data on the basis of (dis)similarity can be used to assess the efficacy of monitoring networks. The data are cross-compared in terms of temporal variation and magnitude of concentrations, and sites are ranked according to their level of potential redundancy. The methodology can be applied to measurement data, helping to identify sites with different measuring technologies or data flaws, and to model output, generating maps of areas of spatial representativeness of a monitoring site.
Stephanie C. Pugliese, Jennifer G. Murphy, Felix R. Vogel, Michael D. Moran, Junhua Zhang, Qiong Zheng, Craig A. Stroud, Shuzhan Ren, Douglas Worthy, and Gregoire Broquet
Atmos. Chem. Phys., 18, 3387–3401, https://doi.org/10.5194/acp-18-3387-2018, https://doi.org/10.5194/acp-18-3387-2018, 2018
Short summary
Short summary
We developed the Southern Ontario CO2 Emissions (SOCE) inventory, which identifies the spatial and temporal distribution (2.5 km and hourly, respectively) of CO2 emissions from seven source sectors. When the SOCE inventory was used with a chemistry transport model, we found strong agreement between modelled and measured mixing ratios. We were able to quantify that natural gas combustion contributes > 80 % of CO2 emissions at nighttime while on-road emissions contribute > 70 % during the day.
Cynthia H. Whaley, Paul A. Makar, Mark W. Shephard, Leiming Zhang, Junhua Zhang, Qiong Zheng, Ayodeji Akingunola, Gregory R. Wentworth, Jennifer G. Murphy, Shailesh K. Kharol, and Karen E. Cady-Pereira
Atmos. Chem. Phys., 18, 2011–2034, https://doi.org/10.5194/acp-18-2011-2018, https://doi.org/10.5194/acp-18-2011-2018, 2018
Short summary
Short summary
Using a modified air quality forecasting model, we have found that a significant fraction (> 50 %) of ambient ammonia comes from re-emission from plants and soils in the broader Athabasca Oil Sands region and much of Alberta and Saskatchewan. We also found that about 20 % of ambient ammonia in Alberta and Saskatchewan came from forest fires in the summer of 2013. The addition of these two processes improved modelled ammonia, which was a motivating factor in undertaking this research.
Yuan You, Ralf M. Staebler, Samar G. Moussa, Yushan Su, Tony Munoz, Craig Stroud, Junhua Zhang, and Michael D. Moran
Atmos. Chem. Phys., 17, 14119–14143, https://doi.org/10.5194/acp-17-14119-2017, https://doi.org/10.5194/acp-17-14119-2017, 2017
Short summary
Short summary
A novel approach for traffic emission measurements is shown to have the capacity to provide high-time-resolution accurate concentrations of key air pollutants. A top-down method for quantifying real-world emission rates produced vehicular emission factor estimates for carbon monoxide that agreed well with bottom-up values. Significant ammonia and hydrogen cyanide emissions were observed. The main factors modulating the concentrations were turbulent mixing and traffic density.
Vitali Fioletov, Chris A. McLinden, Shailesh K. Kharol, Nickolay A. Krotkov, Can Li, Joanna Joiner, Michael D. Moran, Robert Vet, Antoon J. H. Visschedijk, and Hugo A. C. Denier van der Gon
Atmos. Chem. Phys., 17, 12597–12616, https://doi.org/10.5194/acp-17-12597-2017, https://doi.org/10.5194/acp-17-12597-2017, 2017
Vitali E. Fioletov, Chris A. McLinden, Nickolay Krotkov, Can Li, Joanna Joiner, Nicolas Theys, Simon Carn, and Mike D. Moran
Atmos. Chem. Phys., 16, 11497–11519, https://doi.org/10.5194/acp-16-11497-2016, https://doi.org/10.5194/acp-16-11497-2016, 2016
Short summary
Short summary
We introduce the first space-based catalogue of SO2 emission sources seen by OMI. The inventory contains about 500 sources. They account for about a half of all SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr−1 and not detected by OMI. The sources are grouped by type (volcanoes, power plants, oil- and gas-related sources, and smelters) and country. The catalogue presented herein can be used for verification of available SO2 emission inventories.
M. W. Shephard, C. A. McLinden, K. E. Cady-Pereira, M. Luo, S. G. Moussa, A. Leithead, J. Liggio, R. M. Staebler, A. Akingunola, P. Makar, P. Lehr, J. Zhang, D. K. Henze, D. B. Millet, J. O. Bash, L. Zhu, K. C. Wells, S. L. Capps, S. Chaliyakunnel, M. Gordon, K. Hayden, J. R. Brook, M. Wolde, and S.-M. Li
Atmos. Meas. Tech., 8, 5189–5211, https://doi.org/10.5194/amt-8-5189-2015, https://doi.org/10.5194/amt-8-5189-2015, 2015
Short summary
Short summary
This study provides direct validations of Tropospheric Emission Spectrometer (TES) satellite retrieved profiles against coincident aircraft profiles of carbon monoxide, ammonia, methanol, and formic acid, all of which are of interest for air quality. The comparisons are performed over the Canadian oil sands region during an intensive field campaign in support of the Joint Canada-Alberta Implementation Plan for the Oil Sands Monitoring (JOSM). Initial model evaluations are also provided.
M. Gordon, A. Vlasenko, R. M. Staebler, C. Stroud, P. A. Makar, J. Liggio, S.-M. Li, and S. Brown
Atmos. Chem. Phys., 14, 9087–9097, https://doi.org/10.5194/acp-14-9087-2014, https://doi.org/10.5194/acp-14-9087-2014, 2014
D. Wen, L. Zhang, J. C. Lin, R. Vet, and M. D. Moran
Geosci. Model Dev., 7, 1037–1050, https://doi.org/10.5194/gmd-7-1037-2014, https://doi.org/10.5194/gmd-7-1037-2014, 2014
P. A. Makar, R. Nissen, A. Teakles, J. Zhang, Q. Zheng, M. D. Moran, H. Yau, and C. diCenzo
Geosci. Model Dev., 7, 1001–1024, https://doi.org/10.5194/gmd-7-1001-2014, https://doi.org/10.5194/gmd-7-1001-2014, 2014
X. Wang, L. Zhang, and M. D. Moran
Geosci. Model Dev., 7, 799–819, https://doi.org/10.5194/gmd-7-799-2014, https://doi.org/10.5194/gmd-7-799-2014, 2014
E. Galarneau, P. A. Makar, Q. Zheng, J. Narayan, J. Zhang, M. D. Moran, M. A. Bari, S. Pathela, A. Chen, and R. Chlumsky
Atmos. Chem. Phys., 14, 4065–4077, https://doi.org/10.5194/acp-14-4065-2014, https://doi.org/10.5194/acp-14-4065-2014, 2014
C. A. McLinden, V. Fioletov, K. F. Boersma, S. K. Kharol, N. Krotkov, L. Lamsal, P. A. Makar, R. V. Martin, J. P. Veefkind, and K. Yang
Atmos. Chem. Phys., 14, 3637–3656, https://doi.org/10.5194/acp-14-3637-2014, https://doi.org/10.5194/acp-14-3637-2014, 2014
J. R. Brook, P. A. Makar, D. M. L. Sills, K. L. Hayden, and R. McLaren
Atmos. Chem. Phys., 13, 10461–10482, https://doi.org/10.5194/acp-13-10461-2013, https://doi.org/10.5194/acp-13-10461-2013, 2013
L. Zhang, X. Wang, M. D. Moran, and J. Feng
Atmos. Chem. Phys., 13, 10005–10025, https://doi.org/10.5194/acp-13-10005-2013, https://doi.org/10.5194/acp-13-10005-2013, 2013
E. Solazzo, R. Bianconi, G. Pirovano, M. D. Moran, R. Vautard, C. Hogrefe, K. W. Appel, V. Matthias, P. Grossi, B. Bessagnet, J. Brandt, C. Chemel, J. H. Christensen, R. Forkel, X. V. Francis, A. B. Hansen, S. McKeen, U. Nopmongcol, M. Prank, K. N. Sartelet, A. Segers, J. D. Silver, G. Yarwood, J. Werhahn, J. Zhang, S. T. Rao, and S. Galmarini
Geosci. Model Dev., 6, 791–818, https://doi.org/10.5194/gmd-6-791-2013, https://doi.org/10.5194/gmd-6-791-2013, 2013
D. Wen, J. C. Lin, L. Zhang, R. Vet, and M. D. Moran
Geosci. Model Dev., 6, 327–344, https://doi.org/10.5194/gmd-6-327-2013, https://doi.org/10.5194/gmd-6-327-2013, 2013
C. R. Lonsdale, R. G. Stevens, C. A. Brock, P. A. Makar, E. M. Knipping, and J. R. Pierce
Atmos. Chem. Phys., 12, 11519–11531, https://doi.org/10.5194/acp-12-11519-2012, https://doi.org/10.5194/acp-12-11519-2012, 2012
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Future changes in isoprene-epoxydiol-derived secondary organic aerosol (IEPOX SOA) under the Shared Socioeconomic Pathways: the importance of physicochemical dependency
Improving regional air quality predictions in the Indo-Gangetic Plain – case study of an intensive pollution episode in November 2017
Recommendations on benchmarks for numerical air quality model applications in China – Part 1: PM2.5 and chemical species
Global modeling studies of composition and decadal trends of the Asian Tropopause Aerosol Layer
Comparison of chemical lateral boundary conditions for air quality predictions over the contiguous United States during pollutant intrusion events
Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models
Size-resolved aerosol pH over Europe during summer
Insights into the aging of biomass burning aerosol from satellite observations and 3D atmospheric modeling: evolution of the aerosol optical properties in Siberian wildfire plumes
Global modeling of heterogeneous hydroxymethanesulfonate chemistry
Significant wintertime PM2.5 mitigation in the Yangtze River Delta, China, from 2016 to 2019: observational constraints on anthropogenic emission controls
Historical and future changes in air pollutants from CMIP6 models
Evaluating trends and seasonality in modeled PM2.5 concentrations using empirical mode decomposition
Long-term observational constraints of organic aerosol dependence on inorganic species in the southeast US
Model bias in simulating major chemical components of PM2.5 in China
A study of the effect of aerosols on surface ozone through meteorology feedbacks over China
Aerosol pH and chemical regimes of sulfate formation in aerosol water during winter haze in the North China Plain
Pollutant emission reductions deliver decreased PM2.5-caused mortality across China during 2015–2017
Effects of global ship emissions on European air pollution levels
Treatment of non-ideality in the SPACCIM multiphase model – Part 2: Impacts on the multiphase chemical processing in deliquesced aerosol particles
Inverse modeling of fire emissions constrained by smoke plume transport using HYSPLIT dispersion model and geostationary satellite observations
Comprehensive analyses of source sensitivities and apportionments of PM2.5 and ozone over Japan via multiple numerical techniques
Numerical analysis of agricultural emissions impacts on PM2.5 in China using a high-resolution ammonia emission inventory
Climate and air quality impacts due to mitigation of non-methane near-term climate forcers
Shipping emissions in the Iberian Peninsula and the impacts on air quality
The effect of biological particles and their ageing processes on aerosol radiative properties: Model sensitivity studies
Modelling of the public health costs of fine particulate matter and results for Finland in 2015
Development and application of the WRFDA-Chem three-dimensional variational (3DVAR) system: aiming to improve air quality forecasting and diagnose model deficiencies
Assessment of natural and anthropogenic aerosol air pollution in the Middle East using MERRA-2, CAMS data assimilation products, and high-resolution WRF-Chem model simulations
Trends and spatial shifts in lightning fires and smoke concentrations in response to 21st century climate over the national forests and parks of the western United States
Predicting secondary organic aerosol phase state and viscosity and its effect on multiphase chemistry in a regional-scale air quality model
The impact of ship emissions on air quality and human health in the Gothenburg area – Part 1: 2012 emissions
Why do models perform differently on particulate matter over East Asia? A multi-model intercomparison study for MICS-Asia III
Evaluating the impact of blowing-snow sea salt aerosol on springtime BrO and O3 in the Arctic
Impacts of water partitioning and polarity of organic compounds on secondary organic aerosol over eastern China
Multiphase MCM–CAPRAM modeling of the formation and processing of secondary aerosol constituents observed during the Mt. Tai summer campaign in 2014
Inverse modeling of SO2 and NOx emissions over China using multisensor satellite data – Part 1: Formulation and sensitivity analysis
Improving air quality forecasting with the assimilation of GOCI aerosol optical depth (AOD) retrievals during the KORUS-AQ period
Exploration of oxidative chemistry and secondary organic aerosol formation in the Amazon during the wet season: explicit modeling of the Manaus urban plume with GECKO-A
Modeling organic aerosol over Europe in summer conditions with the VBS-GECKO parameterization: sensitivity to secondary organic compound properties and IVOC (intermediate-volatility organic compound) emissions
The acidity of atmospheric particles and clouds
Characterization of organic aerosol across the global remote troposphere: a comparison of ATom measurements and global chemistry models
Soccer games and record-breaking PM2.5 pollution events in Santiago, Chile
Simulation of organic aerosol formation during the CalNex study: updated mobile emissions and secondary organic aerosol parameterization for intermediate-volatility organic compounds
Aerosol pH and liquid water content determine when particulate matter is sensitive to ammonia and nitrate availability
A predictive group-contribution model for the viscosity of aqueous organic aerosol
Local and remote mean and extreme temperature response to regional aerosol emissions reductions
Modeling diurnal variation of surface PM2.5 concentrations over East China with WRF-Chem: impacts from boundary-layer mixing and anthropogenic emission
An evaluation of global organic aerosol schemes using airborne observations
MICS-Asia III: overview of model intercomparison and evaluation of acid deposition over Asia
Trends and source apportionment of aerosols in Europe during 1980–2018
Duseong S. Jo, Alma Hodzic, Louisa K. Emmons, Simone Tilmes, Rebecca H. Schwantes, Michael J. Mills, Pedro Campuzano-Jost, Weiwei Hu, Rahul A. Zaveri, Richard C. Easter, Balwinder Singh, Zheng Lu, Christiane Schulz, Johannes Schneider, John E. Shilling, Armin Wisthaler, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 3395–3425, https://doi.org/10.5194/acp-21-3395-2021, https://doi.org/10.5194/acp-21-3395-2021, 2021
Short summary
Short summary
Secondary organic aerosol (SOA) is a major component of submicron particulate matter, but there are a lot of uncertainties in the future prediction of SOA. We used CESM 2.1 to investigate future IEPOX SOA concentration changes. The explicit chemistry predicted substantial changes in IEPOX SOA depending on the future scenario, but the parameterization predicted weak changes due to simplified chemistry, which shows the importance of correct physicochemical dependencies in future SOA prediction.
Behrooz Roozitalab, Gregory R. Carmichael, and Sarath K. Guttikunda
Atmos. Chem. Phys., 21, 2837–2860, https://doi.org/10.5194/acp-21-2837-2021, https://doi.org/10.5194/acp-21-2837-2021, 2021
Short summary
Short summary
We used air quality modeling to study an extreme pollution episode in November 2017 in India. We found both local and regional emissions contribute to high pollution levels. The extreme pollution values were the result of agricultural fires in the northwest of India. Ozone should be considered in future air quality management strategies.
Ling Huang, Yonghui Zhu, Hehe Zhai, Shuhui Xue, Tianyi Zhu, Yun Shao, Ziyi Liu, Chris Emery, Greg Yarwood, Yangjun Wang, Joshua Fu, Kun Zhang, and Li Li
Atmos. Chem. Phys., 21, 2725–2743, https://doi.org/10.5194/acp-21-2725-2021, https://doi.org/10.5194/acp-21-2725-2021, 2021
Short summary
Short summary
Numerical air quality models (AQMs) are being applied extensively to address diverse scientific and regulatory compliance associated with deteriorating air quality in China. For any AQM applications, model performance evaluation is a critical step that guarantees the robustness and reliability of the baseline modeling results and subsequent applications. We provided benchmarks for model performance evaluation of AQM applications in China to demonstrate model robustness.
Adriana Bossolasco, Fabrice Jegou, Pasquale Sellitto, Gwenaël Berthet, Corinna Kloss, and Bernard Legras
Atmos. Chem. Phys., 21, 2745–2764, https://doi.org/10.5194/acp-21-2745-2021, https://doi.org/10.5194/acp-21-2745-2021, 2021
Short summary
Short summary
Using the Community Earth System Model, we simulate the surface aerosols lifted to the Asian tropopause (the ATAL layer), its composition and trend, covering a long-term period (2000–2015). We identify a
double-peakaerosol vertical profile that we attribute to
dryand
convectivecloud-borne aerosols. We find that natural aerosol (mineral dust) is the dominant aerosol type and has no long-term trend. ATAL's anthropogenic fraction, by contrast, shows a marked positive trend.
Youhua Tang, Huisheng Bian, Zhining Tao, Luke D. Oman, Daniel Tong, Pius Lee, Patrick C. Campbell, Barry Baker, Cheng-Hsuan Lu, Li Pan, Jun Wang, Jeffery McQueen, and Ivanka Stajner
Atmos. Chem. Phys., 21, 2527–2550, https://doi.org/10.5194/acp-21-2527-2021, https://doi.org/10.5194/acp-21-2527-2021, 2021
Short summary
Short summary
Chemical lateral boundary condition (CLBC) impact is essential for regional air quality prediction during intrusion events. We present a model mapping Goddard Earth Observing System (GEOS) to Community Multi-scale Air Quality (CMAQ) CB05–AERO6 (Carbon Bond 5; version 6 of the aerosol module) species. Influence depends on distance from the inflow boundary and species and their regional characteristics. We use aerosol optical thickness to derive CLBCs, achieving reasonable prediction.
Gillian Thornhill, William Collins, Dirk Olivié, Ragnhild B. Skeie, Alex Archibald, Susanne Bauer, Ramiro Checa-Garcia, Stephanie Fiedler, Gerd Folberth, Ada Gjermundsen, Larry Horowitz, Jean-Francois Lamarque, Martine Michou, Jane Mulcahy, Pierre Nabat, Vaishali Naik, Fiona M. O'Connor, Fabien Paulot, Michael Schulz, Catherine E. Scott, Roland Séférian, Chris Smith, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, and James Weber
Atmos. Chem. Phys., 21, 1105–1126, https://doi.org/10.5194/acp-21-1105-2021, https://doi.org/10.5194/acp-21-1105-2021, 2021
Short summary
Short summary
We find that increased temperatures affect aerosols and reactive gases by changing natural emissions and their rates of removal from the atmosphere. Changing the composition of these species in the atmosphere affects the radiative budget of the climate system and therefore amplifies or dampens the climate response of climate models of the Earth system. This study found that the largest effect is a dampening of climate change as warmer temperatures increase the emissions of cooling aerosols.
Stylianos Kakavas, David Patoulias, Maria Zakoura, Athanasios Nenes, and Spyros N. Pandis
Atmos. Chem. Phys., 21, 799–811, https://doi.org/10.5194/acp-21-799-2021, https://doi.org/10.5194/acp-21-799-2021, 2021
Short summary
Short summary
The dependence of aerosol acidity on particle size, location, and altitude over Europe during a summertime period is investigated. Differences of up to 1–4 pH units are predicted between sub- and supermicron particles in northern and southern Europe. Particles of all sizes become increasingly acidic with altitude (0.5–2.5 pH units decrease over 2.5 km). The size-dependent pH differences carry important implications for pH-sensitive processes in the aerosol.
Igor B. Konovalov, Nikolai A. Golovushkin, Matthias Beekmann, and Meinrat O. Andreae
Atmos. Chem. Phys., 21, 357–392, https://doi.org/10.5194/acp-21-357-2021, https://doi.org/10.5194/acp-21-357-2021, 2021
Short summary
Short summary
A lack of consistent observational constraints on the atmospheric evolution of the optical properties of biomass burning (BB) aerosol limits the accuracy of assessments of the aerosol radiative and climate effects. We show that useful insights into the evolution of the BB aerosol optical properties can be inferred from a combination of satellite observations and 3D modeling. We report major changes that occurred in the optical properties of Siberian BB aerosol during its long-range transport.
Shaojie Song, Tao Ma, Yuzhong Zhang, Lu Shen, Pengfei Liu, Ke Li, Shixian Zhai, Haotian Zheng, Meng Gao, Jonathan M. Moch, Fengkui Duan, Kebin He, and Michael B. McElroy
Atmos. Chem. Phys., 21, 457–481, https://doi.org/10.5194/acp-21-457-2021, https://doi.org/10.5194/acp-21-457-2021, 2021
Short summary
Short summary
We simulate the atmospheric chemical processes of an important sulfur-containing organic aerosol species, which is produced by the reaction between sulfur dioxide and formaldehyde. We can predict its distribution on a global scale. We find it is particularly rich in East Asia. This aerosol species is more abundant in the colder season partly because of weaker sunlight.
Liqiang Wang, Shaocai Yu, Pengfei Li, Xue Chen, Zhen Li, Yibo Zhang, Mengying Li, Khalid Mehmood, Weiping Liu, Tianfeng Chai, Yannian Zhu, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 20, 14787–14800, https://doi.org/10.5194/acp-20-14787-2020, https://doi.org/10.5194/acp-20-14787-2020, 2020
Short summary
Short summary
The Chinese government has made major strides in curbing anthropogenic emissions. In this study, we constrain a state-of-the-art CTM by a reliable data assimilation method with extensive chemical and meteorological observations. This comprehensive technical design provides a crucial advance in isolating the influences of emission changes and meteorological perturbations over the Yangtze River Delta (YRD) from 2016 to 2019, thus establishing the first map of the PM2.5 mitigation across the YRD.
Steven T. Turnock, Robert J. Allen, Martin Andrews, Susanne E. Bauer, Makoto Deushi, Louisa Emmons, Peter Good, Larry Horowitz, Jasmin G. John, Martine Michou, Pierre Nabat, Vaishali Naik, David Neubauer, Fiona M. O'Connor, Dirk Olivié, Naga Oshima, Michael Schulz, Alistair Sellar, Sungbo Shim, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, Tongwen Wu, and Jie Zhang
Atmos. Chem. Phys., 20, 14547–14579, https://doi.org/10.5194/acp-20-14547-2020, https://doi.org/10.5194/acp-20-14547-2020, 2020
Short summary
Short summary
A first assessment is made of the historical and future changes in air pollutants from models participating in the 6th Coupled Model Intercomparison Project (CMIP6). Substantial benefits to future air quality can be achieved in future scenarios that implement measures to mitigate climate and involve reductions in air pollutant emissions, particularly methane. However, important differences are shown between models in the future regional projection of air pollutants under the same scenario.
Huiying Luo, Marina Astitha, Christian Hogrefe, Rohit Mathur, and S. Trivikrama Rao
Atmos. Chem. Phys., 20, 13801–13815, https://doi.org/10.5194/acp-20-13801-2020, https://doi.org/10.5194/acp-20-13801-2020, 2020
Short summary
Short summary
A new method is introduced to evaluate nonlinear, nonstationary modeled PM2.5 time series by decomposing decadal PM2.5 concentrations and its species onto various timescales. It does not require preselection of temporal scales and assumptions of linearity and stationarity. It provides a unique opportunity to assess the influence of each species on total PM2.5. The results reveal a phase shift in modeled EC/OC concentrations, indicating the need for improved model treatment of organic aerosols.
Yiqi Zheng, Joel A. Thornton, Nga Lee Ng, Hansen Cao, Daven K. Henze, Erin E. McDuffie, Weiwei Hu, Jose L. Jimenez, Eloise A. Marais, Eric Edgerton, and Jingqiu Mao
Atmos. Chem. Phys., 20, 13091–13107, https://doi.org/10.5194/acp-20-13091-2020, https://doi.org/10.5194/acp-20-13091-2020, 2020
Short summary
Short summary
This study aims to address a challenge in biosphere–atmosphere interactions: to what extent can biogenic organic aerosol (OA) be modified through human activities? From three surface network observations, we show OA is weakly dependent on sulfate and aerosol acidity in the summer southeast US, on both long-term trends and monthly variability. The results are in strong contrast to a global model, GEOS-Chem, suggesting the need to revisit the representation of aqueous-phase secondary OA formation.
Ruqian Miao, Qi Chen, Yan Zheng, Xi Cheng, Yele Sun, Paul I. Palmer, Manish Shrivastava, Jianping Guo, Qiang Zhang, Yuhan Liu, Zhaofeng Tan, Xuefei Ma, Shiyi Chen, Limin Zeng, Keding Lu, and Yuanhang Zhang
Atmos. Chem. Phys., 20, 12265–12284, https://doi.org/10.5194/acp-20-12265-2020, https://doi.org/10.5194/acp-20-12265-2020, 2020
Short summary
Short summary
In this study we evaluated the model performances for simulating secondary inorganic aerosol (SIA) and organic aerosol (OA) in PM2.5 in China against comprehensive datasets. The potential biases from factors related to meteorology, emission, chemistry, and atmospheric removal are systematically investigated. This study provides a comprehensive understanding of modeling PM2.5, which is important for studies on the effectiveness of emission control strategies.
Yawei Qu, Apostolos Voulgarakis, Tijian Wang, Matthew Kasoar, Chris Wells, Cheng Yuan, Sunil Varma, and Laura Mansfield
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-727, https://doi.org/10.5194/acp-2020-727, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
The meteorological effect of aerosols on tropospheric ozone is investigated using global atmospheric modelling. We found that aerosol-induced meteorological effects act to reduce modelled ozone concentrations over China, which brings the simulation closer to observed levels. Our work sheds light on understudied processes affecting the levels of tropospheric gaseous pollutants and provides a basis for evaluating such processes using a combination of observations and model sensitivity experiments.
Wei Tao, Hang Su, Guangjie Zheng, Jiandong Wang, Chao Wei, Lixia Liu, Nan Ma, Meng Li, Qiang Zhang, Ulrich Pöschl, and Yafang Cheng
Atmos. Chem. Phys., 20, 11729–11746, https://doi.org/10.5194/acp-20-11729-2020, https://doi.org/10.5194/acp-20-11729-2020, 2020
Short summary
Short summary
We simulated the thermodynamic and multiphase reactions in aerosol water during a wintertime haze event over the North China Plain. It was found that aerosol pH exhibited a strong spatiotemporal variability, and multiple oxidation pathways were predominant for particulate sulfate formation in different locations. Sensitivity tests further showed that ammonia, crustal particles, and dissolved transition metal ions were important factors for multiphase chemistry during haze episodes.
Ben Silver, Luke Conibear, Carly L. Reddington, Christoph Knote, Steve R. Arnold, and Dominick V. Spracklen
Atmos. Chem. Phys., 20, 11683–11695, https://doi.org/10.5194/acp-20-11683-2020, https://doi.org/10.5194/acp-20-11683-2020, 2020
Short summary
Short summary
China suffers from serious air pollution, which is thought to cause millions of early deaths each year. Measurements on the ground show that overall air quality is improving. Air quality is also affected by weather conditions, which can vary from year to year. We conduct computer simulations to show it is the reduction of the amount of pollution emitted, rather than weather conditions, which caused air quality to improve during 2015–2017. We then estimate that 150 000 fewer people die early.
Jan Eiof Jonson, Michael Gauss, Michael Schulz, Jukka-Pekka Jalkanen, and Hilde Fagerli
Atmos. Chem. Phys., 20, 11399–11422, https://doi.org/10.5194/acp-20-11399-2020, https://doi.org/10.5194/acp-20-11399-2020, 2020
Short summary
Short summary
We have calculated the effects of air pollution in Europe from shipping on levels of PM2.5 and ozone and depositions of oxidised nitrogen and sulfur from individual sea areas and from all global shipping. Model results are shown for Europe as a whole but also focusing on select, mainly coastal, countries. Calculations are made using 2017 emissions supplemented by calculations reducing sulfur emissions from ships by about 80 % following the implementation of the 2020 global sulfur cap.
Ahmad Jhony Rusumdar, Andreas Tilgner, Ralf Wolke, and Hartmut Herrmann
Atmos. Chem. Phys., 20, 10351–10377, https://doi.org/10.5194/acp-20-10351-2020, https://doi.org/10.5194/acp-20-10351-2020, 2020
Short summary
Short summary
In the present study, simulations with the SPACCIM-SpactMod multiphase chemistry model are performed. The investigations aim at assessing the impact of a detailed treatment of non-ideality in multiphase models dealing with aqueous aerosol chemistry. The model studies demonstrate that the inclusion of non-ideality considerably affects the multiphase chemical processing of transition metal ions, oxidants, and related chemical subsystems such as organic chemistry in aqueous aerosols.
Hyun Cheol Kim, Tianfeng Chai, Ariel Stein, and Shobha Kondragunta
Atmos. Chem. Phys., 20, 10259–10277, https://doi.org/10.5194/acp-20-10259-2020, https://doi.org/10.5194/acp-20-10259-2020, 2020
Short summary
Short summary
Smoke forecasts have been challenged by high uncertainty in fire emission estimates. We develop an inverse modeling system, the HYSPLIT-based Emissions Inverse Modeling System for wildfires, that estimates wildfire emissions from the transport and dispersion of smoke plumes as measured by satellite observations. Using NOAA HYSPLIT and GOES Aerosol/Smoke Product (GASP), the system resolves smoke source strength as a function of time and vertical level and outperforms current operational system.
Satoru Chatani, Hikari Shimadera, Syuichi Itahashi, and Kazuyo Yamaji
Atmos. Chem. Phys., 20, 10311–10329, https://doi.org/10.5194/acp-20-10311-2020, https://doi.org/10.5194/acp-20-10311-2020, 2020
Short summary
Short summary
Source sensitivities and apportionments of PM2.5 and ozone concentrations over Japan for 2016 were evaluated using multiple numerical techniques including BFM, HDDM, and ISAM, embedded in regional chemical transport models. Influences of stringent emission controls recently implemented in Asian countries were reflected. Differences between sensitivities and apportionments greatly helped distinguish various direct and indirect effects of emission sources on PM2.5 and ozone concentrations.
Xiao Han, Lingyun Zhu, Mingxu Liu, Yu Song, and Meigen Zhang
Atmos. Chem. Phys., 20, 9979–9996, https://doi.org/10.5194/acp-20-9979-2020, https://doi.org/10.5194/acp-20-9979-2020, 2020
Short summary
Short summary
China is one of the largest agricultural countries in the world. Some of the major PM2.5 particles that cause the atmospheric haze and impact the climate change were converted from agricultural NH3 emission. This paper applied the numerical modeling system, coupled with a high-resolution agricultural NH3 emissions inventory, to investigate the contribution of agricultural NH3 to PM2.5 mass burden in China and obtained some interesting results.
Robert J. Allen, Steven Turnock, Pierre Nabat, David Neubauer, Ulrike Lohmann, Dirk Olivié, Naga Oshima, Martine Michou, Tongwen Wu, Jie Zhang, Toshihiko Takemura, Michael Schulz, Kostas Tsigaridis, Susanne E. Bauer, Louisa Emmons, Larry Horowitz, Vaishali Naik, Twan van Noije, Tommi Bergman, Jean-Francois Lamarque, Prodromos Zanis, Ina Tegen, Daniel M. Westervelt, Philippe Le Sager, Peter Good, Sungbo Shim, Fiona O'Connor, Dimitris Akritidis, Aristeidis K. Georgoulias, Makoto Deushi, Lori T. Sentman, Jasmin G. John, Shinichiro Fujimori, and William J. Collins
Atmos. Chem. Phys., 20, 9641–9663, https://doi.org/10.5194/acp-20-9641-2020, https://doi.org/10.5194/acp-20-9641-2020, 2020
Rafael A. O. Nunes, Maria C. M. Alvim-Ferraz, Fernando G. Martins, Fátima Calderay-Cayetano, Vanessa Durán-Grados, Juan Moreno-Gutiérrez, Jukka-Pekka Jalkanen, Hanna Hannuniemi, and Sofia I. V. Sousa
Atmos. Chem. Phys., 20, 9473–9489, https://doi.org/10.5194/acp-20-9473-2020, https://doi.org/10.5194/acp-20-9473-2020, 2020
Short summary
Short summary
The central position of the Iberian Peninsula with ship traffic between the Americas, Africa, and Europe, combined with the known adverse effects of this sector on air quality, emphasises the relevance of a more detailed study of these impacts in this region. Results showed increased levels of SO2 and NO2 near port areas, as well as of O3, sulfate, PM2.5, and PM10 over the Iberian Peninsula coastline due to shipping emissions. To study mitigation measures, application is crucial.
Minghui Zhang, Amina Khaled, Pierre Amato, Anne-Marie Delort, and Barbara Ervens
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-781, https://doi.org/10.5194/acp-2020-781, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
Biological aerosol particles (BAP) represent a small fraction of total atmospheric aerosol burden. They attracted attention due to their role for climate and public health. Our study summarizes which BAP properties are important to affect their inclusion in clouds and interaction with light and might also affect their residence time and transport in the atmosphere. Our study highlights that not only chemical and physical but also biological processes can modify these physicochemical properties.
Jaakko Kukkonen, Mikko Savolahti, Yuliia Palamarchuk, Timo Lanki, Väinö Nurmi, Ville-Veikko Paunu, Leena Kangas, Mikhail Sofiev, Ari Karppinen, Androniki Maragkidou, Pekka Tiittanen, and Niko Karvosenoja
Atmos. Chem. Phys., 20, 9371–9391, https://doi.org/10.5194/acp-20-9371-2020, https://doi.org/10.5194/acp-20-9371-2020, 2020
Short summary
Short summary
We have developed a mathematical model that can be used to analyse the benefits that could be achieved by implementing alternative air quality abatement measures, policies or strategies. The model was applied to determine pollution sources in the whole of Finland in 2015. Clearly the most economically effective measures were the reduction in emissions from low-level sources in urban areas. Such sources include road transport, non-road vehicles and machinery, and residential wood combustion.
Wei Sun, Zhiquan Liu, Dan Chen, Pusheng Zhao, and Min Chen
Atmos. Chem. Phys., 20, 9311–9329, https://doi.org/10.5194/acp-20-9311-2020, https://doi.org/10.5194/acp-20-9311-2020, 2020
Short summary
Short summary
A new aerosol and gas pollutant assimilation capability is developed within the WRFDA system with the 3D variational algorithm and MOSAIC (Model for Simulating Aerosol Interactions and Chemistry) aerosol scheme. By assimilating surface PM2.5, PM10, SO2, NO2, O3, and CO, it improves 24 h air quality forecasting. Based on this system, model deficiencies are explored. Parameterization in the newly added inorganic aerosol heterogeneous reactions should be adjusted and verified by data assimilation.
Alexander Ukhov, Suleiman Mostamandi, Arlindo da Silva, Johannes Flemming, Yasser Alshehri, Illia Shevchenko, and Georgiy Stenchikov
Atmos. Chem. Phys., 20, 9281–9310, https://doi.org/10.5194/acp-20-9281-2020, https://doi.org/10.5194/acp-20-9281-2020, 2020
Short summary
Short summary
The data assimilation products MERRA2 and CAMS are tested over the Middle East (ME) against in situ and satellite observations. For the first time, we compared the new MODIS aerosol optical depth (AOD) retrieval, MAIAC, with the Deep Blue and Dark Target MODIS AOD. We conducted 2-year high-resolution WRF-Chem simulations with the most accurate OMI-HTAP SO2 emissions to estimate the contribution of natural and anthropogenic aerosols to the PM pollution in the ME.
Yang Li, Loretta J. Mickley, Pengfei Liu, and Jed O. Kaplan
Atmos. Chem. Phys., 20, 8827–8838, https://doi.org/10.5194/acp-20-8827-2020, https://doi.org/10.5194/acp-20-8827-2020, 2020
Short summary
Short summary
Using a coupled vegetation–fire–climate modeling framework, we show a northward shift in forests and increased lightning fire activity in northern US states, including Idaho, Montana, and Wyoming. Our findings suggest a large climate penalty on ecosystem, air quality, visibility, and human health in a region valued for its national forests and parks. The fine-scale smoke PM predictions provided in this study should prove useful to human health and environmental assessments.
Ryan Schmedding, Quazi Z. Rasool, Yue Zhang, Havala O. T. Pye, Haofei Zhang, Yuzhi Chen, Jason D. Surratt, Felipe D. Lopez-Hilfiker, Joel A. Thornton, Allen H. Goldstein, and William Vizuete
Atmos. Chem. Phys., 20, 8201–8225, https://doi.org/10.5194/acp-20-8201-2020, https://doi.org/10.5194/acp-20-8201-2020, 2020
Short summary
Short summary
Accurate model prediction of aerosol concentrations is a known challenge. It is assumed in many modeling systems that aerosols are in a homogeneously mixed phase state. It has been observed that aerosols do phase separate and can form a highly viscous organic shell with an aqueous core impacting the formation processes of aerosols. This work is a model implementation to determine an aerosol's phase state using glass transition temperature and aerosol composition.
Lin Tang, Martin O. P. Ramacher, Jana Moldanová, Volker Matthias, Matthias Karl, Lasse Johansson, Jukka-Pekka Jalkanen, Katarina Yaramenka, Armin Aulinger, and Malin Gustafsson
Atmos. Chem. Phys., 20, 7509–7530, https://doi.org/10.5194/acp-20-7509-2020, https://doi.org/10.5194/acp-20-7509-2020, 2020
Short summary
Short summary
The effects of shipping emissions on air quality and health in the harbour city of Gothenburg were simulated for 2012 with coupled regional and city-scale chemistry transport models. The results show that contributions of shipping to exposure and health impacts from particulate matter and NO2 are significant and that shipping-related exposure to PM is dominated by emissions from regional shipping outside the city domain and is larger than exposure related to emissions from local road traffic.
Jiani Tan, Joshua S. Fu, Gregory R. Carmichael, Syuichi Itahashi, Zhining Tao, Kan Huang, Xinyi Dong, Kazuyo Yamaji, Tatsuya Nagashima, Xuemei Wang, Yiming Liu, Hyo-Jung Lee, Chuan-Yao Lin, Baozhu Ge, Mizuo Kajino, Jia Zhu, Meigen Zhang, Hong Liao, and Zifa Wang
Atmos. Chem. Phys., 20, 7393–7410, https://doi.org/10.5194/acp-20-7393-2020, https://doi.org/10.5194/acp-20-7393-2020, 2020
Short summary
Short summary
This study evaluated the performance of 12 chemical transport models from MICS-Asia III for predicting the particulate matter (PM) over East Asia. Four model processes were investigated as the possible reasons for model bias with measurements and the factors causing inconsistent predictions of PM from different models: (1) model inputs, (2) gas–particle conversion, (3) dust emission modules and (4) removal mechanisms (wet and dry depositions). The influence of each process was discussed.
Jiayue Huang, Lyatt Jaeglé, Qianjie Chen, Becky Alexander, Tomás Sherwen, Mat J. Evans, Nicolas Theys, and Sungyeon Choi
Atmos. Chem. Phys., 20, 7335–7358, https://doi.org/10.5194/acp-20-7335-2020, https://doi.org/10.5194/acp-20-7335-2020, 2020
Short summary
Short summary
Large-scale enhancements of tropospheric BrO and the depletion of surface ozone are often observed in the springtime Arctic. Here, we use a chemical transport model to examine the role of sea salt aerosol from blowing snow in explaining these phenomena. We find that our simulation can account for the spatiotemporal variability of satellite observations of BrO. However, the model has difficulty in producing the magnitude of observed ozone depletion events.
Jingyi Li, Haowen Zhang, Qi Ying, Zhijun Wu, Yanli Zhang, Xinming Wang, Xinghua Li, Yele Sun, Min Hu, Yuanhang Zhang, and Jianlin Hu
Atmos. Chem. Phys., 20, 7291–7306, https://doi.org/10.5194/acp-20-7291-2020, https://doi.org/10.5194/acp-20-7291-2020, 2020
Short summary
Short summary
Large gaps still exist in modeled and observed secondary organic aerosol (SOA) mass loading and properties. Here we investigated the impacts of water partitioning into organic aerosol and nonideality of the organic–water mixture on SOA over eastern China using a regional 3D model. SOA is increased more significantly in humid and hot environments. Increases in SOA further cause an enhancement of the cooling effects of aerosols. It is crucial to consider the above processes in modeling SOA.
Yanhong Zhu, Andreas Tilgner, Erik Hans Hoffmann, Hartmut Herrmann, Kimitaka Kawamura, Lingxiao Yang, Likun Xue, and Wenxing Wang
Atmos. Chem. Phys., 20, 6725–6747, https://doi.org/10.5194/acp-20-6725-2020, https://doi.org/10.5194/acp-20-6725-2020, 2020
Short summary
Short summary
The formation and processing of secondary inorganic and organic compounds at Mt. Tai, the highest mountain on the North China Plain, are modeled using a multiphase chemical model. The concentrations of key radical and non-radical oxidations in the formation processes are investigated. Sensitivity tests assess the impacts of emission data and glyoxal partitioning constants on modeled results. The key precursors of secondary organic compounds are also identified.
Yi Wang, Jun Wang, Xiaoguang Xu, Daven K. Henze, Zhen Qu, and Kai Yang
Atmos. Chem. Phys., 20, 6631–6650, https://doi.org/10.5194/acp-20-6631-2020, https://doi.org/10.5194/acp-20-6631-2020, 2020
Short summary
Short summary
The use of OMPS satellite observations to inverse-model SO2 and NO2 emissions is presented through the GEOS-Chem adjoint modeling framework. The work is illustrated over China. The robustness of the results is studied through separate and joint inversions of SO2 and NO2 and the consideration of NH3 uncertainty. Independent validation is performed with OMI SO2 and NO2 data. It is shown that simultaneous inversion of NO2 and SO2 from OMPS provides an effective way to rapidly update emissions.
Soyoung Ha, Zhiquan Liu, Wei Sun, Yonghee Lee, and Limseok Chang
Atmos. Chem. Phys., 20, 6015–6036, https://doi.org/10.5194/acp-20-6015-2020, https://doi.org/10.5194/acp-20-6015-2020, 2020
Short summary
Short summary
This study examines the effect of aerosol optical depth (AOD) retrieved from the Korean Geostationary Ocean Color Imager (GOCI) sensors on surface PM2.5 forecasts using the online coupled WRF-Chem forecasting model and the GSI 3D-Var analysis system. During the KORUS-AQ campaign period, the assimilation of GOCI AOD retrieved at the 550 nm wavelength greatly improved air quality forecasting up to 24 h when assimilated with surface PM2.5 observations, particularly for heavy pollution events.
Camille Mouchel-Vallon, Julia Lee-Taylor, Alma Hodzic, Paulo Artaxo, Bernard Aumont, Marie Camredon, David Gurarie, Jose-Luis Jimenez, Donald H. Lenschow, Scot T. Martin, Janaina Nascimento, John J. Orlando, Brett B. Palm, John E. Shilling, Manish Shrivastava, and Sasha Madronich
Atmos. Chem. Phys., 20, 5995–6014, https://doi.org/10.5194/acp-20-5995-2020, https://doi.org/10.5194/acp-20-5995-2020, 2020
Short summary
Short summary
The GoAmazon 2014/5 field campaign took place near the city of Manaus, Brazil, isolated in the Amazon rainforest, to study the impacts of urban pollution on natural air masses. We simulated this campaign with an extremely detailed organic chemistry model to understand how the city would affect the growth and composition of natural aerosol particles. Discrepancies between the model and the measurements indicate that the chemistry of naturally emitted organic compounds is still poorly understood.
Victor Lannuque, Florian Couvidat, Marie Camredon, Bernard Aumont, and Bertrand Bessagnet
Atmos. Chem. Phys., 20, 4905–4931, https://doi.org/10.5194/acp-20-4905-2020, https://doi.org/10.5194/acp-20-4905-2020, 2020
Short summary
Short summary
Large uncertainties remain in modeling secondary organic aerosol (SOA) and evolution and properties in air quality models. In this article, the recently developed VBS-GECKO parameterization for SOA formation has been implemented in the air quality model CHIMERE. Simulations have been driven to identify the main SOA sources and to evaluate the sensitivity of simulated SOA concentrations to (i) secondary organic compound properties and (ii) emissions from traffic and transportation sources.
Havala O. T. Pye, Athanasios Nenes, Becky Alexander, Andrew P. Ault, Mary C. Barth, Simon L. Clegg, Jeffrey L. Collett Jr., Kathleen M. Fahey, Christopher J. Hennigan, Hartmut Herrmann, Maria Kanakidou, James T. Kelly, I-Ting Ku, V. Faye McNeill, Nicole Riemer, Thomas Schaefer, Guoliang Shi, Andreas Tilgner, John T. Walker, Tao Wang, Rodney Weber, Jia Xing, Rahul A. Zaveri, and Andreas Zuend
Atmos. Chem. Phys., 20, 4809–4888, https://doi.org/10.5194/acp-20-4809-2020, https://doi.org/10.5194/acp-20-4809-2020, 2020
Short summary
Short summary
Acid rain is recognized for its impacts on human health and ecosystems, and programs to mitigate these effects have had implications for atmospheric acidity. Historical measurements indicate that cloud and fog droplet acidity has changed in recent decades in response to controls on emissions from human activity, while the limited trend data for suspended particles indicate acidity may be relatively constant. This review synthesizes knowledge on the acidity of atmospheric particles and clouds.
Alma Hodzic, Pedro Campuzano-Jost, Huisheng Bian, Mian Chin, Peter R. Colarco, Douglas A. Day, Karl D. Froyd, Bernd Heinold, Duseong S. Jo, Joseph M. Katich, John K. Kodros, Benjamin A. Nault, Jeffrey R. Pierce, Eric Ray, Jacob Schacht, Gregory P. Schill, Jason C. Schroder, Joshua P. Schwarz, Donna T. Sueper, Ina Tegen, Simone Tilmes, Kostas Tsigaridis, Pengfei Yu, and Jose L. Jimenez
Atmos. Chem. Phys., 20, 4607–4635, https://doi.org/10.5194/acp-20-4607-2020, https://doi.org/10.5194/acp-20-4607-2020, 2020
Short summary
Short summary
Organic aerosol (OA) is a key source of uncertainty in aerosol climate effects. We present the first pole-to-pole OA characterization during the NASA Atmospheric Tomography aircraft mission. OA has a strong seasonal and zonal variability, with the highest levels in summer and over fire-influenced regions and the lowest ones in the southern high latitudes. We show that global models predict the OA distribution well but not the relative contribution of OA emissions vs. chemical production.
Rémy Lapere, Laurent Menut, Sylvain Mailler, and Nicolás Huneeus
Atmos. Chem. Phys., 20, 4681–4694, https://doi.org/10.5194/acp-20-4681-2020, https://doi.org/10.5194/acp-20-4681-2020, 2020
Short summary
Short summary
Based on measurements and modeling, this study shows that recent record-breaking peak events of fine particles in Santiago, Chile, can be traced back to massive barbecue cooking by its inhabitants during international soccer games. Decontamination plans in Santiago focus on decreasing emissions of pollutants from traffic, industry, and residential heating. This study implies that cultural habits such as barbecue cooking also need to be taken into account.
Quanyang Lu, Benjamin N. Murphy, Momei Qin, Peter J. Adams, Yunliang Zhao, Havala O. T. Pye, Christos Efstathiou, Chris Allen, and Allen L. Robinson
Atmos. Chem. Phys., 20, 4313–4332, https://doi.org/10.5194/acp-20-4313-2020, https://doi.org/10.5194/acp-20-4313-2020, 2020
Short summary
Short summary
This research work investigates organic aerosol formation in California during the CalNex study. We update the chemical transport model with the most recent mobile-source emission data and introduce a simple parameterization for secondary organic aerosol formed from intermediate-volatility organic compounds. Our results highlight the important contribution of IVOCs to SOA production in the Los Angeles region but underscore that other uncertainties must be addressed to close the SOA mass balance.
Athanasios Nenes, Spyros N. Pandis, Rodney J. Weber, and Armistead Russell
Atmos. Chem. Phys., 20, 3249–3258, https://doi.org/10.5194/acp-20-3249-2020, https://doi.org/10.5194/acp-20-3249-2020, 2020
Short summary
Short summary
We show that aerosol acidity (pH) and liquid water content naturally emerge as previously ignored parameters that drive particulate matter formation in the atmosphere, and its sensitivity to emissions of ammonia and nitric acid. The simple framework presented is easily applied to ambient measurements or model output, and it provides the
chemical regimeof PM sensitivity to ammonia and nitric acid availability.
Natalie R. Gervasi, David O. Topping, and Andreas Zuend
Atmos. Chem. Phys., 20, 2987–3008, https://doi.org/10.5194/acp-20-2987-2020, https://doi.org/10.5194/acp-20-2987-2020, 2020
Short summary
Short summary
Organic aerosols have been shown to exist often in a semi-solid or amorphous, glassy state. Highly viscous particles behave differently than their well-mixed liquid analogues with consequences for a variety of aerosol processes. Here, we introduce a new predictive mixture viscosity model called AIOMFAC-VISC. It enables us to predict the viscosity of aqueous organic mixtures as a function of temperature and chemical composition, covering the full range of liquid, semi-solid, and glassy states.
Daniel M. Westervelt, Nora R. Mascioli, Arlene M. Fiore, Andrew J. Conley, Jean-François Lamarque, Drew T. Shindell, Greg Faluvegi, Michael Previdi, Gustavo Correa, and Larry W. Horowitz
Atmos. Chem. Phys., 20, 3009–3027, https://doi.org/10.5194/acp-20-3009-2020, https://doi.org/10.5194/acp-20-3009-2020, 2020
Short summary
Short summary
We use three Earth system models to estimate the impact of regional air pollutant emissions reductions on global and regional surface temperature. We find that removing human-caused air pollutant emissions from certain world regions (such as the USA) results in warming of up to 0.15 °C. We use our model output to calculate simple climate metrics that will allow for regional-scale climate impact estimates without the use of computationally demanding computer models.
Qiuyan Du, Chun Zhao, Mingshuai Zhang, Xue Dong, Yu Chen, Zhen Liu, Zhiyuan Hu, Qiang Zhang, Yubin Li, Renmin Yuan, and Shiguang Miao
Atmos. Chem. Phys., 20, 2839–2863, https://doi.org/10.5194/acp-20-2839-2020, https://doi.org/10.5194/acp-20-2839-2020, 2020
Short summary
Short summary
Simulated diurnal PM2.5 with WRF-Chem is primarily controlled by planetary boundary layer (PBL) mixing and emission variations. Modeling bias is likely primarily due to inefficient PBL mixing of primary PM2.5 during the night. The increase in PBL mixing strength during the night can significantly reduce biases. This study underscores that more effort is needed to improve the boundary mixing processes of pollutants in models with observations of PBL structure and mixing fluxes besides PBL height.
Sidhant J. Pai, Colette L. Heald, Jeffrey R. Pierce, Salvatore C. Farina, Eloise A. Marais, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Ann M. Middlebrook, Hugh Coe, John E. Shilling, Roya Bahreini, Justin H. Dingle, and Kennedy Vu
Atmos. Chem. Phys., 20, 2637–2665, https://doi.org/10.5194/acp-20-2637-2020, https://doi.org/10.5194/acp-20-2637-2020, 2020
Short summary
Short summary
Aerosols in the atmosphere have significant health and climate impacts. Organic aerosol (OA) accounts for a large fraction of the total aerosol burden, but models have historically struggled to accurately simulate it. This study compares two very different OA model schemes and evaluates them against a suite of globally distributed airborne measurements with the goal of providing insight into the strengths and weaknesses of each approach across different environments.
Syuichi Itahashi, Baozhu Ge, Keiichi Sato, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Hong Liao, Meigen Zhang, Zhe Wang, Meng Li, Junichi Kurokawa, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys., 20, 2667–2693, https://doi.org/10.5194/acp-20-2667-2020, https://doi.org/10.5194/acp-20-2667-2020, 2020
Short summary
Short summary
This study gives an overview of acid deposition from the Model Inter-Comparison Study for Asia (MICS-Asia) phase III. Wet deposition simulated by a total of nine models is evaluated with observation data from the Acid Deposition Monitoring Network in East Asia (EANET). The total deposition maps comparing to emissions over Asia are presented. To seek a way to improve the model performance, ensemble approaches and the precipitation-adjusted method are discussed.
Yang Yang, Sijia Lou, Hailong Wang, Pinya Wang, and Hong Liao
Atmos. Chem. Phys., 20, 2579–2590, https://doi.org/10.5194/acp-20-2579-2020, https://doi.org/10.5194/acp-20-2579-2020, 2020
Short summary
Short summary
Aerosol concentration decreased in Europe during 1980–2018, of which 7 % was induced by the changes in non-European emissions. Aerosols transported from other source regions are increasingly important to air quality in Europe. Contributions to the sulfate radiative forcing over Europe from both European and non-European emissions should decrease at a comparable rate in the next three decades. Future changes in non-European emissions are important in causing regional climate change in Europe.
Cited articles
Anastasopoulos, A. T., Wheeler, A. J., Karman, D., and Kulka, R. H.: Intraurban
concentrations, spatial variability, and correlation of ambient polycyclic
aromatic hydrocarbons (PAH) and PM2.5, Atmos. Environ., 59,
272–283, https://doi.org/10.1016/j.atmosenv.2012.05.004, 2012. a, b
Aulinger, A., Matthias, V., and Quante, M.: Introducing a partitioning
mechanism for PAHs into the Community Multiscale Air Quality modeling
system and its application to simulating the transport of benzo(a)pyrene over
Europe, J. Appl. Meteorol. Clim., 46, 1718–1730,
https://doi.org/10.1175/2007JAMC1395.1, 2007. a
Bidleman, T. F. and Foreman, W. T.: Vapor-particle partitioning of semivolatile
organic compounds, in: Sources and Fates of Aquatic Pollutants, 27–56,
American Chemical Society, 1987. a
Boulton, J. W.: Emissions, air quality and health impacts of widespread
electric vehicle use: literature review and relevance to the Canadian
situation, Technical report, 75 Albert St, Ottawa, ON, Canada, K1P 5E7, 2016. a
Center for climate and energy solutions: U.S. state clean vehicle policies,
url, Center for climate and energy solutions, United States,
available at: https://www.c2es.org/document/us-state-clean-vehicle-policies-and-incentives/
(last access: 27 January 2020), 2019. a
Côté, J., Desmarais, J.-G., Gravel, S., Méthot, A., Patoine, A., Roch, M.,
and Staniforth, A.: The Operational CMC-MRB Global Environmental Multiscale
(GEM) Model. Part II: Results, Mon. Weather Rev., 126, 1397–1418,
https://doi.org/10.1175/1520-0493(1998)126<1397:TOCMGE>2.0.CO;2, 1998a. a
Côté, J., Gravel, S., Méthot, A., Patoine, A., Roch, M., and Staniforth,
A.: The Operational CMC-MRB Global Environmental Multiscale (GEM) Model. Part
I: Design Considerations and Formulation, Mon. Weather Rev., 126,
1373–1395, https://doi.org/10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO;2,
1998b. a
Dachs, J. and Eisenreich, S. J.: Adsorption onto aerosol soot carbon dominates
gas-particle partitioning of polycyclic aromatic hydrocarbons, Environ. Sci.
Technol., 34, 3690–3697, https://doi.org/10.1021/es991201, 2000. a, b
Dunbar, J. C., Lin, C. I., Vergucht, I., Wong, J., and Duran, J. L.: Estimating
the contributions of mobile sources of PAH to urban air using real-time PAH
monitoring, Sci. Total Environ., 279, 1–19,
https://doi.org/10.1016/S0048-9697(01)00686-6, 2001. a
ECCC: Toxic substances list: benzene, url, Environment and Climate Change
Canada, Toronto, ON, Canada,
available at: https://www.canada.ca/en/environment-climate-change/services/management-toxic-substances/list-canadian-environmental-protection-act/benzene.html (last access: 4 June 2018), 2015. a
ECCC: Air Pollutant Emissions Inventory, Overview, website, Environment and
Climate Change Canada,
available at: https://www.canada.ca/en/environment-climate-change/services/pollutants/air-emissions-inventory-overview.html (last access: 24 January 2020), 2018a. a
ECCC: Toxic substances list: polycyclic aromatic hydrocarbons, url,
Environment and Climate Change Canada, Toronto, ON, Canada,
available at: https://www.canada.ca/en/environment-climate-change/services/management-toxic-substances/list-canadian-environmental-protection-act/polycyclic-aromatic-hydrocarbons.html, last access: 30 August 2018b. a
ECCC: 2019 National Inventory Report 1990-2017: Greenhouse Gas Sources and
Sinks in Canada, Part 3, report, Environment and Climate Change Canada,
available at: http://publications.gc.ca/collections/collection_2019/eccc/En81-4-2017-3-eng.pdf (last access: 24 January 2020), 2019a. a
ECCC: Canada-US vehicle and engine emissions: 2014 to 2016 work plan, url,
Environment and Climate Change Canada, Canada,
available at: https://www.canada.ca/en/environment-climate-change/corporate/international-affairs/partnerships-countries-regions/north-america/canada-united-states-vehicle-engine-emissions.html
(last access: 27 January 2020), 2019b. a
energy.gov: Electric vehicle benefits, url, Office of Efficiency and
Renewable Energy, United States,
available at: https://www.energy.gov/eere/electricvehicles/electric-vehicle-benefits,
last access: 27 January 2020. a
EPA: User's guide to MOBILE6.1 and MOBILE6.2: Mobile source emission factor
model, technical report, Air and Radiation Division, U.S. Environmental
Protection Agency, 2002. a
EPA: Speciation of total organic gas and particulate matter emissions from
on-road vehicles in MOVES2014, technical report, Assessment and Standards
Division, Office of Transport and Air Quality, U.S. Environmental Protection
Agency, 2014. a
EPA: Summary of Results for the 2011 National-Scale Assessment, Report,
United States Environment Protection Agency, USA,
avilable at: https://www.epa.gov/sites/production/files/2015-12/documents/2011-nata-summary-results.pdf
(last access: 30 August 2018), 2015. a
Eyth, A., R. Mason, R., and Zubrow, A.: Development and Status of EPA’s 2011
Modeling Platform, conference presentation, 12th CMAS Conference, 28–30 October,
Chapel Hill, North Carolina, USA,
available at: https://www.cmascenter.org/conference//2013/slides/eyth_development_status_2013.pptx (last access: 20 September 2019), 2013. a
Farrell, W., Weichenthal, S., Goldberg, M., Valois, M.-F., Shekarrizfard, M.,
and Hatsopoulou, M.: Near roadway air pollution across a spatially extensive
road and cycling network, Environ. Pollut., 212, 498–507,
https://doi.org/10.1016/j.envpol.2016.02.041, 2016. a
Friedman, C. L. and Selin, N. E.: Long-range atmospheric transport of
polycyclic aromatic hydrocarbons: a global 3-D model analysis including
evaluation of Arctic sources, Environ. Sci. Technol., 46, 9501–9510,
https://doi.org/10.1021/es301904d, 2012. a
Galarneau, E., Makar, P. A., Sassi, M., and Diamond, M. L.: Estimation of
Atmospheric Emissions of Six Semivolatile Polycyclic Aromatic Hydrocarbons in
Southern Canada and the United States by Use of an Emissions Processing
System, Environ. Sci. Technol., 41, 4205–4213, https://doi.org/10.1021/es062303k,
2007. a, b, c
Galarneau, E., Makar, P. A., Zheng, Q., Narayan, J., Zhang, J., Moran, M. D., Bari, M. A., Pathela, S., Chen, A., and Chlumsky, R.: PAH concentrations simulated with the AURAMS-PAH chemical transport model over Canada and the USA, Atmos. Chem. Phys., 14, 4065–4077, https://doi.org/10.5194/acp-14-4065-2014, 2014. a, b, c
Galarneau, E., Wang, D., Dabek-Zlotorzynska, E., Siu, M., Celo, V., Tardif, M.,
Harnish, D., and Jiang, Y.: Air toxics in Canada measured by the National
Air Pollution Surveillance (NAPS) Program and their relation to
ambient air quality guidelines, J. Air Waste Manage., 66, 184–200, https://doi.org/10.1080/10962247.2015.1096863, 2016. a, b
Gariazzo, C., Silibelle, C., Finardi, S., Radice, P., D'Allura, A., Gherardi,
M., and Cecinato, A.: PAHs Modelling over urban area of Rome: Integration
of models results with experimental data, in: Air Pollution modelling and its application XXIII, edited by: Steyn, D. and Mathur, R., 349–354, Springer
Proceedings in Complexity, Springer International Publishing, Switzerland,
https://doi.org/10.1007/978-3-319-04379-1_56, 2014. a
Gariazzo, C., Lamberti, M., Hänninen, O., Silibello, C., Pelliccioni, A.,
Porta, D., Cecinato, A., Gherardi, M., and Forastiere, F.: Assessment of
population exposure to Polycyclic Aromatic Hydrocarbons (PAHs) using
integrated models and evaluation of uncertainties, Atmos. Environ., 101,
235–245, https://doi.org/10.1016/j.atmosenv.2014.11.035, 2015. a
Gentner, D. R., Jathar, S. H., Gordon, T. D., Bahreini, R., Day, D. A.,
El Haddad, I., Hayes, P. L., Pieber, S. M., Platt, S. M., de Gouw, J.,
Goldstein, A. H., Harley, R. A., Jimenez, J. L., Prévôt, A. S. H., and
Robinson, A. L.: Review of Urban Secondary Organic Aerosol Formation from
Gasoline and Diesel Motor Vehicle Emissions, Environ. Sci. Technol., 51,
1074–1093, https://doi.org/10.1021/acs.est.6b04509, 2017. a
Gong, W., Makar, P. A., Zhang, J., Milbrandt, J., Gravel, S., Hayden, K. L.,
Macdonald, A. M., and Leaitch, W. R.: Modelling aerosol cloud meteorology
interaction: A case study with a fully coupled air quality model GEM-MACH,
Atmos. Environ., 115, 695–715, https://doi.org/10.1016/j.atmosenv.2015.05.062, 2015. a
Government of Canada: Canada's actions to reduce emissions, url, Government
of Canada, Canada,
available at: https://www.canada.ca/en/services/environment/weather/climatechange/climate-plan/reduce-emissions.html
(last access: 27 January 2020), 2019. a
Government of Quebec: The Zero-emission vehicle (ZEV) standard, url,
Environnement et Lutte contre les changement climatique, Québec, Quebec,
available at: http://www.environnement.gouv.qc.ca/changementsclimatiques/vze/index-en.htm,
last access: 27 January 2020. a
Hafner, W. D., Carlson, D. L., and Hites, R. A.: Influence of Local Human
Population on Atmospheric Polycyclic Aromatic Hydrocarbon Concentrations,
Environ. Sci. Technol., 39, 7374–7379, https://doi.org/10.1021/es0508673, 2005. a
Han, X. and Naeher, L. P.: A review of traffic-related air pollution exposure
assessment studies in the developing world, Environ. Int., 32,
106–120, https://doi.org/10.1016/j.envint.2005.05.020, 2006. a
Harrison, R. M., Smith, D. J. T., and Luhana, L.: Source apportionment of
atmospheric polycyclic aromatic hydrocarbons collected from an urban location
in Birmingham, UK, Environ. Sci. Technol., 30, 825–832,
https://doi.org/10.1021/es950252d, 1996. a
Hertwich, E., Matelas, S., Pease, W., and McKone, T.: Human toxicity potentials
for life-cycle assessment and Toxics Release Inventory risk screening,
Environ. Toxicol. Chem., 20, 928–939, 2001. a
Houyoux, M., Vukovich, J., and Brandmeyer, J.: Sparse Matrix Operator Kernel
Emissions Modeling System-SMOKE User Manual, Technical report, Environmental
Modeling Center, Research Triangle Park, North Carolina, mCNC-2002, 2002. a
Jing, P., Lu, Z., Xing, J., Streets, D. G., Tan, Q., O'Brien, T., and Kamberos,
J.: Response of the summertime ground-level ozone trend in the Chicago area
to emission controls and temperature changes, 2005–2013, Atmos. Environ., 99,
630–640, https://doi.org/10.1016/j.atmosenv.2014.10.035, 2014. a
Junge, C. E.: Basic considerations about trace constituents in the atmosphere
as related to the fate of global pollutants, in: Fate of pollutants in the
air and water environments, edited by: Suffet, I. H., 7–25, Wiley, New
York, 1977. a
Karavalakis, G., Boutsika, V., Stournas, S., and Bakeas, E.: Biodiesel
emissions profile in modern diesel vehicles. Part 2: Effect of biodiesel
origin on cabonyl, PAH, nitro-PAH and oxy-PAH emissions, Sci. Total Environ., 409, 738–747, https://doi.org/10.1016/j.scitotenv.2010.11.010, 2011. a
Khalek, I. A., Bougher, T. L., and Merritt, P. M.: Phase 1 of the advanced
collaborative emissions study, Report, Coordinating Research Council,
INC., Mansell Rd, Alpharetta, GA, USA, 30022, 2009. a
Kishan, S., Crews, W., Zmud, M., Fujita, E., Burnette, A., Snow, R., Santos,
R., Campbell, D., Fincher, S., Bricka, S., Arnott, P., and Sabisch, M.:
Kansas City PM characterization study: Final Report, Report, Assessment and
Standards Division, Office of Transportation and Air Quality, U.S. EPA, and
the Eastern Research Group Inc., 5608 Parkcrest Drive Suite 100, Austin, TX,
USA, 2008. a
Kleinman, L. I., Daum, P. H., Imre, D. G., Lee, J. H., Lee, Y.-N.,
Nunnermacker, L. J., Springston, S. R., Weinstein-Lloyd, J., and Newman, L.:
Ozone production in the New York City urban plume, J. Geophys. Res., 105,
14495–14511, https://doi.org/10.1029/2000JD900011, 2000. a
Kuoppamäki, K., Setälä, H., Rantalainen, A.-L., and Kotze, D. J.:
Urban snow indicates pollution originating from road traffic, Environ. Pollut.,
195, 56–63, https://doi.org/10.1016/j/envpol.2014.08.019, 2014. a
Lovett, C., Shirmohammadi, F., Sowlat, M., and Sioutas, C.: Commuting in Los
Angeles: Cancer and non-cancer health risks of roadway, light-rail and
subway transit routes, Aerosol Air Qual. Res., 18, 2363–2374, 2018. a
Makar, P., Gong, W., Hogrefe, C., Zhang, Y., Curci, G., Zabkar, R. .,
Milbrandt, J., Im, U., Balzarini, A., Baró, R., Bianconi, R., Cheung, P.,
Forkel, R., Gravel, S., Hirtl, M., Honzak, L., Hou, A., Jiménez-Guerrero,
P., Langer, M., Moran, M., Pabla, B., Pérez, J., Pirovano, G., José,
R. S., Tuccella, P., Werhahn, J., Zhang, J., and Galmarini, S.: Feedbacks
between air pollution and weather, part 2: Effects on chemistry, Atmos.
Environ., 115, 499–526, https://doi.org/10.1016/j.atmosenv.2014.10.021,
2015a. a
Makar, P. A., Gong, W., Milbrandt, J., Hogrefe, C., Zhang, Y., Curci, G.,
Zabkar, R. ., Im, U., Balzarini, A., Baró, R., Bianconi, R., Cheung,
P., Forkel, R., Gravel, S., Hirtl, M., Honzak, L., Hou, A.,
Jiménez-Guerrero, P., Langer, M., Moran, M., Pabla, B., Pérez, J.,
Pirovano, G., José, R. S., Tuccella, P., Werhahn, J., Zhang, J., and
Galmarini, S.: Feedbacks between air pollution and weather, part 1: Effects
on weather, Atmos. Environ., 115, 442–469,
https://doi.org/10.1016/j.atmosenv.2014.12.003, 2015b. a
Miao, Q., Bouchard, M., Chen, D., Rosenberg, M. W., and Aronson, K. J.:
Commuting behaviors and exposure to air pollution in Montreal, Canada, Sci. Total Environ., 508, 193–198, https://doi.org/10.1016/j.scitotenv.2014.11.078, 2015. a, b
Miri, M., Alahabadi, A., Ehrampoush, M. H., Ghaffari, H. R., Sakhvidi, M.
J. Z., Eskandari, M., Rad, A., Lotfi, M. H., and Sheikhha, M. H.:
Environmental determinants of polycyclic aromatic hydrocarbons exposure at
home, at kindergartens and during a commute, Environ. Int., 118,
266–273, https://doi.org/10.1016/j.envint.2018.06.006, 2018. a
Moran, M., Scholtz, M., Slama, C., Dorkalam, A., Taylor, A., Ting, N., Davies,
D., Makar, P., and Venkatesh, S.: An Overview of CEPS1.0: Version 1.0 of the
Canadian Emissions Processing System for Regional-Scale Air Quality Models,
Proc. 7th awma emission inventory symp., Air and Waste Management
Association, Pittsburgh, USA, Research Triangle Park, North Carolina, USA,
1997. a
Moran, M., Menard, S., Gravel, S., Pavlovic, R., and Anselmo, D.: RAQDPS
Versions 1.5.0 and 1.5.1: Upgrades to the CMC Operational Regional Air
Quality Deterministic Prediction System Released in October 2012 and
February 2013, Technical report, Canadian Meteorological Centre, Canadian
Meteorological Centre, Dorval, Quebec, 2013. a
Moran, M. D., Ménard, S., Talbot, D., Huang, P., Makar, P. A., Gong, W.,
Landry, H., Gravel, S., Gong, S., Crevier, L.-P., Kallaur, A., and Sassi, M.:
Particulate-matter forecasting with GEM-MACH15, a new Canadian
air-quality forecast model, in: Air pollution modelling and its application
XX, edited by: Steyn, D. G. and Rao, S. T., p 289–292, Springer, Dordrecht,
2010. a, b
Naumova, Y., Eisenreich, S., Turpin, B., Weisel, C., Morandi, M., Colome, S.,
Totten, L., Stock, T., Winer, A., Alimokhtari, S., Kwon, J., Shendell, D.,
Jones, J., Maberti, S., and Wall, S.: Polycyclic aromatic hydrocarbons in the
indoor and outdoor air of three cities in the U.S., Environ. Sci. Technol.,
36, 2552–2559, 2002. a
Nielsen, T.: Traffic contribution of polycyclic aromatic hydrocarbons in the
center of a large city, Atmos. Environ., 30, 3481–3490,
https://doi.org/10.1016/1352-2310(96)00096-9, 1996. a
Nisbet, I. and LaGoy, P.: Toxic equivalency factors (TEFs) for polycyclic
aromatic hydrocarbons (PAHs), Regul. Toxicol. Pharm., 16, 290–300, 1992. a
NPRI: National Pollutant Release Inventory, website, Environment and Climate
Change Canada,
2016. a
Pachón, J. E., Sarmiento, H., and Hoshiko, T.: Health risk represented by
inhaling polycyclic aromatic hydrocarbons (PAH) during daily commuting
involving using a high traffic flow route in Bogotá, Rev. Salud Publica
(Bogota), 3, 198–407, 2013. a
Reid, H. and Aherne, J.: Staggering reductions in atmospheric nitrogen dioxide
across Canada in response to legislated transportation emissions
reductions, Atmos. Environ., 146, 252–260,
https://doi.org/10.1016/j.atmosenv.2016.09.032, 2016. a
San José, R., Pérez, J. L., Callén, M. S., López, J. M., and Amstral,
A.: BaP (PAH) air quality modelling exercise over Zaragoza (Spain) using an
adapted version of WRF-CMAQ model, Environ. Pollut., 183, 151–158,
https://doi.org/10.1016/j.envpol.2013.02.025, 2013. a
Sassi, M., Mehrez, S., Racine, J., and Cousineau, S.: 2010 Canadian CAC
emission inventories for the air quality modelling platform supporting policy
regulations, conference presentation, 21st Intern. Emissions Inventory
Conference, 13–17 April, San Diego, California, USA,
available at: http://www.epa.gov/ttn/chief/conference/ei21/session1/sassi.pdf (last access: 20 September 2019), 2015. a
Shen, H., Tao, S., Wang, R., Wang, B., Shen, G., Li, W., Su, S., Huang, Y.,
Wang, X., Liu, W., Li, B., and Sun, K.: Global time trends in PAH emissions
from motor vehicles, Atmos. Environ., 45, 2067–2073,
https://doi.org/10.1016/j.atmosenv.2011.01.054, 2011. a
Sillman, S.: The use of NOy, H2O2, and HNO3 as indicators for O3-NOx-VOC
sensitivity in urban locations, J. Geophys. Res., 1001, 14175–14188,
https://doi.org/10.1029/94JD02953, 1995. a
Sillman, S. and West, J. J.: Reactive nitrogen in Mexico City and its relation to ozone-precursor sensitivity: results from photochemical models, Atmos. Chem. Phys., 9, 3477–3489, https://doi.org/10.5194/acp-9-3477-2009, 2009. a
Sims, R., Schaeffer, R., Creutzig, F., nez, X. C.-N., D’Agosto, M.,
Dimitriu, D., Meza, M. J. F., Fulton, L., Kobayashi, S., Lah, O., McKinnon,
A., Newman, P., Ouyang, M., Schauer, J. J., Sperling, D., and Tiwari, G.:
Chapter 8: Transport, in: Climate Change 2014: Mitigation of Climate Change.
Contribution of Working Group III to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Edenhofer, O.,
Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler,
A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B., Savolainen, J.,
Schlömer, S., von Stechow, C., Zwickel, T., and Minx, J., Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 2014. a
Stroud, C. A., Zaganescu, C., Chen, J., McLinden, C. A., Zhang, J., and Wang,
D.: Toxic volatile organic air pollutants across Canada: multi-year
concentration trends, regional air quality modelling and source
apportionment, J. Atmos. Chem., 73, 137–164,
https://doi.org/10.1007/s10874-015-9319-z, 2016. a, b
Tan, S., Roth, M., and Velasco, E.: Particle exposure and inhaled dose during
commuting in Singapore, Atmos. Environ., 170, 245–258, 2017. a
Thackray, C. P., Friedman, C. L., Zhang, Y., and Selin, N. E.: Quantitative Assessment of Parametric Uncertainty in Northern Hemisphere PAH Concentrations, Environ. Sci. Tech. Lett., 14, 9185–9193, https://doi.org/10.1021/acs.est.5b01823, 2015. a
Transport Canada: Zero-emission vehicles, url, Government of Canada, Canada, available at: https://www.tc.gc.ca/en/services/road/innovative-technologies/zero-emission-vehicles.html
(last access: 27 January 2020), 2019. a
U.S. Environmental Protection Agency: 2017 and later model year light-duty
vehicle greenhouse gas emissions and corporate average fuel economy
standards, final rule, Fed. Regist.n, available at: https://www.gpo.gov/fdsys/pkg/FR-2012-10-15/pdf/2012-21972.pdf (last access: 20 September 2019), 2012. a
US EPA: 2014 national cancer risk by pollutant, spreadsheet, U.S. Environmental Protection Agency,
available at: http://www.epa.gov/sites/production/files/2018-08/nata2014v2_national_cancerrisk_by_tract_poll.xlsx (last access: 20 September 2019), 2002. a
Wang, J. M., Jeong, C.-H., Zimmerman, N., Healy, R. M., Hilker, N., and Evans,
G. J.: Real-world emission of particles from vehicles: volatility and the
effects of ambient temperature, Environ. Sci. Technol., 51, 4081–4090,
https://doi.org/10.1021/acs.est.6b05328, 2017. a
Whaley, C. H., Makar, P. A., Shephard, M. W., Zhang, L., Zhang, J., Zheng, Q., Akingunola, A., Wentworth, G. R., Murphy, J. G., Kharol, S. K., and Cady-Pereira, K. E.: Contributions of natural and anthropogenic sources to ambient ammonia in the Athabasca Oil Sands and north-western Canada, Atmos. Chem. Phys., 18, 2011–2034, https://doi.org/10.5194/acp-18-2011-2018,
2018a. a
Whaley, C. H., Galarneau, E., Makar, P. A., Akingunola, A., Gong, W., Gravel, S., Moran, M. D., Stroud, C., Zhang, J., and Zheng, Q.: GEM-MACH-PAH (rev2488): a new high-resolution chemical transport model for North American polycyclic aromatic hydrocarbons and benzene, Geosci. Model Dev., 11, 2609–2632, https://doi.org/10.5194/gmd-11-2609-2018, 2018b. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Whaley, C., Galarneau, E., Makar, P., Moran, M., Stroud, C., Gong, W., and Gravel, S.: GEM-MACH-PAH, rev2488 (Version rev2488), Geoscientific Model Development, Zenodo, https://doi.org/10.5281/zenodo.1162252, 2018c. a
WHO: Health effects of transport-related air pollution, Report, World Health
Organization, Denmark, 2005. a
Yan, C., Zheng, M., Yang, Q., Zhang, Q., Qiu, X., Zhang, Y., Fu, H., Li, X.,
Zhu, T., and Zhu, Y.: Commuter exposure to particulate matter and
particle-bound PAHs in three transportation modes in Beijing, China,
Environ. Pollut., 204, 199–206, 2015. a
Zhang, J., Wang, P., Li, J., Mendola, P., Sherman, S., and Ying, Q.: Estimating
population exposure to ambient polycyclic aromatic hydrocarbon in the United
States – Part II: Source apportionment and cancer risk assessment,
Environ. Int., 97, 163–170, https://doi.org/10.1016/j.envint.2016.08.024,
2016. a
Zhang, J., Li, J., Wang, P., Chen, G., Mendola, P., Sherman, S., and Ying, Q.:
Estimating population exposure to ambient polycyclic aromatic hydrocarbon in
the United States – Part I: Model development and evaluation, Environ.
Int., 99, 263–274, https://doi.org/10.1016/j.envint.2016.12.002, 2017. a
Zhang, K. and Batterman, S.: Air pollution and health risks due to vehicle
traffic, Sci. Total Environ., 450–451, 307–316,
https://doi.org/10.1016/j.scitotenv.2013.01.074, 2013. a
Zhang, Q., Yuan, B., Shao, M., Wang, X., Lu, S., Lu, K., Wang, M., Chen, L., Chang, C.-C., and Liu, S. C.: Variations of ground-level O3 and its precursors in Beijing in summertime between 2005 and 2011, Atmos. Chem. Phys., 14, 6089–6101, https://doi.org/10.5194/acp-14-6089-2014, 2014. a
Zimmerman, N., Wang, J. M., Jeong, C.-H., Ramos, M., Hilker, N., Healy, R. M.,
Sabaliauskas, K., Wallace, J. S., and Evans, G. J.: Field measurements of
gasoline direct injection emission factors: spatial and seasonal variability,
Environ. Sci. Technol., 50, 2035–2043, https://doi.org/10.1021/acs.est.5b04444, 2016. a, b
Short summary
Benzene and polycyclic aromatic compounds are toxic air pollutants and ubiquitous in the environment. Using a chemical transport model, we have determined the net impact of vehicle emissions on ambient concentrations of these species. Traffic emissions were found to be a significant fraction of ambient pollution in the densely populated modelled region of North America. Our simulations demonstrate the air quality benefits that would result from transitioning to a zero-emission vehicle fleet.
Benzene and polycyclic aromatic compounds are toxic air pollutants and ubiquitous in the...
Altmetrics
Final-revised paper
Preprint