Articles | Volume 20, issue 24
https://doi.org/10.5194/acp-20-16089-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-16089-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Aerosol vertical distribution and interactions with land/sea breezes over the eastern coast of the Red Sea from lidar data and high-resolution WRF-Chem simulations
Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
Georgiy L. Stenchikov
Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
Alexander Ukhov
Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
Illia Shevchenko
Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
Oleg Dubovik
CNRS, UMR 8518, LOA, Laboratoire d'Optique
Atmospheìrique, Univ. Lille, 59000 Lille, France
Anton Lopatin
GRASP-SAS, Remote Sensing Developments, Universiteì de Lille,
Villeneuve D' ASCQ, 59655, France
Related authors
Sagar P. Parajuli, Georgiy L. Stenchikov, Alexander Ukhov, Suleiman Mostamandi, Paul A. Kucera, Duncan Axisa, William I. Gustafson Jr., and Yannian Zhu
Atmos. Chem. Phys., 22, 8659–8682, https://doi.org/10.5194/acp-22-8659-2022, https://doi.org/10.5194/acp-22-8659-2022, 2022
Short summary
Short summary
Rainfall affects the distribution of surface- and groundwater resources, which are constantly declining over the Middle East and North Africa (MENA) due to overexploitation. Here, we explored the effects of dust on rainfall using WRF-Chem model simulations. Although dust is considered a nuisance from an air quality perspective, our results highlight the positive fundamental role of dust particles in modulating rainfall formation and distribution, which has implications for cloud seeding.
Anton Lopatin, Oleg Dubovik, David Fuertes, Georgiy Stenchikov, Tatyana Lapyonok, Igor Veselovskii, Frank G. Wienhold, Illia Shevchenko, Qiaoyun Hu, and Sagar Parajuli
Atmos. Meas. Tech., 14, 2575–2614, https://doi.org/10.5194/amt-14-2575-2021, https://doi.org/10.5194/amt-14-2575-2021, 2021
Short summary
Short summary
The article presents novelties in characterizing fine particles suspended in the air by means of combining various measurements that observe light propagation in atmosphere. Several non-coincident observations (some of which require sunlight, while others work only at night) could be united under the assumption that aerosol properties do not change drastically at nighttime. It also proposes how to describe particles' composition in a simplified manner that uses new types of observations.
Yuyang Chang, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Igor Veselovskii, Fabrice Ducos, Gaël Dubois, Masanori Saito, Anton Lopatin, Oleg Dubovik, and Cheng Chen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2655, https://doi.org/10.5194/egusphere-2024-2655, 2024
Short summary
Short summary
Our study retrieved dust aerosol microphysical properties from lidar measurements using different scattering models. Numeric simulations and real data applications revealed the importance of considering depolarization measurements and particle non-sphericity to improve retrieval accuracy. Contrasts of the non-spherical scattering models in simulating particle backscattering properties, particularly the depolarization ratio, enlarge the difference of retrievals derived using these models.
Myungje Choi, Alexei Lyapustin, Gregory L. Schuster, Sujung Go, Yujie Wang, Sergey Korkin, Ralph Kahn, Jeffrey S. Reid, Edward J. Hyer, Thomas F. Eck, Mian Chin, David J. Diner, Olga Kalashnikova, Oleg Dubovik, Jhoon Kim, and Hans Moosmüller
Atmos. Chem. Phys., 24, 10543–10565, https://doi.org/10.5194/acp-24-10543-2024, https://doi.org/10.5194/acp-24-10543-2024, 2024
Short summary
Short summary
This paper introduces a retrieval algorithm to estimate two key absorbing components in smoke (black carbon and brown carbon) using DSCOVR EPIC measurements. Our analysis reveals distinct smoke properties, including spectral absorption, layer height, and black carbon and brown carbon, over North America and central Africa. The retrieved smoke properties offer valuable observational constraints for modeling radiative forcing and informing health-related studies.
Anton Lopatin, Oleg Dubovik, Georgiy Stenchikov, Ellsworth J. Welton, Illia Shevchenko, David Fuertes, Marcos Herreras-Giralda, Tatsiana Lapyonok, and Alexander Smirnov
Atmos. Meas. Tech., 17, 4445–4470, https://doi.org/10.5194/amt-17-4445-2024, https://doi.org/10.5194/amt-17-4445-2024, 2024
Short summary
Short summary
We compare aerosol properties over the King Abdullah University of Science and Technology campus using Generalized Retrieval of Aerosol and Surface Properties (GRASP) and the Micro-Pulse Lidar Network (MPLNET). We focus on the impact of different aerosol retrieval assumptions on daytime and nighttime retrievals and analyze seasonal variability in aerosol properties, aiding in understanding aerosol behavior and improving retrieval. Our work has implications for climate and public health.
Alexandra Tsekeri, Anna Gialitaki, Marco Di Paolantonio, Davide Dionisi, Gian Luigi Liberti, Alnilam Fernandes, Artur Szkop, Aleksander Pietruczuk, Daniel Pérez-Ramírez, Maria J. Granados Muñoz, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Diego Bermejo Pantaleón, Juan Antonio Bravo-Aranda, Anna Kampouri, Eleni Marinou, Vassilis Amiridis, Michael Sicard, Adolfo Comerón, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Salvatore Romano, Maria Rita Perrone, Xiaoxia Shang, Mika Komppula, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Diofantos Hadjimitsis, Francisco Navas-Guzmán, Alexander Haefele, Dominika Szczepanik, Artur Tomczak, Iwona S. Stachlewska, Livio Belegante, Doina Nicolae, Kalliopi Artemis Voudouri, Dimitris Balis, Athena A. Floutsi, Holger Baars, Linda Miladi, Nicolas Pascal, Oleg Dubovik, and Anton Lopatin
Atmos. Meas. Tech., 16, 6025–6050, https://doi.org/10.5194/amt-16-6025-2023, https://doi.org/10.5194/amt-16-6025-2023, 2023
Short summary
Short summary
EARLINET/ACTRIS organized an intensive observational campaign in May 2020, with the objective of monitoring the atmospheric state over Europe during the COVID-19 lockdown and relaxation period. The work presented herein focuses on deriving a common methodology for applying a synergistic retrieval that utilizes the network's ground-based passive and active remote sensing measurements and deriving the aerosols from anthropogenic activities over Europe.
Theano Drosoglou, Ioannis-Panagiotis Raptis, Massimo Valeri, Stefano Casadio, Francesca Barnaba, Marcos Herreras-Giralda, Anton Lopatin, Oleg Dubovik, Gabriele Brizzi, Fabrizio Niro, Monica Campanelli, and Stelios Kazadzis
Atmos. Meas. Tech., 16, 2989–3014, https://doi.org/10.5194/amt-16-2989-2023, https://doi.org/10.5194/amt-16-2989-2023, 2023
Short summary
Short summary
Aerosol optical properties derived from sun photometers depend on the optical depth of trace gases absorbing solar radiation at specific spectral ranges. Various networks use satellite-based climatologies to account for this or neglect their effect. In this work, we evaluate the effect of NO2 absorption in aerosol retrievals from AERONET and SKYNET over two stations in Rome, Italy, with relatively high NO2 spatiotemporal variations, using NO2 data from the Pandora network and the TROPOMI sensor.
Mohamed Abdelkader, Georgiy Stenchikov, Andrea Pozzer, Holger Tost, and Jos Lelieveld
Atmos. Chem. Phys., 23, 471–500, https://doi.org/10.5194/acp-23-471-2023, https://doi.org/10.5194/acp-23-471-2023, 2023
Short summary
Short summary
We study the effect of injected volcanic ash, water vapor, and SO2 on the development of the volcanic cloud and the stratospheric aerosol optical depth (AOD). Both are sensitive to the initial injection height and to the aging of the volcanic ash shaped by heterogeneous chemistry coupled with the ozone cycle. The paper explains the large differences in AOD for different injection scenarios, which could improve the estimate of the radiative forcing of volcanic eruptions.
Milagros E. Herrera, Oleg Dubovik, Benjamin Torres, Tatyana Lapyonok, David Fuertes, Anton Lopatin, Pavel Litvinov, Cheng Chen, Jose Antonio Benavent-Oltra, Juan L. Bali, and Pablo R. Ristori
Atmos. Meas. Tech., 15, 6075–6126, https://doi.org/10.5194/amt-15-6075-2022, https://doi.org/10.5194/amt-15-6075-2022, 2022
Short summary
Short summary
This study deals with the dynamic error estimates of the aerosol-retrieved properties by the GRASP algorithm, which are provided for directly retrieved and derived parameters. Moreover, GRASP provides full covariance matrices that appear to be a useful approach for optimizing observation schemes and retrieval set-ups. The validation of the retrieved dynamic error estimates is done through real and synthetic measurements using sun photometer and lidar observations.
Alireza Moallemi, Rob L. Modini, Tatyana Lapyonok, Anton Lopatin, David Fuertes, Oleg Dubovik, Philippe Giaccari, and Martin Gysel-Beer
Atmos. Meas. Tech., 15, 5619–5642, https://doi.org/10.5194/amt-15-5619-2022, https://doi.org/10.5194/amt-15-5619-2022, 2022
Short summary
Short summary
Aerosol properties (size distributions, refractive indices) can be retrieved from in situ, angularly resolved light scattering measurements performed with polar nephelometers. We apply an established framework to assess the aerosol property retrieval potential for different instrument configurations, target applications, and assumed prior knowledge. We also demonstrate how a reductive greedy algorithm can be used to determine the optimal placements of the angular sensors in a polar nephelometer.
Lei Li, Yevgeny Derimian, Cheng Chen, Xindan Zhang, Huizheng Che, Gregory L. Schuster, David Fuertes, Pavel Litvinov, Tatyana Lapyonok, Anton Lopatin, Christian Matar, Fabrice Ducos, Yana Karol, Benjamin Torres, Ke Gui, Yu Zheng, Yuanxin Liang, Yadong Lei, Jibiao Zhu, Lei Zhang, Junting Zhong, Xiaoye Zhang, and Oleg Dubovik
Earth Syst. Sci. Data, 14, 3439–3469, https://doi.org/10.5194/essd-14-3439-2022, https://doi.org/10.5194/essd-14-3439-2022, 2022
Short summary
Short summary
A climatology of aerosol composition concentration derived from POLDER-3 observations using GRASP/Component is presented. The conceptual specifics of the GRASP/Component approach are in the direct retrieval of aerosol speciation without intermediate retrievals of aerosol optical characteristics. The dataset of satellite-derived components represents scarce but imperative information for validation and potential adjustment of chemical transport models.
Sagar P. Parajuli, Georgiy L. Stenchikov, Alexander Ukhov, Suleiman Mostamandi, Paul A. Kucera, Duncan Axisa, William I. Gustafson Jr., and Yannian Zhu
Atmos. Chem. Phys., 22, 8659–8682, https://doi.org/10.5194/acp-22-8659-2022, https://doi.org/10.5194/acp-22-8659-2022, 2022
Short summary
Short summary
Rainfall affects the distribution of surface- and groundwater resources, which are constantly declining over the Middle East and North Africa (MENA) due to overexploitation. Here, we explored the effects of dust on rainfall using WRF-Chem model simulations. Although dust is considered a nuisance from an air quality perspective, our results highlight the positive fundamental role of dust particles in modulating rainfall formation and distribution, which has implications for cloud seeding.
Anton Lopatin, Oleg Dubovik, David Fuertes, Georgiy Stenchikov, Tatyana Lapyonok, Igor Veselovskii, Frank G. Wienhold, Illia Shevchenko, Qiaoyun Hu, and Sagar Parajuli
Atmos. Meas. Tech., 14, 2575–2614, https://doi.org/10.5194/amt-14-2575-2021, https://doi.org/10.5194/amt-14-2575-2021, 2021
Short summary
Short summary
The article presents novelties in characterizing fine particles suspended in the air by means of combining various measurements that observe light propagation in atmosphere. Several non-coincident observations (some of which require sunlight, while others work only at night) could be united under the assumption that aerosol properties do not change drastically at nighttime. It also proposes how to describe particles' composition in a simplified manner that uses new types of observations.
Alexander Ukhov, Ravan Ahmadov, Georg Grell, and Georgiy Stenchikov
Geosci. Model Dev., 14, 473–493, https://doi.org/10.5194/gmd-14-473-2021, https://doi.org/10.5194/gmd-14-473-2021, 2021
Short summary
Short summary
We discuss and evaluate the effects of inconsistencies found in the WRF-Chem code when using the GOCART module. First, PM surface concentrations were miscalculated. Second, dust optical depth was underestimated by 25 %–30 %. Third, an inconsistency in the process of gravitational settling led to the overestimation of dust column loadings by 4 %–6 %, PM10 by 2 %–4 %, and the rate of gravitational dust settling by 5 %–10 %. We also presented diagnostics that can be used to estimate these effects.
Cheng Chen, Oleg Dubovik, David Fuertes, Pavel Litvinov, Tatyana Lapyonok, Anton Lopatin, Fabrice Ducos, Yevgeny Derimian, Maurice Herman, Didier Tanré, Lorraine A. Remer, Alexei Lyapustin, Andrew M. Sayer, Robert C. Levy, N. Christina Hsu, Jacques Descloitres, Lei Li, Benjamin Torres, Yana Karol, Milagros Herrera, Marcos Herreras, Michael Aspetsberger, Moritz Wanzenboeck, Lukas Bindreiter, Daniel Marth, Andreas Hangler, and Christian Federspiel
Earth Syst. Sci. Data, 12, 3573–3620, https://doi.org/10.5194/essd-12-3573-2020, https://doi.org/10.5194/essd-12-3573-2020, 2020
Short summary
Short summary
Aerosol products obtained from POLDER/PARASOL processed by the GRASP algorithm have been released. The entire archive of PARASOL/GRASP aerosol products is evaluated against AERONET and compared with MODIS (DT, DB and MAIAC), as well as PARASOL/Operational products. PARASOL/GRASP aerosol products provide spectral 443–1020 nm AOD correlating well with AERONET with a maximum bias of 0.02. Finally, GRASP shows capability to derive detailed spectral properties, including aerosol absorption.
Klaus Klingmüller, Vlassis A. Karydis, Sara Bacer, Georgiy L. Stenchikov, and Jos Lelieveld
Atmos. Chem. Phys., 20, 15285–15295, https://doi.org/10.5194/acp-20-15285-2020, https://doi.org/10.5194/acp-20-15285-2020, 2020
Short summary
Short summary
Particulate air pollution cools the climate and partially masks the greenhouse warming by reflecting sunlight and enhancing the reflection by clouds. The intensity of this cooling depends on interactions between pollution and desert dust within the atmosphere. Our simulations with a global atmospheric chemistry-climate model indicate that these interactions significantly weaken the cooling.
Igor Veselovskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Mikhail Korenskiy, Olivier Pujol, Oleg Dubovik, and Anton Lopatin
Atmos. Meas. Tech., 13, 6691–6701, https://doi.org/10.5194/amt-13-6691-2020, https://doi.org/10.5194/amt-13-6691-2020, 2020
Short summary
Short summary
To study the feasibility of a fluorescence lidar for aerosol characterization, the fluorescence channel is added to the multiwavelength Mie-Raman lidar of Lille University. A part of the fluorescence spectrum is selected by the interference filter of 44 nm bandwidth centered at 466 nm. Such an approach has demonstrated high sensitivity, allowing fluorescence signals from weak aerosol layers to be detected. The technique can also be used for monitoring the aerosol inside the cloud layers.
Anna Gialitaki, Alexandra Tsekeri, Vassilis Amiridis, Romain Ceolato, Lucas Paulien, Anna Kampouri, Antonis Gkikas, Stavros Solomos, Eleni Marinou, Moritz Haarig, Holger Baars, Albert Ansmann, Tatyana Lapyonok, Anton Lopatin, Oleg Dubovik, Silke Groß, Martin Wirth, Maria Tsichla, Ioanna Tsikoudi, and Dimitris Balis
Atmos. Chem. Phys., 20, 14005–14021, https://doi.org/10.5194/acp-20-14005-2020, https://doi.org/10.5194/acp-20-14005-2020, 2020
Short summary
Short summary
Stratospheric smoke particles are found to significantly depolarize incident light, while this effect is also accompanied by a strong spectral dependence. We utilize scattering simulations to show that this behaviour can be attributed to the near-spherical shape of the particles. We also examine whether an extension of the current AERONET scattering model to include the near-spherical shapes could be of benefit to the AERONET retrieval for stratospheric smoke associated with enhanced PLDR.
Alexander Ukhov, Suleiman Mostamandi, Arlindo da Silva, Johannes Flemming, Yasser Alshehri, Illia Shevchenko, and Georgiy Stenchikov
Atmos. Chem. Phys., 20, 9281–9310, https://doi.org/10.5194/acp-20-9281-2020, https://doi.org/10.5194/acp-20-9281-2020, 2020
Short summary
Short summary
The data assimilation products MERRA2 and CAMS are tested over the Middle East (ME) against in situ and satellite observations. For the first time, we compared the new MODIS aerosol optical depth (AOD) retrieval, MAIAC, with the Deep Blue and Dark Target MODIS AOD. We conducted 2-year high-resolution WRF-Chem simulations with the most accurate OMI-HTAP SO2 emissions to estimate the contribution of natural and anthropogenic aerosols to the PM pollution in the ME.
Cheng Chen, Oleg Dubovik, Daven K. Henze, Mian Chin, Tatyana Lapyonok, Gregory L. Schuster, Fabrice Ducos, David Fuertes, Pavel Litvinov, Lei Li, Anton Lopatin, Qiaoyun Hu, and Benjamin Torres
Atmos. Chem. Phys., 19, 14585–14606, https://doi.org/10.5194/acp-19-14585-2019, https://doi.org/10.5194/acp-19-14585-2019, 2019
Short summary
Short summary
Global BC, OC and DD aerosol emissions are inverted from POLDER/PARASOL observations for the year 2010 based on the GEOS-Chem inverse modeling framework. The retrieved emissions are 18.4 Tg yr−1 BC, 109.9 Tg yr−1 OC and 731.6 Tg yr−1 DD, which indicate an increase of 166.7 % for BC and 184.0 % for OC, while a decrease of 42.4 % for DD with respect to GEOS-Chem a priori emission inventories is seen. Global annul mean AOD and AAOD resulting from retrieved emissions are 0.119 and 0.0071 at 550 nm.
Lei Li, Oleg Dubovik, Yevgeny Derimian, Gregory L. Schuster, Tatyana Lapyonok, Pavel Litvinov, Fabrice Ducos, David Fuertes, Cheng Chen, Zhengqiang Li, Anton Lopatin, Benjamin Torres, and Huizheng Che
Atmos. Chem. Phys., 19, 13409–13443, https://doi.org/10.5194/acp-19-13409-2019, https://doi.org/10.5194/acp-19-13409-2019, 2019
Short summary
Short summary
A novel methodology to monitor atmospheric aerosol components using remote sensing is presented. The concept is realized within the GRASP (Generalized Retrieval of Aerosol and Surface Properties) project. Application to POLDER/PARASOL and AERONET observations yielded the spatial and temporal variability of absorbing and non-absorbing insoluble and soluble aerosol species in the fine and coarse size fractions. This presents the global-scale aerosol component derived from satellite measurements.
Klaus Klingmüller, Jos Lelieveld, Vlassis A. Karydis, and Georgiy L. Stenchikov
Atmos. Chem. Phys., 19, 7397–7408, https://doi.org/10.5194/acp-19-7397-2019, https://doi.org/10.5194/acp-19-7397-2019, 2019
Short summary
Short summary
Within the atmosphere, desert dust and anthropogenic pollution are mixed and interact, which affects the abundance and optical properties of the particulate matter. This results in an anthropogenic climate forcing associated with mineral dust notwithstanding the natural origin of most aeolian dust. With a global chemistry–climate model, we estimate this forcing to represent a considerable fraction of the total dust forcing.
Qiaoyun Hu, Philippe Goloub, Igor Veselovskii, Juan-Antonio Bravo-Aranda, Ioana Elisabeta Popovici, Thierry Podvin, Martial Haeffelin, Anton Lopatin, Oleg Dubovik, Christophe Pietras, Xin Huang, Benjamin Torres, and Cheng Chen
Atmos. Chem. Phys., 19, 1173–1193, https://doi.org/10.5194/acp-19-1173-2019, https://doi.org/10.5194/acp-19-1173-2019, 2019
Short summary
Short summary
Smoke plumes generated in Canadian fire activities were elevated to the lower stratosphere and transported from North America to Europe. The smoke plumes were observed by three lidar systems in northern France. This study provides a comprehensive characterization for aged smoke aerosols at high altitude using lidar observations. It presents that fire activities on the Earth's surface can be an important contributor of stratospheric aerosols and impact the Earth's radiation budget.
Klaus Klingmüller, Swen Metzger, Mohamed Abdelkader, Vlassis A. Karydis, Georgiy L. Stenchikov, Andrea Pozzer, and Jos Lelieveld
Geosci. Model Dev., 11, 989–1008, https://doi.org/10.5194/gmd-11-989-2018, https://doi.org/10.5194/gmd-11-989-2018, 2018
Short summary
Short summary
More than 1 billion tons of mineral dust particles are raised into the atmosphere every year, which has a significant impact on climate, society and ecosystems. The location, time and amount of dust emissions depend on surface and wind conditions. In the atmospheric chemistry–climate model EMAC, we have updated the relevant surface data and equations. Our validation shows that the updates substantially improve the agreement of model results and observations.
Alexandra Tsekeri, Anton Lopatin, Vassilis Amiridis, Eleni Marinou, Julia Igloffstein, Nikolaos Siomos, Stavros Solomos, Panagiotis Kokkalis, Ronny Engelmann, Holger Baars, Myrto Gratsea, Panagiotis I. Raptis, Ioannis Binietoglou, Nikolaos Mihalopoulos, Nikolaos Kalivitis, Giorgos Kouvarakis, Nikolaos Bartsotas, George Kallos, Sara Basart, Dirk Schuettemeyer, Ulla Wandinger, Albert Ansmann, Anatoli P. Chaikovsky, and Oleg Dubovik
Atmos. Meas. Tech., 10, 4995–5016, https://doi.org/10.5194/amt-10-4995-2017, https://doi.org/10.5194/amt-10-4995-2017, 2017
Short summary
Short summary
The Generalized Aerosol Retrieval from Radiometer and Lidar Combined data algorithm (GARRLiC) and the LIdar-Radiometer Inversion Code (LIRIC) provide the opportunity to study the aerosol vertical distribution by combining ground-based lidar and sun-photometric measurements. Here, we utilize the capabilities of both algorithms for the characterization of Saharan dust and marine particles, along with their mixtures, in the south-eastern Mediterranean.
Johann P. Engelbrecht, Georgiy Stenchikov, P. Jish Prakash, Traci Lersch, Anatolii Anisimov, and Illia Shevchenko
Atmos. Chem. Phys., 17, 11467–11490, https://doi.org/10.5194/acp-17-11467-2017, https://doi.org/10.5194/acp-17-11467-2017, 2017
Short summary
Short summary
Desert dust has a profound impact on peoples health, visibility, damage to equipment, and global climate. This research is on dust from the Arabian Peninsula and aims at collecting and analyzing mineralogical, physical, and chemical composition of dust deposits from the atmosphere at the KAUST campus along the Red Sea in Saudi Arabia. The results will be used to assess the input of nutrients to the Red Sea, and will support dust modeling in the Middle East.
Jamie R. Banks, Helen E. Brindley, Georgiy Stenchikov, and Kerstin Schepanski
Atmos. Chem. Phys., 17, 3987–4003, https://doi.org/10.5194/acp-17-3987-2017, https://doi.org/10.5194/acp-17-3987-2017, 2017
Short summary
Short summary
From an 11-year analysis of satellite measurements of atmospheric dust presence over the Red Sea, it is clear that there is a strong north–south gradient in dust activity and a pronounced interannual variability in this activity. Analysing two commonly used satellite retrieval methods to quantify dust presence, we find that under the most extreme dust storm conditions the measured dust optical thicknesses can diverge strongly between the two methods.
Mohamed Abdelkader, Swen Metzger, Benedikt Steil, Klaus Klingmüller, Holger Tost, Andrea Pozzer, Georgiy Stenchikov, Leonard Barrie, and Jos Lelieveld
Atmos. Chem. Phys., 17, 3799–3821, https://doi.org/10.5194/acp-17-3799-2017, https://doi.org/10.5194/acp-17-3799-2017, 2017
Short summary
Short summary
We present a modeling study on the impacts of the key processes (dust emission flux, convection and dust aging parameterizations) that control the transatlantic dust transport using an advanced version of the EMAC atmospheric chemistry general circulation model. We define the
direct effect of dust agingas an increase in the AOD as a result of hygroscopic growth. We define the
indirect effectas a reduction in the dust AOD due to the higher removal of the aged dust particles.
Anatolii Anisimov, Weichun Tao, Georgiy Stenchikov, Stoitchko Kalenderski, P. Jish Prakash, Zong-Liang Yang, and Mingjie Shi
Atmos. Chem. Phys., 17, 993–1015, https://doi.org/10.5194/acp-17-993-2017, https://doi.org/10.5194/acp-17-993-2017, 2017
Short summary
Short summary
This study is aimed at quantifying the fine-scale structure of dust emission from the western coastal plain of the Arabian Peninsula. Using the high-resolution modeling tools and up-to-date satellite inventories, we simulate and analyze the spatial and temporal variability of dust generation. The estimate of total dust emission from the coastal plain is 7.5 ± 0.5 Mt per year. We show that the study area is a stable dust generation zone and a potential source of mineral nutrients for the Red Sea.
P. Jish Prakash, Georgiy Stenchikov, Weichun Tao, Tahir Yapici, Bashir Warsama, and Johann P. Engelbrecht
Atmos. Chem. Phys., 16, 11991–12004, https://doi.org/10.5194/acp-16-11991-2016, https://doi.org/10.5194/acp-16-11991-2016, 2016
Short summary
Short summary
The study is on the mineralogical, chemical and physical properties of surface soil samples from the Arabian Red Sea coastal plain. The sampled sites were previously identified to be potential source areas for windblown mineral dust. Results from this study will improve dust transport and other types of modeling, and also provide a better assessment of the impact of coastal dust on the Red Sea.
Klaus Klingmüller, Andrea Pozzer, Swen Metzger, Georgiy L. Stenchikov, and Jos Lelieveld
Atmos. Chem. Phys., 16, 5063–5073, https://doi.org/10.5194/acp-16-5063-2016, https://doi.org/10.5194/acp-16-5063-2016, 2016
Short summary
Short summary
During the last decade, the Middle East experienced the strongest increase in atmospheric aerosol concentrations worldwide. Based on satellite observations, the present study corroborates this trend and reveals correlations with soil moisture and precipitation in and surrounding the Fertile Crescent. This suggests that the increasing drought conditions in this region have enhanced dust emissions, a tendency which is expected to be intensified by climate change.
S. Osipov, G. Stenchikov, H. Brindley, and J. Banks
Atmos. Chem. Phys., 15, 9537–9553, https://doi.org/10.5194/acp-15-9537-2015, https://doi.org/10.5194/acp-15-9537-2015, 2015
Short summary
Short summary
The radiative effect of dust over the Arabian Peninsula for different surfaces and for a range of optical depths is calculated and tested using satellite and ground-based observations.
P. Jish Prakash, G. Stenchikov, S. Kalenderski, S. Osipov, and H. Bangalath
Atmos. Chem. Phys., 15, 199–222, https://doi.org/10.5194/acp-15-199-2015, https://doi.org/10.5194/acp-15-199-2015, 2015
Short summary
Short summary
This study aims to quantify the effect of severe dust events on radiation fluxes and regional climate characteristics over the Arabian Peninsula. We simulated the storm that occurred from 18 to 20 March 2012 and swept over a remarkably large area affecting the entire Middle East, North-Eastern Africa, Afghanistan, and Pakistan. We estimate that this storm generated over 94 Mt of dust and deposited approximately 1.2 Mt of dust into the Red Sea, bringing nutrients to marine ecosystems.
A. Lopatin, O. Dubovik, A. Chaikovsky, P. Goloub, T. Lapyonok, D. Tanré, and P. Litvinov
Atmos. Meas. Tech., 6, 2065–2088, https://doi.org/10.5194/amt-6-2065-2013, https://doi.org/10.5194/amt-6-2065-2013, 2013
S. Kalenderski, G. Stenchikov, and C. Zhao
Atmos. Chem. Phys., 13, 1999–2014, https://doi.org/10.5194/acp-13-1999-2013, https://doi.org/10.5194/acp-13-1999-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Pristine oceans control the uncertainty in aerosol–cloud interactions
Quantifying the effects of the microphysical properties of black carbon on the determination of brown carbon using measurements at multiple wavelengths
An emerging aerosol climatology via remote sensing over Metro Manila, the Philippines
Ozone Monitoring Instrument (OMI) UV aerosol index data analysis over the Arctic region for future data assimilation and climate forcing applications
Monitoring multiple satellite aerosol optical depth (AOD) products within the Copernicus Atmosphere Monitoring Service (CAMS) data assimilation system
Comparisons between the distributions of dust and combustion aerosols in MERRA-2, FLEXPART, and CALIPSO and implications for deposition freezing over wintertime Siberia
Atmospheric oxidation mechanism and kinetics of indole initiated by ●OH and ●Cl: a computational study
Identifying the spatiotemporal variations in ozone formation regimes across China from 2005 to 2019 based on polynomial simulation and causality analysis
Improved inversion of aerosol components in the atmospheric column from remote sensing data
Retrieval of aerosol components directly from satellite and ground-based measurements
Towards a satellite formaldehyde – in situ hybrid estimate for organic aerosol abundance
Retrieval of desert dust and carbonaceous aerosol emissions over Africa from POLDER/PARASOL products generated by the GRASP algorithm
Estimating the open biomass burning emissions in central and eastern China from 2003 to 2015 based on satellite observation
Intra-annual variations of regional aerosol optical depth, vertical distribution, and particle types from multiple satellite and ground-based observational datasets
Chemical composition of ambient PM2. 5 over China and relationship to precursor emissions during 2005–2012
Synergistic use of Lagrangian dispersion and radiative transfer modelling with satellite and surface remote sensing measurements for the investigation of volcanic plumes: the Mount Etna eruption of 25–27 October 2013
Climatology of the aerosol optical depth by components from the Multi-angle Imaging SpectroRadiometer (MISR) and chemistry transport models
A global aerosol classification algorithm incorporating multiple satellite data sets of aerosol and trace gas abundances
Simulation of GOES-R ABI aerosol radiances using WRF-CMAQ: a case study approach
Absorption properties of Mediterranean aerosols obtained from multi-year ground-based remote sensing observations
The global 3-D distribution of tropospheric aerosols as characterized by CALIOP
A unified approach to infrared aerosol remote sensing and type specification
Interpretation of FRESCO cloud retrievals in case of absorbing aerosol events
Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010
Potential for a biogenic influence on cloud microphysics over the ocean: a correlation study with satellite-derived data
Mixing of dust and NH3 observed globally over anthropogenic dust sources
The composition and variability of atmospheric aerosol over Southeast Asia during 2008
NASA A-Train and Terra observations of the 2010 Russian wildfires
The Eyjafjallajökull eruption in April 2010 – detection of volcanic plume using in-situ measurements, ozone sondes and lidar-ceilometer profiles
Saharan dust infrared optical depth and altitude retrieved from AIRS: a focus over North Atlantic – comparison to MODIS and CALIPSO
Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition
Goutam Choudhury, Karoline Block, Mahnoosh Haghighatnasab, Johannes Quaas, Tom Goren, and Matthias Tesche
EGUsphere, https://doi.org/10.5194/egusphere-2024-1863, https://doi.org/10.5194/egusphere-2024-1863, 2024
Short summary
Short summary
More aerosol particles in the atmosphere increase the reflectivity of clouds, leading to more sunlight being reflected back into space and cooling the Earth. Accurate global measurements of these particles are crucial to estimate this cooling effect. This study compares and harmonizes two newly developed global datasets of aerosol concentrations, offering valuable insights for their future use and refinement.
Jie Luo, Dan Li, Yuanyuan Wang, Dandan Sun, Weizhen Hou, Jinghe Ren, Hailing Wu, Peng Zhou, and Jibing Qiu
Atmos. Chem. Phys., 24, 427–448, https://doi.org/10.5194/acp-24-427-2024, https://doi.org/10.5194/acp-24-427-2024, 2024
Short summary
Short summary
Remote sensing of brown carbon is very important for climate research, and current optical methods rely mainly on spectral properties for inversion. However, the influence of the microscopic properties of black carbon has rarely been considered by previous studies. This paper shows how the remote sensing of brown carbon is affected by the microphysical properties of black carbon and highlights the adaptability of remote sensing methods.
Genevieve Rose Lorenzo, Avelino F. Arellano, Maria Obiminda Cambaliza, Christopher Castro, Melliza Templonuevo Cruz, Larry Di Girolamo, Glenn Franco Gacal, Miguel Ricardo A. Hilario, Nofel Lagrosas, Hans Jarett Ong, James Bernard Simpas, Sherdon Niño Uy, and Armin Sorooshian
Atmos. Chem. Phys., 23, 10579–10608, https://doi.org/10.5194/acp-23-10579-2023, https://doi.org/10.5194/acp-23-10579-2023, 2023
Short summary
Short summary
Aerosol and weather interactions in Southeast Asia are complex and understudied. An emerging aerosol climatology was established in Metro Manila, the Philippines, from aerosol particle physicochemical properties and meteorology, revealing five sources. Even with local traffic, transported smoke from biomass burning, aged dust, and cloud processing, background marine particles dominate and correspond to lower aerosol optical depth in Metro Manila compared to other Southeast Asian megacities.
Blake T. Sorenson, Jianglong Zhang, Jeffrey S. Reid, Peng Xian, and Shawn L. Jaker
Atmos. Chem. Phys., 23, 7161–7175, https://doi.org/10.5194/acp-23-7161-2023, https://doi.org/10.5194/acp-23-7161-2023, 2023
Short summary
Short summary
We quality-control Ozone Monitoring Instrument (OMI) aerosol index data by identifying row anomalies and removing systematic biases, using the data to quantify trends in UV-absorbing aerosols over the Arctic region. We found decreasing trends in UV-absorbing aerosols in spring months and increasing trends in summer months. For the first time, observational evidence of increasing trends in UV-absorbing aerosols over the North Pole is found using the OMI data, especially over the last half decade.
Sebastien Garrigues, Samuel Remy, Julien Chimot, Melanie Ades, Antje Inness, Johannes Flemming, Zak Kipling, Istvan Laszlo, Angela Benedetti, Roberto Ribas, Soheila Jafariserajehlou, Bertrand Fougnie, Shobha Kondragunta, Richard Engelen, Vincent-Henri Peuch, Mark Parrington, Nicolas Bousserez, Margarita Vazquez Navarro, and Anna Agusti-Panareda
Atmos. Chem. Phys., 22, 14657–14692, https://doi.org/10.5194/acp-22-14657-2022, https://doi.org/10.5194/acp-22-14657-2022, 2022
Short summary
Short summary
The Copernicus Atmosphere Monitoring Service (CAMS) provides global monitoring of aerosols using the ECMWF forecast model constrained by the assimilation of satellite aerosol optical depth (AOD). This work aims at evaluating two new satellite AODs to enhance the CAMS aerosol global forecast. It highlights the spatial and temporal differences between the satellite AOD products at the model spatial resolution, which is essential information to design multi-satellite AOD data assimilation schemes.
Lauren M. Zamora, Ralph A. Kahn, Nikolaos Evangeliou, Christine D. Groot Zwaaftink, and Klaus B. Huebert
Atmos. Chem. Phys., 22, 12269–12285, https://doi.org/10.5194/acp-22-12269-2022, https://doi.org/10.5194/acp-22-12269-2022, 2022
Short summary
Short summary
Arctic dust, smoke, and pollution particles can affect clouds and Arctic warming. The distributions of these particles were estimated in three different satellite, reanalysis, and model products. These products showed good agreement overall but indicate that it is important to include local dust in models. We hypothesize that mineral dust effects on ice processes in the Arctic atmosphere might be highest over Siberia, where it is cold, moist, and subject to relatively high dust levels.
Jingwen Xue, Fangfang Ma, Jonas Elm, Jingwen Chen, and Hong-Bin Xie
Atmos. Chem. Phys., 22, 11543–11555, https://doi.org/10.5194/acp-22-11543-2022, https://doi.org/10.5194/acp-22-11543-2022, 2022
Short summary
Short summary
·OH/·Cl initiated indole reactions mainly form organonitrates, alkoxy radicals and hydroperoxide products, showing a varying mechanism from previously reported amines reactions. This study reveals carcinogenic nitrosamines cannot be formed in indole oxidation reactions despite radicals formed from -NH- H abstraction. The results are important to understand the atmospheric impact of indole oxidation and extend current understanding on the atmospheric chemistry of organic nitrogen compounds.
Ruiyuan Li, Miaoqing Xu, Manchun Li, Ziyue Chen, Na Zhao, Bingbo Gao, and Qi Yao
Atmos. Chem. Phys., 21, 15631–15646, https://doi.org/10.5194/acp-21-15631-2021, https://doi.org/10.5194/acp-21-15631-2021, 2021
Short summary
Short summary
We employed ground observations of ozone and satellite products of HCHO and NO2 to investigate spatiotemporal variations of ozone formation regimes across China. Two different models were employed for determining the crucial thresholds that separate three ozone formation regimes, including NOx-limited, VOC-limited, and transitional regimes. The close output from two different models provides a reliable reference for better understanding ozone formation regimes.
Ying Zhang, Zhengqiang Li, Yu Chen, Gerrit de Leeuw, Chi Zhang, Yisong Xie, and Kaitao Li
Atmos. Chem. Phys., 20, 12795–12811, https://doi.org/10.5194/acp-20-12795-2020, https://doi.org/10.5194/acp-20-12795-2020, 2020
Short summary
Short summary
Observation of atmospheric aerosol components plays an important role in reducing uncertainty in climate assessment. In this study, an improved remote sensing method which can better distinguish scattering components is developed, and the aerosol components in the atmospheric column over China are retrieved based on the Sun–sky radiometer Observation NETwork (SONET). The component distribution shows there could be a sea salt component in northwest China from a paleomarine source in desert land.
Lei Li, Oleg Dubovik, Yevgeny Derimian, Gregory L. Schuster, Tatyana Lapyonok, Pavel Litvinov, Fabrice Ducos, David Fuertes, Cheng Chen, Zhengqiang Li, Anton Lopatin, Benjamin Torres, and Huizheng Che
Atmos. Chem. Phys., 19, 13409–13443, https://doi.org/10.5194/acp-19-13409-2019, https://doi.org/10.5194/acp-19-13409-2019, 2019
Short summary
Short summary
A novel methodology to monitor atmospheric aerosol components using remote sensing is presented. The concept is realized within the GRASP (Generalized Retrieval of Aerosol and Surface Properties) project. Application to POLDER/PARASOL and AERONET observations yielded the spatial and temporal variability of absorbing and non-absorbing insoluble and soluble aerosol species in the fine and coarse size fractions. This presents the global-scale aerosol component derived from satellite measurements.
Jin Liao, Thomas F. Hanisco, Glenn M. Wolfe, Jason St. Clair, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Alan Fried, Eloise A. Marais, Gonzalo Gonzalez Abad, Kelly Chance, Hiren T. Jethva, Thomas B. Ryerson, Carsten Warneke, and Armin Wisthaler
Atmos. Chem. Phys., 19, 2765–2785, https://doi.org/10.5194/acp-19-2765-2019, https://doi.org/10.5194/acp-19-2765-2019, 2019
Short summary
Short summary
Organic aerosol (OA) intimately links natural and anthropogenic emissions with air quality and climate. Direct OA measurements from space are currently not possible. This paper describes a new method to estimate OA by combining satellite HCHO and in situ OA and HCHO. The OA estimate is validated with the ground network. This new method has a potential for mapping observation-based global OA estimate.
Cheng Chen, Oleg Dubovik, Daven K. Henze, Tatyana Lapyonak, Mian Chin, Fabrice Ducos, Pavel Litvinov, Xin Huang, and Lei Li
Atmos. Chem. Phys., 18, 12551–12580, https://doi.org/10.5194/acp-18-12551-2018, https://doi.org/10.5194/acp-18-12551-2018, 2018
Short summary
Short summary
This paper introduces a method to use satellite-observed spectral AOD and AAOD to derive three types of aerosol emission sources simultaneously based on inverse modelling at a high spatial and temporal resolution. This study shows it is possible to estimate aerosol emissions and improve the atmospheric aerosol simulation using detailed aerosol optical and microphysical information from satellite observations.
Jian Wu, Shaofei Kong, Fangqi Wu, Yi Cheng, Shurui Zheng, Qin Yan, Huang Zheng, Guowei Yang, Mingming Zheng, Dantong Liu, Delong Zhao, and Shihua Qi
Atmos. Chem. Phys., 18, 11623–11646, https://doi.org/10.5194/acp-18-11623-2018, https://doi.org/10.5194/acp-18-11623-2018, 2018
Short summary
Short summary
In order to support regional modeling impact on air quality and policy making on controlling open biomass burning emissions, accurate open biomass burning emissions were estimated from 2003 to 2015 with high spatial and temporal resolution. Multiple satellite data, updated biomass data and survey results were all used to improve the accuracy. In addition, management policies and all influencing factors in rural areas for open biomass burning emissions were considered.
Bin Zhao, Jonathan H. Jiang, David J. Diner, Hui Su, Yu Gu, Kuo-Nan Liou, Zhe Jiang, Lei Huang, Yoshi Takano, Xuehua Fan, and Ali H. Omar
Atmos. Chem. Phys., 18, 11247–11260, https://doi.org/10.5194/acp-18-11247-2018, https://doi.org/10.5194/acp-18-11247-2018, 2018
Short summary
Short summary
We combine satellite-borne and ground-based observations to investigate the intra-annual variations of regional aerosol column loading, vertical distribution, and particle types. Column aerosol optical depth (AOD), as well as AOD > 800 m, peaks in summer/spring. However, AOD < 800 m and surface PM2.5 concentrations mostly peak in winter. The aerosol intra-annual variations differ significantly according to aerosol types characterized by different sizes, light absorption, and emission sources.
Guannan Geng, Qiang Zhang, Dan Tong, Meng Li, Yixuan Zheng, Siwen Wang, and Kebin He
Atmos. Chem. Phys., 17, 9187–9203, https://doi.org/10.5194/acp-17-9187-2017, https://doi.org/10.5194/acp-17-9187-2017, 2017
Short summary
Short summary
We presented the characteristics of PM2.5 chemical composition over China during 2005–2012 by synthesis of in situ measurement data and satellite-based estimates. We also investigated the driving forces behind the changes by examining the changes in precursor emissions. We found that the decrease in sulfate is partly offset by the increase in nitrate. The results indicate that the synchronized abatement of emissions for multipollutants is necessary for reducing ambient PM2.5 over China.
Pasquale Sellitto, Alcide di Sarra, Stefano Corradini, Marie Boichu, Hervé Herbin, Philippe Dubuisson, Geneviève Sèze, Daniela Meloni, Francesco Monteleone, Luca Merucci, Justin Rusalem, Giuseppe Salerno, Pierre Briole, and Bernard Legras
Atmos. Chem. Phys., 16, 6841–6861, https://doi.org/10.5194/acp-16-6841-2016, https://doi.org/10.5194/acp-16-6841-2016, 2016
Short summary
Short summary
We combine plume dispersion and radiative transfer modelling, and satellite and surface remote sensing observations to study the regional influence of a relatively weak volcanic eruption from Mount Etna (25–27 October 2013) on the optical/micro-physical properties of Mediterranean aerosols. Our results indicate that even relatively weak volcanic eruptions may produce an observable effect on the aerosol properties at the regional scale, with a significant impact on the regional radiative balance.
Huikyo Lee, Olga V. Kalashnikova, Kentaroh Suzuki, Amy Braverman, Michael J. Garay, and Ralph A. Kahn
Atmos. Chem. Phys., 16, 6627–6640, https://doi.org/10.5194/acp-16-6627-2016, https://doi.org/10.5194/acp-16-6627-2016, 2016
Short summary
Short summary
The Multi-angle Imaging SpectroRadiometer (MISR) on NASA's TERRA satellite has provided a global distribution of aerosol amount and type information for each month over 16+ years since March 2000. This study analyzes, for the first time, characteristics of observed and simulated distributions of aerosols for three broad classes of aerosols: spherical nonabsorbing, spherical absorbing, and nonspherical – near or downwind of their major source regions.
M. J. M. Penning de Vries, S. Beirle, C. Hörmann, J. W. Kaiser, P. Stammes, L. G. Tilstra, O. N. E. Tuinder, and T. Wagner
Atmos. Chem. Phys., 15, 10597–10618, https://doi.org/10.5194/acp-15-10597-2015, https://doi.org/10.5194/acp-15-10597-2015, 2015
S. A. Christopher
Atmos. Chem. Phys., 14, 3183–3194, https://doi.org/10.5194/acp-14-3183-2014, https://doi.org/10.5194/acp-14-3183-2014, 2014
M. Mallet, O. Dubovik, P. Nabat, F. Dulac, R. Kahn, J. Sciare, D. Paronis, and J. F. Léon
Atmos. Chem. Phys., 13, 9195–9210, https://doi.org/10.5194/acp-13-9195-2013, https://doi.org/10.5194/acp-13-9195-2013, 2013
D. M. Winker, J. L. Tackett, B. J. Getzewich, Z. Liu, M. A. Vaughan, and R. R. Rogers
Atmos. Chem. Phys., 13, 3345–3361, https://doi.org/10.5194/acp-13-3345-2013, https://doi.org/10.5194/acp-13-3345-2013, 2013
L. Clarisse, P.-F. Coheur, F. Prata, J. Hadji-Lazaro, D. Hurtmans, and C. Clerbaux
Atmos. Chem. Phys., 13, 2195–2221, https://doi.org/10.5194/acp-13-2195-2013, https://doi.org/10.5194/acp-13-2195-2013, 2013
P. Wang, O. N. E. Tuinder, L. G. Tilstra, M. de Graaf, and P. Stammes
Atmos. Chem. Phys., 12, 9057–9077, https://doi.org/10.5194/acp-12-9057-2012, https://doi.org/10.5194/acp-12-9057-2012, 2012
N. C. Hsu, R. Gautam, A. M. Sayer, C. Bettenhausen, C. Li, M. J. Jeong, S.-C. Tsay, and B. N. Holben
Atmos. Chem. Phys., 12, 8037–8053, https://doi.org/10.5194/acp-12-8037-2012, https://doi.org/10.5194/acp-12-8037-2012, 2012
A. Lana, R. Simó, S. M. Vallina, and J. Dachs
Atmos. Chem. Phys., 12, 7977–7993, https://doi.org/10.5194/acp-12-7977-2012, https://doi.org/10.5194/acp-12-7977-2012, 2012
P. Ginoux, L. Clarisse, C. Clerbaux, P.-F. Coheur, O. Dubovik, N. C. Hsu, and M. Van Damme
Atmos. Chem. Phys., 12, 7351–7363, https://doi.org/10.5194/acp-12-7351-2012, https://doi.org/10.5194/acp-12-7351-2012, 2012
W. Trivitayanurak, P. I. Palmer, M. P. Barkley, N. H. Robinson, H. Coe, and D. E. Oram
Atmos. Chem. Phys., 12, 1083–1100, https://doi.org/10.5194/acp-12-1083-2012, https://doi.org/10.5194/acp-12-1083-2012, 2012
J. C. Witte, A. R. Douglass, A. da Silva, O. Torres, R. Levy, and B. N. Duncan
Atmos. Chem. Phys., 11, 9287–9301, https://doi.org/10.5194/acp-11-9287-2011, https://doi.org/10.5194/acp-11-9287-2011, 2011
H. Flentje, H. Claude, T. Elste, S. Gilge, U. Köhler, C. Plass-Dülmer, W. Steinbrecht, W. Thomas, A. Werner, and W. Fricke
Atmos. Chem. Phys., 10, 10085–10092, https://doi.org/10.5194/acp-10-10085-2010, https://doi.org/10.5194/acp-10-10085-2010, 2010
S. Peyridieu, A. Chédin, D. Tanré, V. Capelle, C. Pierangelo, N. Lamquin, and R. Armante
Atmos. Chem. Phys., 10, 1953–1967, https://doi.org/10.5194/acp-10-1953-2010, https://doi.org/10.5194/acp-10-1953-2010, 2010
P. B. Russell, R. W. Bergstrom, Y. Shinozuka, A. D. Clarke, P. F. DeCarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, O. Dubovik, and A. Strawa
Atmos. Chem. Phys., 10, 1155–1169, https://doi.org/10.5194/acp-10-1155-2010, https://doi.org/10.5194/acp-10-1155-2010, 2010
Cited articles
Abshire, J. B., Sun, X., Riris, H., Sirota, J. M., McGarry, J. F., Palm,
S., Yi, D., and Liiva, P.: Geoscience Laser Altimeter System (GLAS) on the
ICESat Mission: On-orbit measurement performance, Geophys. Res. Lett., 32, L21S02,
https://doi.org/10.1029/2005GL024028, 2005.
Ackerman, S. A.: Remote Sensing Aerosols Using Satellite Infrared
observations, J. Geophys. Res., 102, 17069–17079, https://doi.org/10.1029/96JD03066, 1997.
Albugami, S., Palmer, S., Cinnamon, J., and Meersmans, J.: Spatial and Temporal
Variations in the Incidence of Dust Storms in Saudi Arabia Revealed from In
Situ Observations, Geosciences, 9, 162, https://doi.org/10.3390/geosciences9040162, 2019.
Alharbi, B. H., Maghrabi, A. L., and Tapper, N.: The March 2009 dust event
in Saudi Arabia: Precursor and supportive environment, B. Am. Meteorol.
Soc., 94, 515–528, https://doi.org/10.1175/BAMS-D-11-00118.1,
2013.
Almazroui, M., Raju, P. V. S., Yusef, A., Hussein, M. A. A., and Omar,
M.: Simulation of extreme rainfall event of November 2009 over Jeddah, Saudi
Arabia: the explicit role of topography and surface heating, Theor. Appl.
Climatol., 132, 89–101, https://doi.org/10.1007/s00704-017-2080-2, 2018.
Anisimov, A., Tao, W., Stenchikov, G., Kalenderski, S., Prakash, P. J., Yang, Z.-L., and Shi, M.: Quantifying local-scale dust emission from the Arabian Red Sea coastal plain, Atmos. Chem. Phys., 17, 993–1015, https://doi.org/10.5194/acp-17-993-2017, 2017.
Anisimov, A., Axisa, D., Kucera, P. A., Mostamandi, S., and Stenchikov, G.: Observations and cloud‐resolving modeling of haboob dust storms over the Arabian peninsula, J. Geophys. Res.-Atmos., 123, 12147–12179. https://doi.org/10.1029/2018JD028486, 2018.
Ansmann, A., Wagner, F., Müller, D., Althausen, D., Herber, A., von
Hoyningen-Huene, W., and Wandinger, U.: European pollution outbreaks during
ACE 2.: Optical particle properties inferred from multiwavelength lidar and
star-Sun photometry, J. Geophys. Res., 107, D15, https://doi.org/10.1029/2001JD001109, 2002.
Bangalath, H. K. and Stenchikov, G.: Role of dust direct radiative effect
on the tropical rain belt over Middle East and North Africa: A
high-resolution AGCM study, J. Geophys. Res.-Atmos., 120, 4564–4584,
https://doi.org/10.1002/2015JD023122, 2015.
Benavent-Oltra, J. A., Román, R., Casquero-Vera, J. A., Pérez-Ramírez, D., Lyamani, H., Ortiz-Amezcua, P., Bedoya-Velásquez, A. E., de Arruda Moreira, G., Barreto, Á., Lopatin, A., Fuertes, D., Herrera, M., Torres, B., Dubovik, O., Guerrero-Rascado, J. L., Goloub, P., Olmo-Reyes, F. J., and Alados-Arboledas, L.: Different strategies to retrieve aerosol properties at night-time with the GRASP algorithm, Atmos. Chem. Phys., 19, 14149–14171, https://doi.org/10.5194/acp-19-14149-2019, 2019.
Boesenberg, J., Alpers, M., Althausen, D., Ansmann, A., Böckmann, C., Eixmann, R., et al.: The German Aerosol Lidar Network: Methodology, Data,
Analysis, Report, Max-Planck Institut für Meteorologie, 317, available at:
http://hdl.handle.net/21.11116/0000-0003-2DEF-F (last access: 5 December 2020), 2001.
Chaikovsky, A., Ivanov, A., Balin, Yu., Elnikov, A., Tulinov, G., Plusnin, I., Bukin, O., and Chen, B.: Lidar network CIS-LiNet for monitoring aerosol and ozone in CIS regions, Proc. SPIE 6160, Twelfth Joint International Symposium on Atmospheric and Ocean Optics/Atmospheric Physics, 21 April 2006, 616035, https://doi.org/10.1117/12.675920, 2006.
Chen, S.-H. and Sun, W.-Y.: A one-dimensional time dependent cloud model, J. Meteor. Soc. Japan., 80, 99–118,
https://doi.org/10.2151/jmsj.80.99, 2002.
Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N.,
Martin, R. V., Logan, J. A., Higurashi, A., and Nakajima, T.: Tropospheric
aerosol optical thickness from the GOCART model and comparisons with
satellite and Sun photometer measurements, J. Atmos. Sci., 59, 461–483,
https://doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2, 2002.
Chin, M., Diehl, T., Ginoux, P., and Malm, W.: Intercontinental transport of pollution and dust aerosols: implications for regional air quality, Atmos. Chem. Phys., 7, 5501–5517, https://doi.org/10.5194/acp-7-5501-2007, 2007.
Collins, W. D., Rasch, P. J., Eaton, B. E., Khattatov, B. V., Lamarque,
J.-F., and Zender, C. S.: Simulating aerosols using a chemical transport
model with assimilation of satellite aerosol retrievals: Methodology for
INDOEX, J. Geophys. Res., 106, 7313–7336, https://doi.org/10.1029/2000JD900507, 2001.
Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., van Aardenne, J. A., Monni, S., Doering, U., Olivier, J. G. J., Pagliari, V., and Janssens-Maenhout, G.: Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2, Earth Syst. Sci. Data, 10, 1987–2013, https://doi.org/10.5194/essd-10-1987-2018, 2018.
Crouvi, O., Dayan, U., Amit, R., and Enzel, Y.: An Israeli haboob: Sea
breeze activating local anthropogenic dust sources in the Negev loess, Aeol.
Res., 24, 39–52, https://doi.org/10.1016/j.aeolia.2016.12.002,
2017.
Davis, S. R., Farrar, J. T., Weller, R. A., Jiang, H., and Pratt, L. J.: The
Land-Sea Breeze of the Red Sea: Observations, Simulations, and Relationships
to Regional Moisture Transport, J. Geophys. Res.-Atmos., 124, 13803–13825, https://doi.org/10.1029/2019JD031007, 2019.
Del Guasta, M. and Vallar, E.:, In‐cloud variability of LIDAR depolarization of polar and midlatitude cirrus, Geophys. Res. Lett., 30, 1578, https://doi.org/10.1029/2003GL017163, 2003.
Derimian, Y., Choël, M., Rudich, Y., Deboudt, K., Dubovik, O., Laskin, A., Legrand, M., Damiri, B., Koren, I., Unga, F., Moreau, M., Andreae, M. O., and Karnieli, A.: Effect of sea breeze circulation on aerosol mixing state and radiative properties in a desert setting, Atmos. Chem. Phys., 17, 11331–11353, https://doi.org/10.5194/acp-17-11331-2017, 2017.
de Vries, A. J., Tyrlis, E., Edry, D., Krichak, S. O., Steil, B.,
and Lelieveld, J.: Extreme precipitation events in the Middle East: Dynamics
of the Active Red Sea Trough, J. Geophys. Res.-Atmos., 118, 7087–7108,
https://doi.org/10.1002/jgrd.50569, 2013.
Di Biagio, C., Formenti, P., Balkanski, Y., Caponi, L., Cazaunau, M., Pangui, E., Journet, E., Nowak, S., Caquineau, S., Andreae, M. O., Kandler, K., Saeed, T., Piketh, S., Seibert, D., Williams, E., and Doussin, J.-F.: Global scale variability of the mineral dust long-wave refractive index: a new dataset of in situ measurements for climate modeling and remote sensing, Atmos. Chem. Phys., 17, 1901–1929, https://doi.org/10.5194/acp-17-1901-2017, 2017.
Diner, D.: MISR Level 3 Component Global Aerosol product covering a day
HDF-EOS File – Version 4 [Data set], NASA Langley Atmospheric Science Data
Center DAAC, https://doi.org/10.5067/terra/misr/mil3dae_l3.004, 2009.
Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval
of aerosol optical properties from Sun and sky radiance measurements, J.
Geophys. Res., 105, 20673–20696, https://doi.org/10.1029/2000JD900282,
2000.
Dubovik, O., Herman, M., Holdak, A., Lapyonok, T., Tanré, D., Deuzé, J. L., Ducos, F., Sinyuk, A., and Lopatin, A.: Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations, Atmos. Meas. Tech., 4, 975–1018, https://doi.org/10.5194/amt-4-975-2011, 2011.
Dubovik, O., Lapyonok, T., Litvinov, P., Herman, M., Fuertes, D., Ducos, F.,
Lopatin A., Chaikovsky, A., Torres, B., Derimian, Y., Huang, X.,
Aspetsberger, M., and Federspiel, C.: GRASP: a versatile algorithm for
characterizing the atmosphere, SPIE Newsroom, 25, https://doi.org/10.1117/2.1201408.005558, 2014.
Engelstaedter, S. and Washington, R.: Temporal controls on global dust
emissions: The role of surface gustiness, Geophys. Res. Lett., 34, L15805,
https://doi.org/10.1029/2007GL029971, 2007.
Estoque, M. A.: A theoretical investigation of the sea breeze, Q. J. Roy.
Meteor. Soc., 87, 136–146, https://doi.org/10.1002/qj.49708737203, 1961.
Farrar, J., Lentz, S., Churchill, J., Bouchard, P., Smith, J., Kemp, J.,
Lord, J., Allsup, G., and Hosom, D.: King Abdullah University of Science and
Technology (KAUST) mooring deployment cruise and fieldwork report, Technical
report, Woods Hole Oceanographic Institution, WHOI-KAUST-CTR-2009, 2, 2009.
Fekih, A. and Mohamed, A.: Evaluation of the WRF model on simulating the
vertical structure and diurnal cycle of the atmospheric boundary layer over
Bordj Badji Mokhtar (southwestern Algeria), Journal of King Saud University
– Science, 31, 602–611, https://doi.org/10.1016/j.jksus.2017.12.004, 2019.
Fernández, A. J., Sicard, M., Costa, M. J., Guerrero-Rascado, J. L.,
Gómez-Amo, J. L., Molero, F., Barragán, R., Basart, S., Bortoli, D.,
Bedoya-Velásquez, A. E., and Utrillas, M. P.: Extreme, wintertime Saharan
dust intrusion in the Iberian Peninsula: KAUST–MPL monitoring and
evaluation of dust forecast models during the February 2017 event, Atmos.
Res., 228, 223–241, https://doi.org/10.1016/j.atmosres.2019.06.007,
2019.
Fernández-Camacho, R., Rodríguez, S., de la Rosa, J., Sánchez de la Campa, A. M., Viana, M., Alastuey, A., and Querol, X.: Ultrafine particle formation in the inland sea breeze airflow in Southwest Europe, Atmos. Chem. Phys., 10, 9615–9630, https://doi.org/10.5194/acp-10-9615-2010, 2010.
Flaounas, E., Kotroni, V., Lagouvardos, K., Klose, M., Flamant, C., and Giannaros, T. M.: Sensitivity of the WRF-Chem (V3.6.1) model to different dust emission parametrisation: assessment in the broader Mediterranean region, Geosci. Model Dev., 10, 2925–2945, https://doi.org/10.5194/gmd-10-2925-2017, 2017.
Fountoukis, C., Ayoub, M. A., Ackermann, L., Perez-Astudillo, D., Bachour,
D., Gladich, I., and Hoehn, R. D.: Vertical Ozone Concentration Profiles in
the Arabian Gulf Region during Summer and Winter: Sensitivity of WRF-Chem to
Planetary Boundary Layer Schemes, Aerosol Air Qual. Res., 18, 1183–1197,
https://doi.org/10.4209/aaqr.2017.06.0194, 2018.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O.,
and Lin, S.-J.: Sources and distributions of dust aerosols simulated with
the GOCART model, J. Geophys. Res., 106, 20255–20273, https://doi.org/10.1029/2000JD000053, 2001.
Gong, S. L.: A parameterization of sea-salt aerosol source function for sub-
and super-micron particles, Global Biogeochem. Cycles, 17, 1097,
https://doi.org/10.1029/2003GB002079, 2003.
Guerrero-Rascado, J. L., Landulfo, E., Antuña, J. C., de Melo Jorge Barbosa, H., Barja, B., Bastidas, Á. E., Bedoya, A. E., da Costa, R. F., Estevan, R., Forno, R., Gouveia, D. A., Jiménez, C., Larroza, E. G., da Silva Lopes, F. J., Montilla-Rosero, E., de Arruda Moreira, G., Nakaema, W. M., Nisperuza, D., Alegria, D., Múnera, M., Otero, L., Papandrea, S., Pallota, J. V., Pawelko, E., Quel, E. J., Ristori, P., Rodrigues, P. F., Salvador, J., Sánchez, M. F., and Silva, A.: Latin American Lidar Network (LALINET) for
aerosol research: Diagnosis on network instrumentation, J.
Atmos. Solar-Terr. Phy., 138–139, 112–120, https://doi.org/10.1016/j.jastp.2016.01.001, 2016.
Heese, B. and Wiegner, M.: Vertical aerosol profiles from Raman
polarization lidar observations during the dry season AMMA field
campaign, J. Geophys. Res., 113, D00C11, https://doi.org/10.1029/2007JD009487, 2008.
Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., Smirnov, A.: AERONET – A federated instrument network and data
archive for aerosol characterization, Remote Sens. Environ., 66, 1–16, https://doi.org/10.1016/s0034-4257(98)00031-5,
1998.
Hong, S.-Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an explicit treatment of entrainment processes, Mon. Weather Rev., 134, 2318–2341, https://doi.org/10.1175/MWR3199.1, 2006.
Hsu, N. C., Tsay, S. C., King, M. D., and Herman, J. R.: Aerosol properties
over bright-reflecting source regions, Geosci. Remote Sens., IEEE
Transactions on, 42, 557–569, https://doi.org/10.1109/TGRS.2004.824067, 2004.
Hsu, N. C., Jeong, M.-J., Bettenhausen, C., Sayer, A. M., Hansell, R., Seftor, C. S., Huang, J., and Tsay, S.-C.: Enhanced Deep Blue aerosol retrieval algorithm: The second generation, J. Geophys. Res.-Atmos., 118, 9296–9315, https://doi.org/10.1002/jgrd.50712, 2013.
Hu, Z., Zhao, C., Huang, J., Leung, L. R., Qian, Y., Yu, H., Huang, L., and Kalashnikova, O. V.: Trans-Pacific transport and evolution of aerosols: evaluation of quasi-global WRF-Chem simulation with multiple observations, Geosci. Model Dev., 9, 1725–1746, https://doi.org/10.5194/gmd-9-1725-2016, 2016.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008.
Jacobson, M. Z. and Kaufman, Y. J.: Wind reduction by aerosol
particles, Geophys. Res. Lett., 33, L24814, https://doi.org/10.1029/2006GL027838,
2006.
Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., Denier van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li, M.: HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution, Atmos. Chem. Phys., 15, 11411–11432, https://doi.org/10.5194/acp-15-11411-2015, 2015.
Jiang, H., Farrar, J. T., Beardsley, Chen, R., and Chen, C.: Zonal
surface wind jets across the Red Sea due to mountain gap forcing along both
sides of the Red Sea, Geophys. Res. Lett., 36, L19605, https://doi.org/10.1029/2009GL040008, 2009.
Jish Prakash, P., Stenchikov, G., Kalenderski, S., Osipov, S., and Bangalath, H.: The impact of dust storms on the Arabian Peninsula and the Red Sea, Atmos. Chem. Phys., 15, 199–222, https://doi.org/10.5194/acp-15-199-2015, 2015.
Johnson, B. T., Heese, B., McFarlane, S. A., Chazette, P., Jones, A.,
and Bellouin, N.: Vertical distribution and radiative effects of mineral
dust and biomass burning aerosol over West Africa during DABEX, J. Geophys.
Res., 113, D00C12, https://doi.org/10.1029/2008JD009848, 2008.
Kahn, R. A., Gaitley, B. J., Martonchik, J. V., Diner, D. J., Crean, K. A.,
and Holben, B.: Multiangle Imaging Spectroradiometer (MISR) global aerosol
optical depth validation based on 2 years of coincident Aerosol Robotic
Network (AERONET) observations, J. Geophys. Res., 110, D10S04,
https://doi.org/10.1029/2004JD004706, 2005.
Kalenderski, S. and Stenchikov, G.: High-resolution regional modeling of
summertime transport and impact of African dust over the Red Sea and Arabian
Peninsula, J. Geophys. Res.-Atmos., 121, 6435–6458, https://doi.org/10.1002/2015JD024480, 2016.
Khan, B., Stenchikov, G., Weinzierl, B., Kalenderski, S., and Osipov, S.:
Dust plume formation in the free troposphere and aerosol size distribution
during the Saharan Mineral Dust Experiment in North Africa, Tellus B, 67, 27170, https://doi.org/10.3402/tellusb.v67.27170, 2015.
Kim, D., Chin, M., Kemp, E. M., Tao, Z., Peters, C. D., and
Ginoux, P.: Development of high-resolution dynamic dust source function – A
case study with a strong dust storm in a regional model, Atmos. Environ., 159,
11–25, https://doi.org/10.1016/j.atmosenv.2017.03.045, 2017.
Kim, M.-H., Omar, A. H., Tackett, J. L., Vaughan, M. A., Winker, D. M., Trepte, C. R., Hu, Y., Liu, Z., Poole, L. R., Pitts, M. C., Kar, J., and Magill, B. E.: The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm, Atmos. Meas. Tech., 11, 6107–6135, https://doi.org/10.5194/amt-11-6107-2018, 2018.
Klose, M. and Shao, Y.: Stochastic parameterization of dust emission and application to convective atmospheric conditions, Atmos. Chem. Phys., 12, 7309–7320, https://doi.org/10.5194/acp-12-7309-2012, 2012.
Klose, M. and Shao, Y.: Large-eddy simulation of turbulent dust
emission, Aeol. Res., 8, 49–58,
https://doi.org/10.1016/j.aeolia.2012.10.010, 2013.
Kok, J. F., Ridley, D. A., Zhou, Q., Miller, R. L., Zhao, C., Heald, C. L.,
Ward, D. S., Albani, S., and Haustein, K.: Smaller desert dust cooling effect
estimated from analysis of dust size and abundance, Nat.
Geosci., 10, 274–278, https://doi.org/10.1038/ngeo2912, 2017.
Kumar, R. K., Attada, R., Dasari, H. P., Vellore, R. K., Abualnaja, Y. O.,
Asok, K., and Hoteit, I.: On the recent amplification of dust over the
Arabian Peninsula during 2002–2012, J. Geophys. Res.-Atmos., 124, 13220–13229, 2019.
Lebel, T., Parker, D. J., Flamant, C., Bourlès, B., Marticorena, B.,
Mougin, E., Peugeot, C., Diedhiou, A., Haywood, J. M., Ngamini, J. B.,
Polcher, J., Redelsperger, J.-L., and Thorncroft, C. D.: The AMMA field
campaigns: multiscale and multidisciplinary observations in the West African
region, Q. J. Roy. Meteor. Soc., 136, 8–33, https://doi.org/10.1002/qj.486, 2010.
LeGrand, S. L., Polashenski, C., Letcher, T. W., Creighton, G. A., Peckham, S. E., and Cetola, J. D.: The AFWA dust emission scheme for the GOCART aerosol model in WRF-Chem v3.8.1, Geosci. Model Dev., 12, 131–166, https://doi.org/10.5194/gmd-12-131-2019, 2019.
Li, W., El-Askary, H., Qurban, M. A., Proestakis, E., Garay, M. J.,
Kalashnikova, O. V., Amiridis, V., Gkikas, A., Marinou, E., Piechota, T., and
Manikandan, K. P.: An Assessment of Atmospheric and Meteorological Factors
Regulating Red Sea Phytoplankton Growth, Remote Sens., 10, 673, https://doi.org/10.3390/rs10050673, 2018.
Liu, F., Choi, S., Li, C., Fioletov, V. E., McLinden, C. A., Joiner, J., Krotkov, N. A., Bian, H., Janssens-Maenhout, G., Darmenov, A. S., and da Silva, A. M.: A new global anthropogenic SO2 emission inventory for the last decade: a mosaic of satellite-derived and bottom-up emissions, Atmos. Chem. Phys., 18, 16571–16586, https://doi.org/10.5194/acp-18-16571-2018, 2018.
Lopatin, A., Dubovik, O., Chaikovsky, A., Goloub, P., Lapyonok, T., Tanré, D., and Litvinov, P.: Enhancement of aerosol characterization using synergy of lidar and sun-photometer coincident observations: the GARRLiC algorithm, Atmos. Meas. Tech., 6, 2065–2088, https://doi.org/10.5194/amt-6-2065-2013, 2013.
Mahowald, N. M., Muhs, D. R., Levis, S., Rasch, P. J., Yoshioka, M., Zender,
C. S., and Luo, C.: Change in atmospheric mineral aerosols in response
to climate: Last glacial period, preindustrial, modern, and doubled carbon
dioxide climates, J. Geophys. Res., 111, D10202,
https://doi.org/10.1029/2005JD006653, 2006.
Marenco, F., Ryder, C., Estellés, V., O'Sullivan, D., Brooke, J., Orgill, L., Lloyd, G., and Gallagher, M.: Unexpected vertical structure of the Saharan Air Layer and giant dust particles during AER-D, Atmos. Chem. Phys., 18, 17655–17668, https://doi.org/10.5194/acp-18-17655-2018, 2018.
Marticorena, B. and Bergametti, G.: Modeling the atmospheric dust cycle: 1.
Design of a soil-derived dust emission scheme, J. Geophys. Res., 100,
16415–16430, https://doi.org/10.1029/95JD00690, 1995.
Miller, S. T. K., Keim, B. D., Talbot, R. W., and Mao, H.: Sea
breeze: Structure, forecasting, and impacts, Rev. Geophys., 41, 1011,
https://doi.org/10.1029/2003RG000124, 2003.
Monahan, E. C., Spiel, D. E., and Davidson, K. L.: A Model of Marine Aerosol
Generation Via Whitecaps and Wave Disruption, in: Oceanic Whitecaps, edited
by: Monahan. E. C. and Niocaill, G. M., Oceanographic Sciences Library, Springer,
Dordrecht, 2, 167–174,
https://doi.org/10.1007/978-94-009-4668-2_16, 1986.
Neuman, C. M., Boulton, J. W., and Sanderson, S.: Wind tunnel simulation of
environmental controls on fugitive dust emissions from mine tailings, Atmos.
Environ., 43, 520–529, https://doi.org/10.1016/j.atmosenv.2008.10.011, 2009.
Omar, A. H., Winker, D. M., Vaughan, M. A., Hu, Y., Trepte, C. R., Ferrare,
R. A., Lee, K. P., Hostetler, C. A., Kittaka, C., Rogers, R. R., and Kuehn, R. E.:
The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection
Algorithm, J. Atmos. Ocean. Tech., 26, 1994–2014, https://doi.org/10.1175/2009JTECHA1231.1, 2009.
Osipov, S. and Stenchikov, G.: Simulating the regional impact of dust on
the Middle East climate and the Red Sea, J. Geophys. Res.-Oceans, 123, 1032–1047, https://doi.org/10.1002/2017JC013335,
2018.
Osipov, S., Stenchikov, G., Brindley, H., and Banks, J.: Diurnal cycle of the dust instantaneous direct radiative forcing over the Arabian Peninsula, Atmos. Chem. Phys., 15, 9537–9553, https://doi.org/10.5194/acp-15-9537-2015, 2015.
Pappalardo, G., Amodeo, A., Apituley, A., Comeron, A., Freudenthaler, V., Linné, H., Ansmann, A., Bösenberg, J., D'Amico, G., Mattis, I., Mona, L., Wandinger, U., Amiridis, V., Alados-Arboledas, L., Nicolae, D., and Wiegner, M.: EARLINET: towards an advanced sustainable European aerosol lidar network, Atmos. Meas. Tech., 7, 2389–2409, https://doi.org/10.5194/amt-7-2389-2014, 2014.
Parajuli, S. P. and Zender, C.: Connecting geomorphology to dust emission through high-resolution mapping of global land cover and sediment supply, Aeol. Res., 27, 47–65, https://doi.org/10.1016/j.aeolia.2017.06.002, 2017.
Parajuli, S. P., Yang, Z.‐L., and Kocurek, G.: Mapping erodibility in dust source regions based on geomorphology, meteorology, and remote sensing, J. Geophys. Res.-Earth Surf., 119, 1977–1994, https://doi.org/10.1002/2014JF003095, 2014.
Parajuli, S. P., Stenchikov, G. L., Ukhov, A., and Kim, H.: Dust emission modeling using a new high‐resolution dust source function in WRF‐Chem with implications for air quality, J. Geophys. Res.-Atmos., 124, 10109–10133, https://doi.org/10.1029/2019JD030248, 2019.
Parajuli, S. P., Stenchikov, G. L., Ukhov, A., Shevchenko, I. Dubovik, O., and Lopatin, A.: Data for Aerosol Vertical Distribution and Interactions with Land/Sea Breezes over the Eastern Coast of the Red Sea from LIDAR Data and High-resolution WRF-Chem Simulations, KAUST repository, https://doi.org/10.25781/KAUST-PBR81, last access: 22 December 2020.
Prospero, J. M.: Long-term measurements of the transport of African mineral
dust to the southeastern United States: Implications for regional air
quality, J. Geophys. Res., 104, 15917–15927,
https://doi.org/10.1029/1999JD900072, 1999.
Rasch, P. J., Collins, W. D., and Eaton, B. E.: Understanding the Indian
Ocean Experiment (INDOEX) aerosol distributions with an aerosol
assimilation, J. Geophys. Res., 106, 7337–7355,
https://doi.org/10.1029/2000JD900508, 2001.
Rémy, S., Benedetti, A., Bozzo, A., Haiden, T., Jones, L., Razinger, M., Flemming, J., Engelen, R. J., Peuch, V. H., and Thepaut, J. N.: Feedbacks of dust and boundary layer meteorology during a dust storm in the eastern Mediterranean, Atmos. Chem. Phys., 15, 12909–12933, https://doi.org/10.5194/acp-15-12909-2015, 2015.
Rinecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G. K., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.: MERRA: NASA's modern‐era retrospective analysis for research and applications, J. Climate, 24, 3624–3648, https://doi.org/10.1175/JCLI‐D‐11‐00015.1, 2011.
Ryder, C. L., Highwood, E. J., Walser, A., Seibert, P., Philipp, A., and Weinzierl, B.: Coarse and giant particles are ubiquitous in Saharan dust export regions and are radiatively significant over the Sahara, Atmos. Chem. Phys., 19, 15353–15376, https://doi.org/10.5194/acp-19-15353-2019, 2019.
Saide, P. E., Carmichael, G. R., Spak, S. N., Gallardo, L., Osses, A. E.,
Mena-Carrasco, M. A., and Pagowski, M.: Forecasting urban PM10 and PM2.5
pollution episodes in very stable nocturnal conditions and complex terrain
using WRF–Chem CO tracer model, Atmos. Environ., 45, 2769–2780, https://doi.org/10.1016/j.atmosenv.2011.02.001, 2011.
Schepanski, K., Tegen, I., Laurent, B., Heinold, B., and Macke, A.: A new
Saharan dust source activation frequency map derived from MSG-SEVIRI
IR-channels, Geophys. Res. Lett., 34, L18803, https://doi.org/10.1029/2007GL030168, 2007.
Selezneva, E. S.: The main features of condensation nuclei distribution in
the free atmosphere over the European territory of the USSR, Tellus, 18,
525–531, https://doi.org/10.1111/j.2153-3490.1966.tb00265.x, 1966.
Senghor, H., Machu, É., Hourdin, F., and Gaye, A. T.: Seasonal cycle of desert aerosols in western Africa: analysis of the coastal transition with passive and active sensors, Atmos. Chem. Phys., 17, 8395–8410, https://doi.org/10.5194/acp-17-8395-2017, 2017.
Shao, Y., Wyrwoll, K. H., Chappell, A., Huang, J., Lin, Z., McTainsh, G. H.,
Mikami, M., Tanaka, T. Y., Wang, X., and Yoon, S.: Dust cycle: an emerging
core theme in Earth system science, Aeol. Res., 2, 181–204, https://doi.org/10.1016/j.aeolia.2011.02.001, 2011.
Shimizu, A., Nishizawa, T., Jin, Y., Kim, S.-W., Wang, Z., Batdorj, D., and
Sugimoto, N.: Evolution of a lidar network for tropospheric aerosol
detection in East Asia, Opt. Eng. 56, 031219, https://doi.org/10.1117/1.OE.56.3.031219, 2016.
Simpson, J. E.: Sea breeze and local winds, Cambridge University Press, New York,
1994.
Sokolik, I. N. and Toon, O. B.: Direct radiative forcing by anthropogenic
airborne mineral aerosols, Nature, 381, 681–683, https://doi.org/10.1038/381681a0, 1996.
Stephens, G., Winker, D., Pelon, J., Trepte, C., Vane, D., Yuhas, C.,
L'Ecuyer, T., and Lebsock, M.: CloudSat and CALIPSO within the
A-Train: Ten Years of Actively Observing the Earth System, B. Am.
Meteorol. Soc., 99, 569–581, https://doi.org/10.1175/BAMS-D-16-0324.1, 2018.
Teixeira, J. C., Carvalho, A. C., Tuccella, P., Curci, G., and Rocha, A.:
WRF-chem sensitivity to vertical resolution during a saharan dust event,
Phys. Chem. Earth Parts A/B/C, 94, 188–195, https://doi.org/10.1016/j.pce.2015.04.002, 2016.
Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M. A., Mitchell, K., Ek, M., Gayno, G., Wegiel, J., and Cuenca, R. H.: Implementation and verification of the unified NOAH land surface model in the WRF model. 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, available at:
https://www2.mmm.ucar.edu/wrf/users/phys_refs/LAND_SURFACE/noah.pdf (last access: 22 December 2020), pp. 11–15, 2004.
Ukhov, A., Ahmadov, R., Grell, G., and Stenchikov, G.: Improving dust simulations in WRF-Chem model v4.1.3 coupled with GOCART aerosol module, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-92, in review, 2020a.
Ukhov, A., Mostamandi, S., da Silva, A., Flemming, J., Alshehri, Y., Shevchenko, I., and Stenchikov, G.: Assessment of natural and anthropogenic aerosol air pollution in the Middle East using MERRA-2, CAMS data assimilation products, and high-resolution WRF-Chem model simulations, Atmos. Chem. Phys., 20, 9281–9310, https://doi.org/10.5194/acp-20-9281-2020, 2020b.
Ukhov, A., Mostamandi, S., Krotkov, N., Flemming, J., da Silva, A., Li, C.,
Fioletov. V., McLinden, C., Anisimov, A., Alshehri, Y., and Stenchikov, G.:
Study of SO2 pollution in the Middle East using MERRA-2, CAMS data
assimilation products, and high-resolution WRF-Chem simulations, J. Geophys.
Res.-Atmos., 125, e2019JD031993, https://doi.org/10.1029/2019JD031993, 2020c.
Wang, S. H., Lin, N. H., OuYang, C. F., Wang, J. L., Campbell, J. R., Peng, C. M.,
Lee, C. T., Sheu, G. R., and Tsay, S. C.: Impact of Asian dust and continental
pollutants on cloud chemistry observed in northern Taiwan during the
experimental period of ABC/EAREX 2005, J. Geophys. Res., 115, D00K24,
https://doi.org/10.1029/2009JD013692, 2010.
Welton, E. J., Voss, K. J., Gordon, H. R., Maring, H., Smirnov, A., Holben, B.,
Schmid, B., Livingston, J. M., Russell, P. B., Durkee, P. A., Formenti, P., and
Andreae, M. O.: Ground-based lidar measurements of aerosols during ACE-2:
instrument description, results, and comparisons with other ground-based and
airborne measurements, Tellus B, 52, 636–651, https://doi.org/10.1034/j.1600-0889.2000.00025.x, 2000.
Welton, E. J., Campbell, J. R., Spinhirne, J. D., and Scott III, V. S.: Global
monitoring of clouds and aerosols using a network of micropulse lidar
systems, Proc. SPIE 4153, KAUST–MPL Remote Sensing for Industry and
Environment Monitoring, Sendai, Japan, 13 February 2001, https://doi.org/10.1117/12.417040, 2001.
Welton, E. J., Campbell, J. R., Berkoff, T. A., Spinhirne, J. D., Tsay, S. C.,
Holben, B., Shiobara, M., and Starr, D. O.: The Micro-pulse lidar Network
(MPL-Net), Twenty-first International Laser Radar Conference (ILRC21),
Quebec City, Canada, 8–12 July 2002, available at:
https://ntrs.nasa.gov/search.jsp?R=20020083050 (last access: 5 June 2019), 2002a.
Welton, E. J., Voss, K. J., Quinn, P. K., Flatau, P. J., Markowicz,
K., Campbell, J. R., Spinhirne, J. D., Gordon, H. R., and Johnson, J.
E.: Measurements of aerosol vertical profiles and optical properties during
INDOEX 1999 using micropulse lidars, J. Geophys. Res., 107, 8019,
https://doi.org/10.1029/2000JD000038, 2002b.
Wild, O., Zhu, X., and Prather, M. J.: Fast-J: accurate simulation of in-
and below cloud photolysis in tropospheric chemical models, J. Atmos. Chem.,
37, 245–282, https://doi.org/10.1023/A:1006415919030, 2000.
Winker, D. M., Couch, R. H., and McCormick, M. P.: An overview of LITE:
NASA's Lidar In-space Technology Experiment, in Proceedings of the IEEE,
84, 164–180, https://doi.org/10.1109/5.482227, 1996.
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z., Hunt,
W. H., and Young, S. A.: Overview of the CALIPSO Mission and CALIOP Data
Processing Algorithms, J. Atmos. Ocean. Tech., 26,
2310–2323, https://doi.org/10.1175/2009JTECHA1281.1, 2009.
Winker, D. M., Tackett, J. L., Getzewich, B. J., Liu, Z., Vaughan, M. A., and Rogers, R. R.: The global 3-D distribution of tropospheric aerosols as characterized by CALIOP, Atmos. Chem. Phys., 13, 3345–3361, https://doi.org/10.5194/acp-13-3345-2013, 2013.
Wu, L., Su, H., Kalashnikova, O. V., Jiang, J. H., Zhao, C., Garay, M. J., Campbell, J. R., and Yu, N.: WRF-Chem simulation of aerosol seasonal variability in the San Joaquin Valley, Atmos. Chem. Phys., 17, 7291–7309, https://doi.org/10.5194/acp-17-7291-2017, 2017.
Yuan, T., Chen, S., Huang, J., Zhang, X., Luo, Y., Ma, X., and Zhang, G.:
Sensitivity of simulating a dust storm over Central Asia to different dust
schemes using the WRF-Chem model, Atmos. Environ., 207, 16–29, https://doi.org/10.1016/j.atmosenv.2019.03.014, 2019.
Zhang, Y., Liu, Y., Kucera, P. A., Alharbi, B. H., Pan, L., and Ghulam, A.:
Dust modeling over Saudi Arabia using WRF-Chem: March 2009 severe dust case,
Atmos. Environ., 119, 118–130, https://doi.org/10.1016/j.atmosenv.2015.08.032, 2015.
Zhao, C., Liu, X., Leung, L. R., Johnson, B., McFarlane, S. A., Gustafson Jr., W. I., Fast, J. D., and Easter, R.: The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: modeling sensitivities to dust emissions and aerosol size treatments, Atmos. Chem. Phys., 10, 8821–8838, https://doi.org/10.5194/acp-10-8821-2010, 2010.
Short summary
Both natural (dust, sea salt) and anthropogenic (sulfate, organic and black carbon) aerosols are common over the Red Sea coastal plains. King Abdullah University of Science and Technology (KAUST), located on the eastern coast of the Red Sea, hosts the only operating lidar system in the Arabian Peninsula, which measures atmospheric aerosols day and night. We use these lidar data and high-resolution WRF-Chem model simulations to study the potential effect of dust aerosols on Red Sea environment.
Both natural (dust, sea salt) and anthropogenic (sulfate, organic and black carbon) aerosols are...
Altmetrics
Final-revised paper
Preprint